from datetime import datetime import pandas as pd import epics from utils.df import drop_col, compare_dfs, count_true from utils.epics import DataGetter from utils.execute import parallel, serial from utils.fileio import load_config, load_csv, store_csv from utils.printing import print_good, print_bad def run(clargs): commands = { "check": run_check, "compare": run_compare } commands[clargs.command](clargs) def run_check(clargs): filename = clargs.filename chans = load_config(filename) pvs = (epics.PV(ch) for ch in chans) # putting PV constructors into ThreadPoolExecutor has weird effects get_data = DataGetter(clargs.timeout, clargs.quiet) run = serial if clargs.serial else parallel data = run(get_data, pvs, chans) df = pd.DataFrame(data).T df = df.infer_objects() #TODO: why is this needed? # print(df) # print(df.dtypes) connected = df["connected"] if connected.all(): print_good("all connections OK") else: ntotal = len(connected) ngood = count_true(connected) print_bad(f"only {ngood}/{ntotal} connections OK") output = clargs.output if not output: return timestamp = datetime.now() meta = f"{filename} / {timestamp}" store_csv(df, output, meta) def run_compare(clargs): fn1, fn2 = clargs.filenames df1 = load_csv(fn1) df2 = load_csv(fn2) if clargs.ignore_values: drop_col(df1, "value") drop_col(df2, "value") diff = compare_dfs(df1, df2) if diff.empty: print_good(f'"{fn1}" and "{fn2}" are identical') else: print_bad(f'"{fn1}" and "{fn2}" differ:') print(diff)