0
0
mirror of https://github.com/bec-project/bec_widgets.git synced 2025-07-14 11:41:49 +02:00

feat(waveform): new Waveform widget based on NextGen PlotBase

This commit is contained in:
2025-02-14 13:22:34 +01:00
parent 906ca03929
commit 0f4365bbb0
21 changed files with 4648 additions and 11 deletions

View File

@ -1,8 +1,11 @@
# pylint: disable = no-name-in-module,missing-class-docstring, missing-module-docstring
from math import inf
from unittest.mock import MagicMock, patch
import fakeredis
import pytest
from bec_lib.bec_service import messages
from bec_lib.endpoints import MessageEndpoints
from bec_lib.redis_connector import RedisConnector
from bec_widgets.tests.utils import DEVICES, DMMock, FakePositioner, Positioner
@ -50,3 +53,150 @@ def mocked_client(bec_dispatcher):
with patch("builtins.isinstance", new=isinstance_mock):
yield client
connector.shutdown() # TODO change to real BECClient
##################################################
# Client Fixture with DAP
##################################################
@pytest.fixture(scope="function")
def dap_plugin_message():
msg = messages.AvailableResourceMessage(
**{
"resource": {
"GaussianModel": {
"class": "LmfitService1D",
"user_friendly_name": "GaussianModel",
"class_doc": "A model based on a Gaussian or normal distribution lineshape.\n\n The model has three Parameters: `amplitude`, `center`, and `sigma`.\n In addition, parameters `fwhm` and `height` are included as\n constraints to report full width at half maximum and maximum peak\n height, respectively.\n\n .. math::\n\n f(x; A, \\mu, \\sigma) = \\frac{A}{\\sigma\\sqrt{2\\pi}} e^{[{-{(x-\\mu)^2}/{{2\\sigma}^2}}]}\n\n where the parameter `amplitude` corresponds to :math:`A`, `center` to\n :math:`\\mu`, and `sigma` to :math:`\\sigma`. The full width at half\n maximum is :math:`2\\sigma\\sqrt{2\\ln{2}}`, approximately\n :math:`2.3548\\sigma`.\n\n For more information, see: https://en.wikipedia.org/wiki/Normal_distribution\n\n ",
"run_doc": "A model based on a Gaussian or normal distribution lineshape.\n\n The model has three Parameters: `amplitude`, `center`, and `sigma`.\n In addition, parameters `fwhm` and `height` are included as\n constraints to report full width at half maximum and maximum peak\n height, respectively.\n\n .. math::\n\n f(x; A, \\mu, \\sigma) = \\frac{A}{\\sigma\\sqrt{2\\pi}} e^{[{-{(x-\\mu)^2}/{{2\\sigma}^2}}]}\n\n where the parameter `amplitude` corresponds to :math:`A`, `center` to\n :math:`\\mu`, and `sigma` to :math:`\\sigma`. The full width at half\n maximum is :math:`2\\sigma\\sqrt{2\\ln{2}}`, approximately\n :math:`2.3548\\sigma`.\n\n For more information, see: https://en.wikipedia.org/wiki/Normal_distribution\n\n \n Args:\n scan_item (ScanItem): Scan item or scan ID\n device_x (DeviceBase | str): Device name for x\n signal_x (DeviceBase | str): Signal name for x\n device_y (DeviceBase | str): Device name for y\n signal_y (DeviceBase | str): Signal name for y\n parameters (dict): Fit parameters\n ",
"run_name": "fit",
"signature": [
{
"name": "args",
"kind": "VAR_POSITIONAL",
"default": "_empty",
"annotation": "_empty",
},
{
"name": "scan_item",
"kind": "KEYWORD_ONLY",
"default": None,
"annotation": "ScanItem | str",
},
{
"name": "device_x",
"kind": "KEYWORD_ONLY",
"default": None,
"annotation": "DeviceBase | str",
},
{
"name": "signal_x",
"kind": "KEYWORD_ONLY",
"default": None,
"annotation": "DeviceBase | str",
},
{
"name": "device_y",
"kind": "KEYWORD_ONLY",
"default": None,
"annotation": "DeviceBase | str",
},
{
"name": "signal_y",
"kind": "KEYWORD_ONLY",
"default": None,
"annotation": "DeviceBase | str",
},
{
"name": "parameters",
"kind": "KEYWORD_ONLY",
"default": None,
"annotation": "dict",
},
{
"name": "kwargs",
"kind": "VAR_KEYWORD",
"default": "_empty",
"annotation": "_empty",
},
],
"auto_fit_supported": True,
"params": {
"amplitude": {
"name": "amplitude",
"value": 1.0,
"vary": True,
"min": -inf,
"max": inf,
"expr": None,
"brute_step": None,
"user_data": None,
},
"center": {
"name": "center",
"value": 0.0,
"vary": True,
"min": -inf,
"max": inf,
"expr": None,
"brute_step": None,
"user_data": None,
},
"sigma": {
"name": "sigma",
"value": 1.0,
"vary": True,
"min": 0,
"max": inf,
"expr": None,
"brute_step": None,
"user_data": None,
},
"fwhm": {
"name": "fwhm",
"value": 2.35482,
"vary": False,
"min": -inf,
"max": inf,
"expr": "2.3548200*sigma",
"brute_step": None,
"user_data": None,
},
"height": {
"name": "height",
"value": 0.3989423,
"vary": False,
"min": -inf,
"max": inf,
"expr": "0.3989423*amplitude/max(1e-15, sigma)",
"brute_step": None,
"user_data": None,
},
},
"class_args": [],
"class_kwargs": {"model": "GaussianModel"},
}
}
}
)
yield msg
@pytest.fixture(scope="function")
def mocked_client_with_dap(mocked_client, dap_plugin_message):
dap_services = {
"BECClient": messages.StatusMessage(name="BECClient", status=1, info={}),
"DAPServer/LmfitService1D": messages.StatusMessage(
name="LmfitService1D", status=1, info={}
),
}
client = mocked_client
client.service_status = dap_services
client.connector.set(
topic=MessageEndpoints.dap_available_plugins("dap"), msg=dap_plugin_message
)
# Patch the client's DAP attribute so that the available models include "GaussianModel"
patched_models = {"GaussianModel": {}, "LorentzModel": {}, "SineModel": {}}
client.dap._available_dap_plugins = patched_models
yield client