Files
sanipy/commands.py

94 lines
2.3 KiB
Python

from datetime import datetime
import numpy as np
import pandas as pd
import epics
from utils.df import drop_col, compare_dfs
from utils.epics import DataGetter, DataPutter
from utils.execute import parallel, serial
from utils.fileio import load_config, load_csv, store_csv
from utils.printing import print_good, print_bad, print_outcome, print_ignored
def run_command(clargs):
commands = {
"check": run_check,
"compare": run_compare,
"goto": run_goto
}
commands[clargs.command](clargs)
def run_check(clargs):
filename = clargs.filename
chans = load_config(filename)
pvs = (epics.PV(ch) for ch in chans) # putting PV constructors into ThreadPoolExecutor has weird effects
get_data = DataGetter(clargs.timeout, clargs.quiet)
run = serial if clargs.serial else parallel
data = run(get_data, pvs, names=chans)
df = pd.DataFrame(data).T
df = df.infer_objects() #TODO: why is this needed?
# print(df)
# print(df.dtypes)
connected = df["connected"]
print_outcome(connected, "connections OK")
output = clargs.output
if not output:
return
timestamp = datetime.now()
meta = f"{filename} / {timestamp}"
store_csv(df, output, meta)
def run_compare(clargs):
fn1, fn2 = clargs.filenames
df1 = load_csv(fn1)
df2 = load_csv(fn2)
if clargs.ignore_values:
drop_col(df1, "value")
drop_col(df2, "value")
diff = compare_dfs(df1, df2)
if diff.empty:
print_good(f'"{fn1}" and "{fn2}" are identical')
else:
print_bad(f'"{fn1}" and "{fn2}" differ:')
print(diff)
def run_goto(clargs):
fn = clargs.filename
df = load_csv(fn)
if clargs.ignore_alarm:
which = (df["status"] == 0) & (df["severity"] == 0)
if not clargs.quiet:
print_ignored(df, which, "alarm state")
df = df.loc[which]
df = df["value"]
if not clargs.quiet:
print_ignored(df, df.notnull(), "NaN value")
df.dropna(inplace=True) #TODO: can NaN be a valid value?
values = df.values
chans = df.index
pvs = (epics.PV(ch) for ch in chans)
put_data = DataPutter(clargs.timeout, clargs.quiet)
run = serial if clargs.serial else parallel
status = run(put_data, pvs, values)
status = np.array(status)
print_outcome(status, "puts successful")