79 lines
9.2 KiB
Plaintext
79 lines
9.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(625000, 4)\n",
|
|
"2.5738147384822754 2.3159877105736997 14979.560000000001\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.collections.PathCollection at 0x7fe5d47a16a0>"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGiCAYAAADTMXDkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAVnElEQVR4nO3dfayVhZ3g8d/hAgfLy1VQkFteBrVqlZeNYOk11lq1JNQQSdOkdl3DtNlkccHqsG5b7GaFhHpNdycdM7RE2sa2axzcRlGTqUQ6Ldy6XRrAsjLUGmyd4TqDMI7DvXjVo/f67B/WOzJgvee+/M65h88neRKfk+d5zi8HyZfnnOc8p1QURREAMMxG1XoAAE4PggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQIqqgrNu3boolUonLOeee+5wzQZAAxld7Q6XXnpp/PSnP+1bb2pqGtKBAGhMVQdn9OjRzmoAqFrVwTl48GC0tLREuVyOxYsXx9133x3nnXfe+25fqVSiUqn0rb/99tvxyiuvxJQpU6JUKg1sagBqoiiKOH78eLS0tMSoUdVdBlCq5ucJnnjiiXjttdfiwgsvjCNHjsSGDRvit7/9bRw4cCCmTJlyyn3WrVsX69evr2ooAOpbR0dHzJgxo6p9qgrOv9Xd3R3nn39+fOUrX4k1a9accpt/e4bT2dkZs2bNiivjMzE6xgz0qQGogZ54K56Kn8SxY8eiubm5qn2rfkvtvcaPHx/z5s2LgwcPvu825XI5yuXyKZ54TIwuCQ7AiPKHU5SBfCQyqO/hVCqVePbZZ2P69OmDOQwAp4GqgnPHHXfEzp0744UXXohf/epX8bnPfS66urpixYoVwzUfAA2iqrfUXnzxxfjCF74QL7/8cpxzzjnx8Y9/PHbt2hWzZ88ervkAaBBVBWfLli3DNQcADc691ABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgxaCC09bWFqVSKW6//fYhGgeARjXg4OzevTs2b94c8+fPH8p5AGhQAwrOq6++GjfddFN897vfjbPOOmuoZwKgAY0eyE6rVq2K66+/Pq677rrYsGHDH922UqlEpVLpW+/q6hrIU56eSqVaTzAijP5wS61HGBF6XzpS6xFGhKKnp9YjNKyqg7Nly5Z4+umnY/fu3f3avq2tLdavX1/1YAA0lqreUuvo6IjbbrstHnjggRg3bly/9lm7dm10dnb2LR0dHQMaFICRraoznL1798bRo0dj4cKFfY/19vZGe3t7bNy4MSqVSjQ1NZ2wT7lcjnK5PDTTAjBiVRWca6+9Nvbv33/CY1/84hfj4osvjq9+9asnxQYA3lVVcCZOnBhz58494bHx48fHlClTTnocAN7LnQYASDGgy6Lfa8eOHUMwBgCNzhkOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKSoKjibNm2K+fPnx6RJk2LSpEnR2toaTzzxxHDNBkADqSo4M2bMiHvuuSf27NkTe/bsiWuuuSZuuOGGOHDgwHDNB0CDGF3NxsuWLTth/Rvf+EZs2rQpdu3aFZdeeumQDgZAY6kqOO/V29sbP/7xj6O7uztaW1vfd7tKpRKVSqVvvaura6BPedppuuTCWo8wIvz19odqPcKIcM2f/sdajzAijHlyT61HaFhVXzSwf//+mDBhQpTL5Vi5cmVs3bo1Lrnkkvfdvq2tLZqbm/uWmTNnDmpgAEamqoNz0UUXxb59+2LXrl1xyy23xIoVK+I3v/nN+26/du3a6Ozs7Fs6OjoGNTAAI1PVb6mNHTs2LrjggoiIWLRoUezevTvuvffeuO+++065fblcjnK5PLgpARjxBv09nKIoTviMBgBOpaoznDvvvDOWLl0aM2fOjOPHj8eWLVtix44dsW3btuGaD4AGUVVwjhw5EjfffHMcPnw4mpubY/78+bFt27b49Kc/PVzzAdAgqgrO97///eGaA4AG515qAKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEgxutYDQMN6u4j4u7ci9lciXu595593s8ZELChHnO2vHqcf/9fDUOvsjfhfXVH6UWeUOnoiIqIolyJ6iyi9sxrF4nFRfLE5YtmEiFGlGg4LeQQHhtLfdEfpjqMR//J2xA0T4u17JkQsGBcxpSmiKKI41BOx+40o/VVXjFp5JIofdEbxrWkRfzKm1pPDsPMZDgyV7x+LUf/hcMTF5Sj+z6wo7p0Wcc34d2ITEVEqRcweE/G5iVE8/OF4+8ctEf/QE6XPdETse6O2s0MCwYGh8OjxGPXfXo5i5ZlRPDg94sP9OGO58kNRbJ8Zcd6YKP37f4zoeGv454QaEhwYrJd6ovS1f4pi+YQo/vuUd85k+qu5KYoHWiLOGPXOW3FFMXxzQo0JDgxS6c9fiRhdiuIb51QXm3ed2RTF/zgnSu2vR2x/begHhDohODAYXb0RDx+P4kvNEZObBn6ca8ZH8e/KUbq/c+hmgzojODAY7a9H6fUi4vMTB32o4sZJEe2vRbz29hAMBvVHcGAQSv/vjSjOberfRQIf5LJxUXo7Iv62MvhjQR0SHBiMf+iJmDNE36E57w/HebFnaI4HdUZwYDCKGLo7Bbz7t9GFajQowYHBmNoU8eIQfX/mD7fBiamDuPgA6pjgwCAU88ZF6e97Il7pHfzB3r3bwLzy4I8FdUhwYDA+cUYUoyNi6/FBH6r0yPEoLitHnOkMh8YkODAY00ZHLJ0Qpe91Rrw+iMuZ91eitPP1KFY0D91sUGcEBwap+C+TI/7xrSj9z1cGdoA3iyj92ZEoPjo2Yvngv88D9UpwYLAuGhvFV6ZE6TvHIh6o8k4BbxVRWn0k4uCbUfzF1IixfhuHxuX3cGAo/Oczo3ixJ0b913+K4rk3o1g7JeJDH/Dvub97K0p/diRi7xtR3HduxPxxObNCjQgODIVSKYq7z47iT8ZE6Z5/jtJPuqP40+aI5RMiZoz+15t69hQRf1uJ0l91Rfzv4xHnNEWx5cMRV5xR2/khgeDAUCmVIv7TmVFc96Eo/eW/ROnPX4nS3f8cxeRRES2jI3rinbOaN4oopjVFrDozilvOihjvnW1OD4IDQ+38sVH8xbSIu86OYvcbUXrmjYiXeyOaSlHcOCmK+eWIReMixvi8htOL4MBwOaspYsn4KJaMr/UkUBecywOQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgRVXBaWtri8svvzwmTpwYU6dOjeXLl8dzzz03XLMB0ECqCs7OnTtj1apVsWvXrti+fXv09PTEkiVLoru7e7jmA6BBVHVrm23btp2wfv/998fUqVNj7969cdVVV51yn0qlEpVKpW+9q6trAGMCMNIN6l5qnZ3v/NjU5MmT33ebtra2WL9+/WCe5vTVcbjWE4wIC9fdUusRRoRzD/x9rUcYEXpqPUADG/BFA0VRxJo1a+LKK6+MuXPnvu92a9eujc7Ozr6lo6NjoE8JwAg24DOc1atXxzPPPBNPPfXUH92uXC5HuVwe6NMA0CAGFJxbb701Hn/88Whvb48ZM2YM9UwANKCqglMURdx6662xdevW2LFjR8yZM2e45gKgwVQVnFWrVsWDDz4Yjz32WEycODFeeumliIhobm6OM87wm+wAvL+qLhrYtGlTdHZ2xtVXXx3Tp0/vWx566KHhmg+ABlH1W2oAMBDupQZACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKaoOTnt7eyxbtixaWlqiVCrFo48+OgxjAdBoqg5Od3d3LFiwIDZu3Dgc8wDQoEZXu8PSpUtj6dKl/d6+UqlEpVLpW+/q6qr2KQFoAFUHp1ptbW2xfv364X6ahtQrzv1y9ub/W+sRRoSeWg/AaW/YLxpYu3ZtdHZ29i0dHR3D/ZQA1KFhP8Mpl8tRLpeH+2kAqHMuiwYgheAAkKLqt9ReffXVeP755/vWX3jhhdi3b19Mnjw5Zs2aNaTDAdA4qg7Onj174lOf+lTf+po1ayIiYsWKFfGDH/xgyAYDoLFUHZyrr746iqIYjlkAaGA+wwEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFAMKzne+852YM2dOjBs3LhYuXBi/+MUvhnouABpM1cF56KGH4vbbb4+vf/3r8etf/zo+8YlPxNKlS+PQoUPDMR8ADaJUFEVRzQ6LFy+Oyy67LDZt2tT32Ec/+tFYvnx5tLW1nbR9pVKJSqXSt97Z2RmzZs2KK+MzMTrGDGJ0ALL1xFvxVPwkjh07Fs3NzdXtXFShUqkUTU1NxSOPPHLC41/+8peLq6666pT73HXXXUVEWCwWi6WBlt/97nfV5KMoiqIYHVV4+eWXo7e3N6ZNm3bC49OmTYuXXnrplPusXbs21qxZ07d+7NixmD17dhw6dKj6Op5Gurq6YubMmdHR0RGTJk2q9Th1yWvUP16n/vE69c+771JNnjy56n2rCs67SqXSCetFUZz02LvK5XKUy+WTHm9ubvaH2g+TJk3yOn0Ar1H/eJ36x+vUP6NGVX/NWVV7nH322dHU1HTS2czRo0dPOusBgPeqKjhjx46NhQsXxvbt2094fPv27XHFFVcM6WAANJaq31Jbs2ZN3HzzzbFo0aJobW2NzZs3x6FDh2LlypX92r9cLsddd911yrfZ+Fdepw/mNeofr1P/eJ36ZzCvU9WXRUe888XPb37zm3H48OGYO3dufOtb34qrrrqq6icH4PQxoOAAQLXcSw2AFIIDQArBASCF4ACQIjU4ftbgg7W3t8eyZcuipaUlSqVSPProo7Ueqe60tbXF5ZdfHhMnToypU6fG8uXL47nnnqv1WHVn06ZNMX/+/L5vzre2tsYTTzxR67HqXltbW5RKpbj99ttrPUpdWbduXZRKpROWc889t6pjpAXHzxr0T3d3dyxYsCA2btxY61Hq1s6dO2PVqlWxa9eu2L59e/T09MSSJUuiu7u71qPVlRkzZsQ999wTe/bsiT179sQ111wTN9xwQxw4cKDWo9Wt3bt3x+bNm2P+/Pm1HqUuXXrppXH48OG+Zf/+/dUdoOrbfQ7Qxz72sWLlypUnPHbxxRcXX/va17JGGHEioti6dWutx6h7R48eLSKi2LlzZ61HqXtnnXVW8b3vfa/WY9Sl48ePFx/5yEeK7du3F5/85CeL2267rdYj1ZW77rqrWLBgwaCOkXKG8+abb8bevXtjyZIlJzy+ZMmS+OUvf5kxAg2ss7MzImJAd689XfT29saWLVuiu7s7Wltbaz1OXVq1alVcf/31cd1119V6lLp18ODBaGlpiTlz5sSNN94Yv//976vaf0B3i67WQH7WAPqjKIpYs2ZNXHnllTF37txaj1N39u/fH62trfHGG2/EhAkTYuvWrXHJJZfUeqy6s2XLlnj66adj9+7dtR6lbi1evDh+9KMfxYUXXhhHjhyJDRs2xBVXXBEHDhyIKVOm9OsYKcF5VzU/awD9sXr16njmmWfiqaeeqvUodemiiy6Kffv2xbFjx+Lhhx+OFStWxM6dO0XnPTo6OuK2226LJ598MsaNG1frcerW0qVL+/573rx50draGueff3788Ic/POE3z/6YlOD4WQOGw6233hqPP/54tLe3x4wZM2o9Tl0aO3ZsXHDBBRERsWjRoti9e3fce++9cd9999V4svqxd+/eOHr0aCxcuLDvsd7e3mhvb4+NGzdGpVKJpqamGk5Yn8aPHx/z5s2LgwcP9nuflM9w/KwBQ6koili9enU88sgj8bOf/SzmzJlT65FGjKIoolKp1HqMunLttdfG/v37Y9++fX3LokWL4qabbop9+/aJzfuoVCrx7LPPxvTp0/u9T9pbaoP9WYPTxauvvhrPP/983/oLL7wQ+/bti8mTJ8esWbNqOFn9WLVqVTz44IPx2GOPxcSJE/vOnJubm+OMM86o8XT1484774ylS5fGzJkz4/jx47Fly5bYsWNHbNu2rdaj1ZWJEyee9Pnf+PHjY8qUKT4XfI877rgjli1bFrNmzYqjR4/Ghg0boqurK1asWNH/gwz+Yrn++/a3v13Mnj27GDt2bHHZZZe5jPUUfv7znxcRcdKyYsWKWo9WN071+kREcf/999d6tLrypS99qe/v2znnnFNce+21xZNPPlnrsUYEl0Wf7POf/3wxffr0YsyYMUVLS0vx2c9+tjhw4EBVx/DzBACkcC81AFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBT/H5wtD/PMijn3AAAAAElFTkSuQmCC",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import h5py\n",
|
|
"\n",
|
|
"data = np.load('/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_15.npz')\n",
|
|
"samples = data['samples']\n",
|
|
"labels = data['labels']\n",
|
|
"# with h5py.File('/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_15.h5', 'r') as hf:\n",
|
|
"# samples = hf['samples'][:]\n",
|
|
"# labels = hf['labels'][:]\n",
|
|
"print(labels.shape)\n",
|
|
"idx = 6\n",
|
|
"plt.imshow(samples[idx], origin='lower', extent = (0, samples.shape[1], 0, samples.shape[2]))\n",
|
|
"x,y,z,e = labels[idx]\n",
|
|
"print(x,y,e)\n",
|
|
"plt.scatter(x, y, s=200, facecolors='none', edgecolors='r')"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "pytorch_nightly",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.18"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|