Files
common/python37/packages/bigtree/tree/construct.py

915 lines
32 KiB
Python

import re
from collections import OrderedDict
from typing import List, Tuple, Type
import numpy as np
import pandas as pd
from bigtree.node.node import Node
from bigtree.tree.export import tree_to_dataframe
from bigtree.tree.search import find_children, find_name
from bigtree.utils.exceptions import DuplicatedNodeError, TreeError
__all__ = [
"add_path_to_tree",
"add_dict_to_tree_by_path",
"add_dict_to_tree_by_name",
"add_dataframe_to_tree_by_path",
"add_dataframe_to_tree_by_name",
"str_to_tree",
"list_to_tree",
"list_to_tree_by_relation",
"dict_to_tree",
"nested_dict_to_tree",
"dataframe_to_tree",
"dataframe_to_tree_by_relation",
]
def add_path_to_tree(
tree: Node,
path: str,
sep: str = "/",
duplicate_name_allowed: bool = True,
node_attrs: dict = {},
) -> Node:
"""Add nodes and attributes to existing tree *in-place*, return node of added path.
Adds to existing tree from list of path strings.
Path should contain `Node` name, separated by `sep`.
- For example: Path string "a/b" refers to Node("b") with parent Node("a").
- Path separator `sep` is for the input `path` and can be different from that of existing tree.
Path can start from root node `name`, or start with `sep`.
- For example: Path string can be "/a/b" or "a/b", if sep is "/".
All paths should start from the same root node.
- For example: Path strings should be "a/b", "a/c", "a/b/d" etc. and should not start with another root node.
>>> from bigtree import add_path_to_tree, print_tree
>>> root = Node("a")
>>> add_path_to_tree(root, "a/b/c")
Node(/a/b/c, )
>>> print_tree(root)
a
└── b
└── c
Args:
tree (Node): existing tree
path (str): path to be added to tree
sep (str): path separator for input `path`
duplicate_name_allowed (bool): indicator if nodes with duplicated `Node` name is allowed, defaults to True
node_attrs (dict): attributes to add to node, key: attribute name, value: attribute value, optional
Returns:
(Node)
"""
if not len(path):
raise ValueError("Path is empty, check `path`")
tree_root = tree.root
tree_sep = tree_root.sep
node_type = tree_root.__class__
branch = path.lstrip(sep).rstrip(sep).split(sep)
if branch[0] != tree_root.node_name:
raise TreeError(
f"Error: Path does not have same root node, expected {tree_root.node_name}, received {branch[0]}\n"
f"Check your input paths or verify that path separator `sep` is set correctly"
)
# Grow tree
node = tree_root
parent_node = tree_root
for idx in range(1, len(branch)):
node_name = branch[idx]
node_path = tree_sep.join(branch[: idx + 1])
if not duplicate_name_allowed:
node = find_name(tree_root, node_name)
if node and not node.path_name.endswith(node_path):
raise DuplicatedNodeError(
f"Node {node_name} already exists, try setting `duplicate_name_allowed` to True "
f"to allow `Node` with same node name"
)
else:
node = find_children(parent_node, node_name)
if not node:
node = node_type(branch[idx])
node.parent = parent_node
parent_node = node
node.set_attrs(node_attrs)
return node
def add_dict_to_tree_by_path(
tree: Node,
path_attrs: dict,
sep: str = "/",
duplicate_name_allowed: bool = True,
) -> Node:
"""Add nodes and attributes to tree *in-place*, return root of tree.
Adds to existing tree from nested dictionary, ``key``: path, ``value``: dict of attribute name and attribute value.
Path should contain `Node` name, separated by `sep`.
- For example: Path string "a/b" refers to Node("b") with parent Node("a").
- Path separator `sep` is for the input `path` and can be different from that of existing tree.
Path can start from root node `name`, or start with `sep`.
- For example: Path string can be "/a/b" or "a/b", if sep is "/".
All paths should start from the same root node.
- For example: Path strings should be "a/b", "a/c", "a/b/d" etc. and should not start with another root node.
>>> from bigtree import Node, add_dict_to_tree_by_path, print_tree
>>> root = Node("a")
>>> path_dict = {
... "a": {"age": 90},
... "a/b": {"age": 65},
... "a/c": {"age": 60},
... "a/b/d": {"age": 40},
... "a/b/e": {"age": 35},
... "a/c/f": {"age": 38},
... "a/b/e/g": {"age": 10},
... "a/b/e/h": {"age": 6},
... }
>>> root = add_dict_to_tree_by_path(root, path_dict)
>>> print_tree(root)
a
├── b
│ ├── d
│ └── e
│ ├── g
│ └── h
└── c
└── f
Args:
tree (Node): existing tree
path_attrs (dict): dictionary containing node path and attribute information,
key: node path, value: dict of node attribute name and attribute value
sep (str): path separator for input `path_attrs`
duplicate_name_allowed (bool): indicator if nodes with duplicated `Node` name is allowed, defaults to True
Returns:
(Node)
"""
if not len(path_attrs):
raise ValueError("Dictionary does not contain any data, check `path_attrs`")
tree_root = tree.root
for k, v in path_attrs.items():
add_path_to_tree(
tree_root,
k,
sep=sep,
duplicate_name_allowed=duplicate_name_allowed,
node_attrs=v,
)
return tree_root
def add_dict_to_tree_by_name(
tree: Node, path_attrs: dict, join_type: str = "left"
) -> Node:
"""Add attributes to tree, return *new* root of tree.
Adds to existing tree from nested dictionary, ``key``: name, ``value``: dict of attribute name and attribute value.
Function can return all existing tree nodes or only tree nodes that are in the input dictionary keys.
Input dictionary keys that are not existing node names will be ignored.
Note that if multiple nodes have the same name, attributes will be added to all nodes sharing same name.
>>> from bigtree import Node, add_dict_to_tree_by_name, print_tree
>>> root = Node("a")
>>> b = Node("b", parent=root)
>>> name_dict = {
... "a": {"age": 90},
... "b": {"age": 65},
... }
>>> root = add_dict_to_tree_by_name(root, name_dict)
>>> print_tree(root, attr_list=["age"])
a [age=90]
└── b [age=65]
Args:
tree (Node): existing tree
path_attrs (dict): dictionary containing node name and attribute information,
key: node name, value: dict of node attribute name and attribute value
join_type (str): join type with attribute, default of 'left' takes existing tree nodes,
if join_type is set to 'inner' it will only take tree nodes that are in `path_attrs` key and drop others
Returns:
(Node)
"""
if join_type not in ["inner", "left"]:
raise ValueError("`join_type` must be one of 'inner' or 'left'")
if not len(path_attrs):
raise ValueError("Dictionary does not contain any data, check `path_attrs`")
# Convert dictionary to dataframe
data = pd.DataFrame(path_attrs).T.rename_axis("NAME").reset_index()
return add_dataframe_to_tree_by_name(tree, data=data, join_type=join_type)
def add_dataframe_to_tree_by_path(
tree: Node,
data: pd.DataFrame,
path_col: str = "",
attribute_cols: list = [],
sep: str = "/",
duplicate_name_allowed: bool = True,
) -> Node:
"""Add nodes and attributes to tree *in-place*, return root of tree.
`path_col` and `attribute_cols` specify columns for node path and attributes to add to existing tree.
If columns are not specified, `path_col` takes first column and all other columns are `attribute_cols`
Path in path column should contain `Node` name, separated by `sep`.
- For example: Path string "a/b" refers to Node("b") with parent Node("a").
- Path separator `sep` is for the input `path_col` and can be different from that of existing tree.
Path in path column can start from root node `name`, or start with `sep`.
- For example: Path string can be "/a/b" or "a/b", if sep is "/".
All paths should start from the same root node.
- For example: Path strings should be "a/b", "a/c", "a/b/d" etc. and should not start with another root node.
>>> import pandas as pd
>>> from bigtree import add_dataframe_to_tree_by_path, print_tree
>>> root = Node("a")
>>> path_data = pd.DataFrame([
... ["a", 90],
... ["a/b", 65],
... ["a/c", 60],
... ["a/b/d", 40],
... ["a/b/e", 35],
... ["a/c/f", 38],
... ["a/b/e/g", 10],
... ["a/b/e/h", 6],
... ],
... columns=["PATH", "age"]
... )
>>> root = add_dataframe_to_tree_by_path(root, path_data)
>>> print_tree(root, attr_list=["age"])
a [age=90]
├── b [age=65]
│ ├── d [age=40]
│ └── e [age=35]
│ ├── g [age=10]
│ └── h [age=6]
└── c [age=60]
└── f [age=38]
Args:
tree (Node): existing tree
data (pandas.DataFrame): data containing node path and attribute information
path_col (str): column of data containing `path_name` information,
if not set, it will take the first column of data
attribute_cols (list): columns of data containing node attribute information,
if not set, it will take all columns of data except `path_col`
sep (str): path separator for input `path_col`
duplicate_name_allowed (bool): indicator if nodes with duplicated `Node` name is allowed, defaults to True
Returns:
(Node)
"""
if not len(data.columns):
raise ValueError("Data does not contain any columns, check `data`")
if not len(data):
raise ValueError("Data does not contain any rows, check `data`")
if not path_col:
path_col = data.columns[0]
if not len(attribute_cols):
attribute_cols = list(data.columns)
attribute_cols.remove(path_col)
tree_root = tree.root
data[path_col] = data[path_col].str.lstrip(sep).str.rstrip(sep)
data2 = data.copy()[[path_col] + attribute_cols].astype(str).drop_duplicates()
_duplicate_check = (
data2[path_col]
.value_counts()
.to_frame("counts")
.rename_axis(path_col)
.reset_index()
)
_duplicate_check = _duplicate_check[_duplicate_check["counts"] > 1]
if len(_duplicate_check):
raise ValueError(
f"There exists duplicate path with different attributes\nCheck {_duplicate_check}"
)
for row in data.to_dict(orient="index").values():
node_attrs = row.copy()
del node_attrs[path_col]
node_attrs = {k: v for k, v in node_attrs.items() if not np.all(pd.isnull(v))}
add_path_to_tree(
tree_root,
row[path_col],
sep=sep,
duplicate_name_allowed=duplicate_name_allowed,
node_attrs=node_attrs,
)
return tree_root
def add_dataframe_to_tree_by_name(
tree: Node,
data: pd.DataFrame,
name_col: str = "",
attribute_cols: list = [],
join_type: str = "left",
):
"""Add attributes to tree, return *new* root of tree.
`name_col` and `attribute_cols` specify columns for node name and attributes to add to existing tree.
If columns are not specified, the first column will be taken as name column and all other columns as attributes.
Function can return all existing tree nodes or only tree nodes that are in the input data node names.
Input data node names that are not existing node names will be ignored.
Note that if multiple nodes have the same name, attributes will be added to all nodes sharing same name.
>>> import pandas as pd
>>> from bigtree import add_dataframe_to_tree_by_name, print_tree
>>> root = Node("a")
>>> b = Node("b", parent=root)
>>> name_data = pd.DataFrame([
... ["a", 90],
... ["b", 65],
... ],
... columns=["NAME", "age"]
... )
>>> root = add_dataframe_to_tree_by_name(root, name_data)
>>> print_tree(root, attr_list=["age"])
a [age=90]
└── b [age=65]
Args:
tree (Node): existing tree
data (pandas.DataFrame): data containing node name and attribute information
name_col (str): column of data containing `name` information,
if not set, it will take the first column of data
attribute_cols (list): column(s) of data containing node attribute information,
if not set, it will take all columns of data except path_col
join_type (str): join type with attribute, default of 'left' takes existing tree nodes,
if join_type is set to 'inner' it will only take tree nodes with attributes and drop the other nodes
Returns:
(Node)
"""
if join_type not in ["inner", "left"]:
raise ValueError("`join_type` must be one of 'inner' or 'left'")
if not len(data.columns):
raise ValueError("Data does not contain any columns, check `data`")
if not len(data):
raise ValueError("Data does not contain any rows, check `data`")
if not name_col:
name_col = data.columns[0]
if not len(attribute_cols):
attribute_cols = list(data.columns)
attribute_cols.remove(name_col)
# Attribute data
path_col = "PATH"
data2 = data.copy()[[name_col] + attribute_cols].astype(str).drop_duplicates()
_duplicate_check = (
data2[name_col]
.value_counts()
.to_frame("counts")
.rename_axis(name_col)
.reset_index()
)
_duplicate_check = _duplicate_check[_duplicate_check["counts"] > 1]
if len(_duplicate_check):
raise ValueError(
f"There exists duplicate name with different attributes\nCheck {_duplicate_check}"
)
# Tree data
tree_root = tree.root
sep = tree_root.sep
node_type = tree_root.__class__
data_tree = tree_to_dataframe(
tree_root, name_col=name_col, path_col=path_col, all_attrs=True
)
common_cols = list(set(data_tree.columns).intersection(attribute_cols))
data_tree = data_tree.drop(columns=common_cols)
# Attribute data
data_tree_attrs = pd.merge(data_tree, data, on=name_col, how=join_type)
data_tree_attrs = data_tree_attrs.drop(columns=name_col)
return dataframe_to_tree(
data_tree_attrs, path_col=path_col, sep=sep, node_type=node_type
)
def str_to_tree(
tree_string: str,
tree_prefix_list: List[str] = [],
node_type: Type[Node] = Node,
) -> Node:
r"""Construct tree from tree string
>>> from bigtree import str_to_tree, print_tree
>>> tree_str = 'a\n├── b\n│ ├── d\n│ └── e\n│ ├── g\n│ └── h\n└── c\n └── f'
>>> root = str_to_tree(tree_str, tree_prefix_list=["├──", "└──"])
>>> print_tree(root)
a
├── b
│ ├── d
│ └── e
│ ├── g
│ └── h
└── c
└── f
Args:
tree_string (str): String to construct tree
tree_prefix_list (list): List of prefix to mark the end of tree branch/stem and start of node name, optional.
If not specified, it will infer unicode characters and whitespace as prefix.
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
tree_string = tree_string.strip("\n")
if not len(tree_string):
raise ValueError("Tree string does not contain any data, check `tree_string`")
tree_list = tree_string.split("\n")
tree_root = node_type(tree_list[0])
# Infer prefix length
prefix_length = None
cur_parent = tree_root
for node_str in tree_list[1:]:
if len(tree_prefix_list):
node_name = re.split("|".join(tree_prefix_list), node_str)[-1].lstrip()
else:
node_name = node_str.encode("ascii", "ignore").decode("ascii").lstrip()
# Find node parent
if not prefix_length:
prefix_length = node_str.index(node_name)
if not prefix_length:
raise ValueError(
f"Invalid prefix, prefix should be unicode character or whitespace, "
f"otherwise specify one or more prefixes in `tree_prefix_list`, check: {node_str}"
)
node_prefix_length = node_str.index(node_name)
if node_prefix_length % prefix_length:
raise ValueError(
f"Tree string have different prefix length, check branch: {node_str}"
)
while cur_parent.depth > node_prefix_length / prefix_length:
cur_parent = cur_parent.parent
# Link node
child_node = node_type(node_name)
child_node.parent = cur_parent
cur_parent = child_node
return tree_root
def list_to_tree(
paths: list,
sep: str = "/",
duplicate_name_allowed: bool = True,
node_type: Type[Node] = Node,
) -> Node:
"""Construct tree from list of path strings.
Path should contain `Node` name, separated by `sep`.
- For example: Path string "a/b" refers to Node("b") with parent Node("a").
Path can start from root node `name`, or start with `sep`.
- For example: Path string can be "/a/b" or "a/b", if sep is "/".
All paths should start from the same root node.
- For example: Path strings should be "a/b", "a/c", "a/b/d" etc. and should not start with another root node.
>>> from bigtree import list_to_tree, print_tree
>>> path_list = ["a/b", "a/c", "a/b/d", "a/b/e", "a/c/f", "a/b/e/g", "a/b/e/h"]
>>> root = list_to_tree(path_list)
>>> print_tree(root)
a
├── b
│ ├── d
│ └── e
│ ├── g
│ └── h
└── c
└── f
Args:
paths (list): list containing path strings
sep (str): path separator for input `paths` and created tree, defaults to `/`
duplicate_name_allowed (bool): indicator if nodes with duplicated `Node` name is allowed, defaults to True
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
if not len(paths):
raise ValueError("Path list does not contain any data, check `paths`")
# Remove duplicates
paths = list(OrderedDict.fromkeys(paths))
# Construct root node
root_name = paths[0].lstrip(sep).split(sep)[0]
root_node = node_type(root_name)
root_node.sep = sep
for path in paths:
add_path_to_tree(
root_node, path, sep=sep, duplicate_name_allowed=duplicate_name_allowed
)
root_node.sep = sep
return root_node
def list_to_tree_by_relation(
relations: List[Tuple[str, str]],
node_type: Type[Node] = Node,
) -> Node:
"""Construct tree from list of tuple containing parent-child names.
Note that node names must be unique since tree is created from parent-child names,
except for leaf nodes - names of leaf nodes may be repeated as there is no confusion.
>>> from bigtree import list_to_tree_by_relation, print_tree
>>> relations_list = [("a", "b"), ("a", "c"), ("b", "d"), ("b", "e"), ("c", "f"), ("e", "g"), ("e", "h")]
>>> root = list_to_tree_by_relation(relations_list)
>>> print_tree(root)
a
├── b
│ ├── d
│ └── e
│ ├── g
│ └── h
└── c
└── f
Args:
relations (list): list containing tuple containing parent-child names
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
if not len(relations):
raise ValueError("Path list does not contain any data, check `relations`")
relation_data = pd.DataFrame(relations, columns=["parent", "child"])
return dataframe_to_tree_by_relation(
relation_data, child_col="child", parent_col="parent", node_type=node_type
)
def dict_to_tree(
path_attrs: dict,
sep: str = "/",
duplicate_name_allowed: bool = True,
node_type: Type[Node] = Node,
) -> Node:
"""Construct tree from nested dictionary using path,
``key``: path, ``value``: dict of attribute name and attribute value.
Path should contain `Node` name, separated by `sep`.
- For example: Path string "a/b" refers to Node("b") with parent Node("a").
Path can start from root node `name`, or start with `sep`.
- For example: Path string can be "/a/b" or "a/b", if sep is "/".
All paths should start from the same root node.
- For example: Path strings should be "a/b", "a/c", "a/b/d" etc. and should not start with another root node.
>>> from bigtree import dict_to_tree, print_tree
>>> path_dict = {
... "a": {"age": 90},
... "a/b": {"age": 65},
... "a/c": {"age": 60},
... "a/b/d": {"age": 40},
... "a/b/e": {"age": 35},
... "a/c/f": {"age": 38},
... "a/b/e/g": {"age": 10},
... "a/b/e/h": {"age": 6},
... }
>>> root = dict_to_tree(path_dict)
>>> print_tree(root, attr_list=["age"])
a [age=90]
├── b [age=65]
│ ├── d [age=40]
│ └── e [age=35]
│ ├── g [age=10]
│ └── h [age=6]
└── c [age=60]
└── f [age=38]
Args:
path_attrs (dict): dictionary containing path and node attribute information,
key: path, value: dict of tree attribute and attribute value
sep (str): path separator of input `path_attrs` and created tree, defaults to `/`
duplicate_name_allowed (bool): indicator if nodes with duplicated `Node` name is allowed, defaults to True
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
if not len(path_attrs):
raise ValueError("Dictionary does not contain any data, check `path_attrs`")
# Convert dictionary to dataframe
data = pd.DataFrame(path_attrs).T.rename_axis("PATH").reset_index()
return dataframe_to_tree(
data,
sep=sep,
duplicate_name_allowed=duplicate_name_allowed,
node_type=node_type,
)
def nested_dict_to_tree(
node_attrs: dict,
name_key: str = "name",
child_key: str = "children",
node_type: Type[Node] = Node,
) -> Node:
"""Construct tree from nested recursive dictionary.
- ``key``: `name_key`, `child_key`, or any attributes key.
- ``value`` of `name_key` (str): node name.
- ``value`` of `child_key` (list): list of dict containing `name_key` and `child_key` (recursive).
>>> from bigtree import nested_dict_to_tree, print_tree
>>> path_dict = {
... "name": "a",
... "age": 90,
... "children": [
... {"name": "b",
... "age": 65,
... "children": [
... {"name": "d", "age": 40},
... {"name": "e", "age": 35, "children": [
... {"name": "g", "age": 10},
... ]},
... ]},
... ],
... }
>>> root = nested_dict_to_tree(path_dict)
>>> print_tree(root, attr_list=["age"])
a [age=90]
└── b [age=65]
├── d [age=40]
└── e [age=35]
└── g [age=10]
Args:
node_attrs (dict): dictionary containing node, children, and node attribute information,
key: `name_key` and `child_key`
value of `name_key` (str): node name
value of `child_key` (list): list of dict containing `name_key` and `child_key` (recursive)
name_key (str): key of node name, value is type str
child_key (str): key of child list, value is type list
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
def recursive_add_child(child_dict, parent_node=None):
child_dict = child_dict.copy()
node_name = child_dict.pop(name_key)
node_children = child_dict.pop(child_key, [])
node = node_type(node_name, parent=parent_node, **child_dict)
for _child in node_children:
recursive_add_child(_child, parent_node=node)
return node
root_node = recursive_add_child(node_attrs)
return root_node
def dataframe_to_tree(
data: pd.DataFrame,
path_col: str = "",
attribute_cols: list = [],
sep: str = "/",
duplicate_name_allowed: bool = True,
node_type: Type[Node] = Node,
) -> Node:
"""Construct tree from pandas DataFrame using path, return root of tree.
`path_col` and `attribute_cols` specify columns for node path and attributes to construct tree.
If columns are not specified, `path_col` takes first column and all other columns are `attribute_cols`.
Path in path column can start from root node `name`, or start with `sep`.
- For example: Path string can be "/a/b" or "a/b", if sep is "/".
Path in path column should contain `Node` name, separated by `sep`.
- For example: Path string "a/b" refers to Node("b") with parent Node("a").
All paths should start from the same root node.
- For example: Path strings should be "a/b", "a/c", "a/b/d" etc. and should not start with another root node.
>>> import pandas as pd
>>> from bigtree import dataframe_to_tree, print_tree
>>> path_data = pd.DataFrame([
... ["a", 90],
... ["a/b", 65],
... ["a/c", 60],
... ["a/b/d", 40],
... ["a/b/e", 35],
... ["a/c/f", 38],
... ["a/b/e/g", 10],
... ["a/b/e/h", 6],
... ],
... columns=["PATH", "age"]
... )
>>> root = dataframe_to_tree(path_data)
>>> print_tree(root, attr_list=["age"])
a [age=90]
├── b [age=65]
│ ├── d [age=40]
│ └── e [age=35]
│ ├── g [age=10]
│ └── h [age=6]
└── c [age=60]
└── f [age=38]
Args:
data (pandas.DataFrame): data containing path and node attribute information
path_col (str): column of data containing `path_name` information,
if not set, it will take the first column of data
attribute_cols (list): columns of data containing node attribute information,
if not set, it will take all columns of data except `path_col`
sep (str): path separator of input `path_col` and created tree, defaults to `/`
duplicate_name_allowed (bool): indicator if nodes with duplicated `Node` name is allowed, defaults to True
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
if not len(data.columns):
raise ValueError("Data does not contain any columns, check `data`")
if not len(data):
raise ValueError("Data does not contain any rows, check `data`")
if not path_col:
path_col = data.columns[0]
if not len(attribute_cols):
attribute_cols = list(data.columns)
attribute_cols.remove(path_col)
data[path_col] = data[path_col].str.lstrip(sep).str.rstrip(sep)
data2 = data.copy()[[path_col] + attribute_cols].astype(str).drop_duplicates()
_duplicate_check = (
data2[path_col]
.value_counts()
.to_frame("counts")
.rename_axis(path_col)
.reset_index()
)
_duplicate_check = _duplicate_check[_duplicate_check["counts"] > 1]
if len(_duplicate_check):
raise ValueError(
f"There exists duplicate path with different attributes\nCheck {_duplicate_check}"
)
root_name = data[path_col].values[0].split(sep)[0]
root_node = node_type(root_name)
add_dataframe_to_tree_by_path(
root_node,
data,
sep=sep,
duplicate_name_allowed=duplicate_name_allowed,
)
root_node.sep = sep
return root_node
def dataframe_to_tree_by_relation(
data: pd.DataFrame,
child_col: str = "",
parent_col: str = "",
attribute_cols: list = [],
node_type: Type[Node] = Node,
) -> Node:
"""Construct tree from pandas DataFrame using parent and child names, return root of tree.
Note that node names must be unique since tree is created from parent-child names,
except for leaf nodes - names of leaf nodes may be repeated as there is no confusion.
`child_col` and `parent_col` specify columns for child name and parent name to construct tree.
`attribute_cols` specify columns for node attribute for child name
If columns are not specified, `child_col` takes first column, `parent_col` takes second column, and all other
columns are `attribute_cols`.
>>> import pandas as pd
>>> from bigtree import dataframe_to_tree_by_relation, print_tree
>>> relation_data = pd.DataFrame([
... ["a", None, 90],
... ["b", "a", 65],
... ["c", "a", 60],
... ["d", "b", 40],
... ["e", "b", 35],
... ["f", "c", 38],
... ["g", "e", 10],
... ["h", "e", 6],
... ],
... columns=["child", "parent", "age"]
... )
>>> root = dataframe_to_tree_by_relation(relation_data)
>>> print_tree(root, attr_list=["age"])
a [age=90]
├── b [age=65]
│ ├── d [age=40]
│ └── e [age=35]
│ ├── g [age=10]
│ └── h [age=6]
└── c [age=60]
└── f [age=38]
Args:
data (pandas.DataFrame): data containing path and node attribute information
child_col (str): column of data containing child name information, defaults to None
if not set, it will take the first column of data
parent_col (str): column of data containing parent name information, defaults to None
if not set, it will take the second column of data
attribute_cols (list): columns of data containing node attribute information,
if not set, it will take all columns of data except `child_col` and `parent_col`
node_type (Type[Node]): node type of tree to be created, defaults to Node
Returns:
(Node)
"""
if not len(data.columns):
raise ValueError("Data does not contain any columns, check `data`")
if not len(data):
raise ValueError("Data does not contain any rows, check `data`")
if not child_col:
child_col = data.columns[0]
if not parent_col:
parent_col = data.columns[1]
if not len(attribute_cols):
attribute_cols = list(data.columns)
attribute_cols.remove(child_col)
attribute_cols.remove(parent_col)
data_check = data.copy()[[child_col, parent_col]].drop_duplicates()
# Filter for child nodes that are parent of other nodes
data_check = data_check[data_check[child_col].isin(data_check[parent_col])]
_duplicate_check = (
data_check[child_col]
.value_counts()
.to_frame("counts")
.rename_axis(child_col)
.reset_index()
)
_duplicate_check = _duplicate_check[_duplicate_check["counts"] > 1]
if len(_duplicate_check):
raise ValueError(
f"There exists duplicate child with different parent where the child is also a parent node.\n"
f"Duplicated node names should not happen, but can only exist in leaf nodes to avoid confusion.\n"
f"Check {_duplicate_check}"
)
# If parent-child contains None -> root
root_row = data[data[parent_col].isnull()]
root_names = list(root_row[child_col])
if not len(root_names):
root_names = list(set(data[parent_col]) - set(data[child_col]))
if len(root_names) != 1:
raise ValueError(f"Unable to determine root node\nCheck {root_names}")
root_name = root_names[0]
root_node = node_type(root_name)
def retrieve_attr(row):
node_attrs = row.copy()
node_attrs["name"] = node_attrs[child_col]
del node_attrs[child_col]
del node_attrs[parent_col]
_node_attrs = {k: v for k, v in node_attrs.items() if not np.all(pd.isnull(v))}
return _node_attrs
def recursive_create_child(parent_node):
child_rows = data[data[parent_col] == parent_node.node_name]
for row in child_rows.to_dict(orient="index").values():
child_node = node_type(**retrieve_attr(row))
child_node.parent = parent_node
recursive_create_child(child_node)
# Create root node attributes
if len(root_row):
row = list(root_row.to_dict(orient="index").values())[0]
root_node.set_attrs(retrieve_attr(row))
recursive_create_child(root_node)
return root_node