(user.widgets.waveform_widget)= # Waveform Widget ````{tab} Overview The Waveform Widget is used to display 1D detector signals. The widget is directly integrated with the `BEC` framework and can display real-time data from detectors loaded in the current `BEC` session as well as custom data from users. ## Key Features: - **Flexible Integration**: The widget can be integrated into both [`BECFigure`](user.widgets.bec_figure) and [`BECDockArea`](user.widgets.bec_dock_area), or used as an individual component in your application through `BECDesigner`. - **Data Visualization**: Real-time plotting of positioner versus detector values from the BEC session, as well as static plotting of custom data. - **Real-time Data Processing**: Add real-time Data Processing Pipeline (DAP) to the real-time acquisition. - **Data Export**: Export data to CSV, H5, and other formats. - **Customizable Visual Elements**: Customize visual elements such as line color and style. - **Interactive Controls**: Interactive controls for zooming and panning through the data. ![Waveform 1D](./w1D.gif) ```` ````{tab} Examples - CLI `WaveformWidget` can be embedded in both [`BECFigure`](user.widgets.bec_figure) and [`BECDockArea`](user.widgets.bec_dock_area), or used as an individual component in your application through `BECDesigner`. However, the command-line API is the same for all cases. ## Example 1 - Adding Waveform Widget to BECFigure In this example, we will demonstrate how to add two different `WaveformWidgets` into a single [`BECFigure`](user.widgets.bec_figure) widget. ```python # Add new dock with BECFigure widget fig = gui.add_dock().add_widget('BECFigure') # Add two WaveformWidgets to the BECFigure plt1 = fig.plot(x_name='samx', y_name='bpm4i') plt2 = fig.plot(x_name='samx', y_name='bpm3i') ``` ## Example 2 - Adding Waveform Widget as a dock with BECDockArea Adding `WaveformWidget` into a [`BECDockArea`](user.widgets.bec_dock_area) is similar to adding any other widget. The widget has the same API as the one in BECFigure; however, as an independent widget outside BECFigure, it has its own toolbar, allowing users to configure the widget without needing CLI commands. ```python # Add new WaveformWidgets to the BECDockArea plt1 = gui.add_dock().add_widget('BECWaveformWidget') plt2 = gui.add_dock().add_widget('BECWaveformWidget') # Add signals to the WaveformWidget plt1.plot(x_name='samx', y_name='bpm4i') plt2.plot(x_name='samx', y_name='bpm3i') ``` ## Example 3 - Adding Waveform Widget with curves ```python # adds a new dock, a new BECFigure and a BECWaveForm to the dock plt = gui.add_dock().add_widget('BECFigure').plot(x_name='samx', y_name='bpm4i') # add a second curve to the same plot plt.plot(x_name='samx', y_name='bpm3i') # set axis labels plt.set_title("Gauss plots vs. samx") plt.set_x_label("Motor X") plt.set_y_label("Gauss Signal (A.U.") ``` ```{note} The return value of the simulated devices *bpm4i* and *bpm3i* may not be Gaussian signals, but they can be easily configured with the code snippet below. For more details, please check the documentation for the [simulation](https://bec.readthedocs.io/en/latest/developer/devices/bec_sim.html). ``` ```python # bpm4i uses GaussianModel and samx as a reference; default settings dev.bpm4i.sim.select_sim_model("GaussianModel") # bpm3i uses StepModel and samx as a reference; default settings dev.bpm3i.sim.select_sim_model("StepModel") ``` ## Example 4 - Adding Data Processing Pipeline Curve with LMFit Models In addition to the scan curve, you can also add a second curve that fits the signal using a specified model from [LMFit](https://lmfit.github.io/lmfit-py/builtin_models.html). The following code snippet demonstrates how to create a 1D waveform curve with an attached DAP process, or how to add a DAP process to an existing curve using the BEC CLI. Please note that for this example, both devices were set as Gaussian signals. ```python # Add a new dock, a new BECFigure, and a BECWaveForm to the dock with a GaussianModel DAP plt = gui.add_dock().add_widget('BECFigure').plot(x_name='samx', y_name='bpm4i', dap="GaussianModel") # Add a second curve to the same plot without DAP plt.plot(x_name='samx', y_name='bpm3a') # Add DAP to the second curve plt.add_dap(x_name='samx', y_name='bpm3a', dap="GaussianModel") ``` To get the parameters of the fit, you need to retrieve the curve objects and call the `dap_params` property. ```python # Get the curve object by name from the legend dap_bpm4i = plt.get_curve("bpm4i-bpm4i-GaussianModel") dap_bpm3a = plt.get_curve("bpm3a-bpm3a-GaussianModel") # Get the parameters of the fit print(dap_bpm4i.dap_params) # Output {'amplitude': 197.399639720862, 'center': 5.013486095404885, 'sigma': 0.9820868875739888} print(dap_bpm3a.dap_params) # Output {'amplitude': 698.3072786185278, 'center': 0.9702840866173836, 'sigma': 1.97139754785518} ``` ![Waveform 1D_DAP](./bec_figure_dap.gif) ## Example 5 - 2D Waveform Scatter Plot The 2D scatter plot widget is designed for more complex data visualization. It employs a false color map to represent a third dimension (z-axis), making it an ideal tool for visualizing multidimensional data sets. ```python # adds a new dock, a new BECFigure and a BECWaveForm to the dock plt = gui.add_dock().add_widget('BECFigure').add_plot(x_name='samx', y_name='samy', z_name='bpm4i') ``` ![Scatter 2D](./scatter_2D.gif) ```` ````{tab} API ```{eval-rst} .. include:: /api_reference/_autosummary/bec_widgets.cli.client.BECWaveform.rst ``` ````