84 lines
1.9 KiB
Python
Executable File
84 lines
1.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
from time import sleep
|
|
from collections import deque
|
|
import numpy as np
|
|
import scipy.signal
|
|
|
|
from zoetrope import aniplot as plt
|
|
from bstrd import BS, bsstream
|
|
plt.blit = False
|
|
plt.style.use('ggplot')
|
|
|
|
def unpumped(events, *arrays):
|
|
laser = events[:, 18]
|
|
darkShot = events[:, 21]
|
|
background_shots = np.logical_and.reduce((laser, darkShot))
|
|
return [a[background_shots] for a in arrays]
|
|
|
|
def pumped(events, *arrays):
|
|
fel = events[:, 13]
|
|
laser = events[:, 18]
|
|
darkShot = events[:, 21]
|
|
pumped_shots = np.logical_and.reduce((laser, np.logical_not(darkShot)))
|
|
return [a[pumped_shots] for a in arrays]
|
|
|
|
# config
|
|
chname_diode = "SLAAR11-LSCP1-FNS:CH0:VAL_GET"
|
|
#chname_diode = "SARES11-GES1:CH1_VAL_GET"
|
|
chname_events = "SAR-CVME-TIFALL4:EvtSet"
|
|
chname_i0 = "SAROP11-PBPS110:INTENSITY"
|
|
length = 100
|
|
|
|
# create channel
|
|
ch_diode = BS(chname_diode)
|
|
ch_events = BS(chname_events)
|
|
ch_i0 = BS(chname_i0)
|
|
|
|
n = 50
|
|
sigs = np.empty(n)
|
|
evts = np.empty((n, 256))
|
|
i0s = np.empty(n)
|
|
|
|
# create a buffer for the plotting
|
|
pp_sigs = deque(maxlen=length)
|
|
|
|
# create the empty plot
|
|
pd = plt.plot([0])
|
|
|
|
# some plot settings
|
|
plt.suptitle(chname_diode)
|
|
plt.fig.set_figheight(5)
|
|
plt.fig.set_figwidth(15)
|
|
plt.tight_layout()
|
|
|
|
for counter, data in zip(plt.show(), bsstream):
|
|
print(counter)
|
|
|
|
for i in range(n):
|
|
evts[i] = ch_events.get()
|
|
sigs[i] = ch_diode.get()
|
|
i0s[i] = ch_i0.get()
|
|
next(bsstream) # this gets the next set of data
|
|
|
|
sigs_p = pumped(evts, sigs)
|
|
sigs_u = unpumped(evts, sigs)
|
|
i0s_p = pumped(evts, i0s)
|
|
i0s_u = unpumped(evts, i0s)
|
|
|
|
sig_p = np.mean(np.asarray(sigs_p))#/np.asarray(i0s_p))
|
|
sig_u = np.mean(np.asarray(sigs_u))#/np.asarray(i0s_u))
|
|
|
|
sig = -np.log10(sig_p/sig_u)
|
|
|
|
pp_sigs.append(sig)
|
|
|
|
xs = np.arange(len(pp_sigs))
|
|
pd.set(xs, pp_sigs)
|
|
|
|
# this, I need to move into the library
|
|
pd.ax.relim()
|
|
pd.ax.autoscale_view()
|
|
|
|
bsstream.close()
|