refactored common logic for printing ignored entries

This commit is contained in:
2020-11-03 18:17:48 +01:00
parent 8a4aa7f5bf
commit be0e5005d5
2 changed files with 12 additions and 14 deletions

View File

@ -7,7 +7,7 @@ from utils.df import drop_col, compare_dfs, count_true
from utils.epics import DataGetter, DataPutter
from utils.execute import parallel, serial
from utils.fileio import load_config, load_csv, store_csv
from utils.printing import print_good, print_bad, print_outcome, itemize
from utils.printing import print_good, print_bad, print_outcome, print_ignored
from utils.seq import is_empty
@ -70,24 +70,13 @@ def run_goto(clargs):
if clargs.ignore_alarm:
which = (df["status"] == 0) & (df["severity"] == 0)
if not clargs.quiet:
all_names = df.index
ignored = all_names[~which]
if not is_empty(ignored):
print("ignored due to alarm state:")
print(itemize(ignored))
print()
print_ignored(df, which, "alarm state")
df = df.loc[which]
df = df["value"]
if not clargs.quiet:
which = df.notnull()
all_names = df.index
ignored = all_names[~which]
if not is_empty(ignored):
print("ignored due to NaN value:")
print(itemize(ignored))
print()
print_ignored(df, df.notnull(), "NaN value")
df.dropna(inplace=True) #TODO: can NaN be a valid value?
values = df.values