1
0
mirror of https://github.com/bec-project/bec_widgets.git synced 2025-12-31 11:11:17 +01:00
Files
bec_widgets/bec_widgets/basic_plot.py
2023-08-11 10:25:40 +02:00

458 lines
17 KiB
Python

import os
import threading
import time
import warnings
from typing import Any
import numpy as np
import pyqtgraph
import pyqtgraph as pg
from bec_lib.core import BECMessage
from PyQt5.QtCore import pyqtSlot
from PyQt5.QtWidgets import QCheckBox, QTableWidgetItem
from pyqtgraph import mkBrush, mkColor, mkPen
from pyqtgraph.Qt import QtCore, QtWidgets, uic
from pyqtgraph.Qt.QtCore import pyqtSignal
from bec_widgets.bec_dispatcher import bec_dispatcher
from bec_lib.core.redis_connector import MessageObject, RedisConnector
client = bec_dispatcher.client
class BasicPlot(QtWidgets.QWidget):
update_signal = pyqtSignal()
roi_signal = pyqtSignal(tuple)
def __init__(self, name="", y_value_list=["gauss_bpm"]) -> None:
"""
Basic plot widget for displaying scan data.
Args:
name (str, optional): Name of the plot. Defaults to "".
y_value_list (list, optional): List of signals to be plotted. Defaults to ["gauss_bpm"].
"""
super(BasicPlot, self).__init__()
# Set style for pyqtgraph plots
pg.setConfigOption("background", "w")
pg.setConfigOption("foreground", "k")
current_path = os.path.dirname(__file__)
uic.loadUi(os.path.join(current_path, "basic_plot.ui"), self)
# Set splitter distribution of widgets
self.splitter.setSizes([3, 1])
self._idle_time = 100
self.title = ""
self.label_bottom = ""
self.label_left = ""
self.producer = RedisConnector(["localhost:6379"]).producer()
self.scan_motors = []
self.y_value_list = y_value_list
self.previous_y_value_list = None
self.plotter_data_x = []
self.plotter_data_y = []
self.curves = []
self.pens = []
self.brushs = []
self.plotter_scan_id = None
# TODO to be moved to utils function
plotstyles = {
"symbol": "o",
"symbolSize": 10,
}
color_list = BasicPlot.golden_angle_color(colormap="CET-R2", num=len(self.y_value_list))
# setup plots - GraphicsLayoutWidget
# LabelItem
self.label = pg.LabelItem(justify="center")
self.glw.addItem(self.label)
self.label.setText("ROI region")
# PlotItem - main window
self.glw.nextRow()
self.plot = pg.PlotItem()
self.plot.setLogMode(True, True)
self.glw.addItem(self.plot)
self.plot.addLegend()
# ImageItem - 2D view #TODO add 2D plot for ROI and 1D plot for mouse click
self.glw.nextRow()
self.plot_roi = pg.PlotItem()
self.img = pg.ImageItem()
self.glw.addItem(self.plot_roi)
self.plot_roi.addItem(self.img)
# ROI selector - so far from [-1,1] #TODO update to scale with xrange
self.roi_selector = pg.LinearRegionItem([-1, 1])
for ii, y_value in enumerate(self.y_value_list):
pen = mkPen(color=color_list[ii], width=2, style=QtCore.Qt.DashLine)
brush = mkBrush(color=color_list[ii])
curve = pg.PlotDataItem(
**plotstyles, symbolBrush=brush, pen=pen, skipFiniteCheck=True, name=y_value
)
self.plot.addItem(curve)
self.curves.append(curve)
self.pens.append(pen)
self.brushs.append(brush)
self.add_crosshair(self.plot)
self.add_crosshair(self.plot_roi)
self.crosshair_v = pg.InfiniteLine(angle=90, movable=False)
self.crosshair_h = pg.InfiniteLine(angle=0, movable=False)
#
# for plot in (self.plot_roi, self.plot):
# plot.addItem(self.crosshair_v, ignoreBounds=True)
# plot.addItem(self.crosshair_h, ignoreBounds=True)
# self.plot.addItem(self.crosshair_v, ignoreBounds=True)
# self.plot.addItem(self.crosshair_h, ignoreBounds=True)
# self.plot_roi.addItem(self.crosshair_v, ignoreBounds=True)
# self.plot_roi.addItem(self.crosshair_h, ignoreBounds=True)
# Add textItems
self.add_text_items()
# Manage signals
self.proxy = pg.SignalProxy(
self.plot.scene().sigMouseMoved, rateLimit=60, slot=self.mouse_moved
)
self.proxy_update = pg.SignalProxy(self.update_signal, rateLimit=25, slot=self.update)
self.roi_selector.sigRegionChangeFinished.connect(self.get_roi_region)
# Debug functions
self.pushButton_debug.clicked.connect(self.generate_2D_data_update)
# self.generate_2D_data()
self._current_proj = None
self._current_metadata_ep = "px_stream/projection_{}/metadata"
self.data_retriever = threading.Thread(target=self.on_projection, daemon=True)
self.data_retriever.start()
def debug(self):
"""
Debug button just for quick testing
"""
def generate_2D_data(self):
data = np.random.normal(size=(1, 100))
self.img.setImage(data)
def generate_2D_data_update(self):
data = np.random.normal(size=(200, 300))
self.img.setImage(data, levels=(0.2, 0.5))
def add_crosshair(self, plot):
crosshair_v = pg.InfiniteLine(angle=90, movable=False)
crosshair_h = pg.InfiniteLine(angle=0, movable=False)
plot.addItem(crosshair_v)
plot.addItem(crosshair_h)
def get_roi_region(self):
"""For testing purpose now, get roi region and print it to self.label as tuple"""
region = self.roi_selector.getRegion()
self.label.setText(f"x = {(10**region[0]):.4f}, y ={(10**region[1]):.4f}")
return_dict = {
"horiz_roi": [
np.where(self.plotter_data_x[0] > 10 ** region[0])[0][0],
np.where(self.plotter_data_x[0] < 10 ** region[1])[0][-1],
]
}
msg = BECMessage.DeviceMessage(signals=return_dict).dumps()
self.producer.set_and_publish("px_stream/gui_event", msg=msg)
self.roi_signal.emit(region)
def add_text_items(self): # TODO probably can be removed
"""Add text items to the plot"""
# self.mouse_box_data.setText("Mouse cursor")
# TODO Via StyleSheet, one may set the color of the full QLabel
# self.mouse_box_data.setStyleSheet(f"QLabel {{color : rgba{self.pens[0].color().getRgb()}}}")
def mouse_moved(self, event: tuple) -> None:
"""
Update the mouse table with the current mouse position and the corresponding data.
Args:
event (tuple): Mouse event containing the position of the mouse cursor.
The position is stored in first entry as horizontal, vertical pixel.
"""
pos = event[0]
if not self.plot.sceneBoundingRect().contains(pos):
return
mousePoint = self.plot.vb.mapSceneToView(pos)
self.crosshair_v.setPos(mousePoint.x())
self.crosshair_h.setPos(mousePoint.y())
if not self.plotter_data_x:
return
closest_point = self.closest_x_y_value(
mousePoint.x(), self.plotter_data_x[0], self.plotter_data_y[0]
)
# self.precision = 3
# ii = 0
# y_value = self.y_value_list[ii]
# x_data = f"{10**closest_point[0]:.{self.precision}f}"
# y_data = f"{10**closest_point[1]:.{self.precision}f}"
#
# # Write coordinate to QTable
# self.mouse_table.setItem(ii, 1, QTableWidgetItem(str(y_value)))
# self.mouse_table.setItem(ii, 2, QTableWidgetItem(str(x_data)))
# self.mouse_table.setItem(ii, 3, QTableWidgetItem(str(y_data)))
#
# self.mouse_table.resizeColumnsToContents()
def closest_x_y_value(self, input_value, list_x, list_y) -> tuple:
"""
Find the closest x and y value to the input value.
Args:
input_value (float): Input value
list_x (list): List of x values
list_y (list): List of y values
Returns:
tuple: Closest x and y value
"""
arr = np.asarray(list_x)
i = (np.abs(arr - input_value)).argmin()
return list_x[i], list_y[i]
def update(self):
"""Update the plot with the new data."""
# check if roi selector is in the plot
if self.roi_selector not in self.plot.items:
self.plot.addItem(self.roi_selector)
# check if QTable was initialised and if list of devices was changed
if self.y_value_list != self.previous_y_value_list:
self.setup_cursor_table()
self.previous_y_value_list = self.y_value_list.copy() if self.y_value_list else None
self.curves[0].setData(self.plotter_data_x[0], self.plotter_data_y[0])
# if len(self.plotter_data_x[0]) <= 1:
# return
# self.plot.setLabel("bottom", self.label_bottom)
# self.plot.setLabel("left", self.label_left)
# for ii in range(len(self.y_value_list)):
# self.curves[0].setData(self.plotter_data_x[0], self.plotter_data_y[0])
@pyqtSlot(dict, dict)
def on_scan_segment(self, data: dict, metadata: dict) -> None:
"""Update function that is called during the scan callback. To avoid
too many renderings, the GUI is only processing events every <_idle_time> ms.
Args:
data (dict): Dictionary containing a new scan segment
metadata (dict): Scan metadata
"""
if metadata["scanID"] != self.plotter_scan_id:
self.plotter_scan_id = metadata["scanID"]
self._reset_plot_data()
self.title = f"Scan {metadata['scan_number']}"
self.scan_motors = scan_motors = metadata.get("scan_report_devices")
# client = BECClient()
remove_y_value_index = [
index
for index, y_value in enumerate(self.y_value_list)
if y_value not in client.device_manager.devices
]
if remove_y_value_index:
for ii in sorted(remove_y_value_index, reverse=True):
# TODO Use bec warning message??? to be discussed with Klaus
warnings.warn(
f"Warning: no matching signal for {self.y_value_list[ii]} found in list of devices. Removing from plot."
)
self.remove_curve_by_name(self.plot, self.y_value_list[ii])
self.y_value_list.pop(ii)
self.precision = client.device_manager.devices[scan_motors[0]]._info["describe"][
scan_motors[0]
]["precision"]
# TODO after update of bec_lib, this will be new way to access data
# self.precision = client.device_manager.devices[scan_motors[0]].precision
x = data["data"][scan_motors[0]][scan_motors[0]]["value"]
self.plotter_data_x.append(x)
for ii, y_value in enumerate(self.y_value_list):
y = data["data"][y_value][y_value]["value"]
self.plotter_data_y[ii].append(y)
self.label_bottom = scan_motors[0]
self.label_left = f"{', '.join(self.y_value_list)}"
# print(f'metadata scan N{metadata["scan_number"]}') #TODO put as label on top of plot
# print(f'Data point = {data["point_id"]}') #TODO can be used for progress bar
if len(self.plotter_data_x) <= 1:
return
self.update_signal.emit()
def _reset_plot_data(self):
"""Reset the plot data."""
self.plotter_data_x = []
self.plotter_data_y = []
for ii in range(len(self.y_value_list)):
self.curves[ii].setData([], [])
self.plotter_data_y.append([])
def setup_cursor_table(self):
"""QTable formatting according to N of devices displayed in plot."""
# Init number of rows in table according to n of devices
self.mouse_table.setRowCount(len(self.y_value_list))
for ii, y_value in enumerate(self.y_value_list):
checkbox = QCheckBox()
checkbox.setChecked(True)
# TODO just for testing, will be replaced by removing/adding curve
checkbox.stateChanged.connect(lambda: print("status Changed"))
# checkbox.stateChanged.connect(lambda: self.remove_curve_by_name(plot=self.plot, checkbox=checkbox, name=y_value))
self.mouse_table.setCellWidget(ii, 0, checkbox)
self.mouse_table.setItem(ii, 1, QTableWidgetItem(str(y_value)))
self.mouse_table.resizeColumnsToContents()
@staticmethod
def remove_curve_by_name(plot: pyqtgraph.PlotItem, name: str) -> None:
# def remove_curve_by_name(plot: pyqtgraph.PlotItem, checkbox: QtWidgets.QCheckBox, name: str) -> None:
"""Removes a curve from the given plot by the specified name.
Args:
plot (pyqtgraph.PlotItem): The plot from which to remove the curve.
name (str): The name of the curve to remove.
"""
# if checkbox.isChecked():
for item in plot.items:
if isinstance(item, pg.PlotDataItem) and getattr(item, "opts", {}).get("name") == name:
plot.removeItem(item)
return
# else:
# return
@staticmethod
def golden_ratio(num: int) -> list:
"""Calculate the golden ratio for a given number of angles.
Args:
num (int): Number of angles
"""
phi = 2 * np.pi * ((1 + np.sqrt(5)) / 2)
angles = []
for ii in range(num):
x = np.cos(ii * phi)
y = np.sin(ii * phi)
angle = np.arctan2(y, x)
angles.append(angle)
return angles
@staticmethod
def golden_angle_color(colormap: str, num: int) -> list:
"""
Extract num colors for from the specified colormap following golden angle distribution.
Args:
colormap (str): Name of the colormap
num (int): Number of requested colors
Returns:
list: List of colors with length <num>
Raises:
ValueError: If the number of requested colors is greater than the number of colors in the colormap.
"""
cmap = pg.colormap.get(colormap)
cmap_colors = cmap.color
if num > len(cmap_colors):
raise ValueError(
f"Number of colors requested ({num}) is greater than the number of colors in the colormap ({len(cmap_colors)})"
)
angles = BasicPlot.golden_ratio(len(cmap_colors))
color_selection = np.round(np.interp(angles, (-np.pi, np.pi), (0, len(cmap_colors))))
colors = [
mkColor(tuple((cmap_colors[int(ii)] * 255).astype(int))) for ii in color_selection[:num]
]
return colors
def on_projection(self):
while True:
if self._current_proj is None:
time.sleep(0.1)
continue
endpoint = f"px_stream/projection_{self._current_proj}/data"
msgs = client.producer.lrange(topic=endpoint, start=-1, end=-1)
data = [BECMessage.DeviceMessage.loads(msg) for msg in msgs]
if not data:
continue
with np.errstate(divide="ignore", invalid="ignore"):
self.plotter_data_y = [
np.sum(
np.sum(data[-1].content["signals"]["data"] * self._current_norm, axis=1)
/ np.sum(self._current_norm, axis=0),
axis=0,
).squeeze()
]
self.update_signal.emit()
@pyqtSlot(dict, dict)
def on_dap_update(self, data: dict, metadata: dict):
self.img.setImage(data["z"].T)
# time.sleep(0,1)
@pyqtSlot(dict)
def new_proj(self, data):
proj_nr = data["proj_nr"]
endpoint = f"px_stream/projection_{proj_nr}/metadata"
msg_raw = client.producer.get(topic=endpoint)
msg = BECMessage.DeviceMessage.loads(msg_raw)
self._current_q = msg.content["signals"]["q"]
self._current_norm = msg.content["signals"]["norm_sum"]
self._current_metadata = msg.content["signals"]["metadata"]
self.plotter_data_x = [self._current_q]
self._current_proj = proj_nr
if __name__ == "__main__":
import argparse
from bec_widgets import ctrl_c
from bec_widgets.bec_dispatcher import bec_dispatcher
parser = argparse.ArgumentParser()
parser.add_argument(
"--signals",
help="specify recorded signals",
nargs="+",
default=["gauss_bpm"],
)
# default = ["gauss_bpm", "bpm4i", "bpm5i", "bpm6i", "xert"],
value = parser.parse_args()
print(f"Plotting signals for: {', '.join(value.signals)}")
client = bec_dispatcher.client
# client.start()
app = QtWidgets.QApplication([])
ctrl_c.setup(app)
plot = BasicPlot(y_value_list=value.signals)
# bec_dispatcher.connect(plot)
bec_dispatcher.connect_proj_id(plot.new_proj)
bec_dispatcher.connect_dap_slot(plot.on_dap_update, "px_dap_worker")
plot.show()
# client.callbacks.register("scan_segment", plot, sync=False)
app.exec_()