79 lines
9.4 KiB
Plaintext
79 lines
9.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(625000, 4)\n",
|
|
"2.1872637879001546 2.9715624660714797 14997.66\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.collections.PathCollection at 0x7fc5365d78e0>"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGiCAYAAADTMXDkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAV+klEQVR4nO3df4yVhbng8ecwwxxwmJkK/oIFDNWiVcSsYOm4av1VsujlahqzrTGGbZO7q0GrIaYtdu9V9tKOae6m13uprNrGtuk1mKaibray0m0BvV0awLISai225DLNRVi1zAyjHpzh3T+soxSwc4aZ5wyHzyd5o+fN+77nyavDl/ecd84pFUVRBACMsDG1HgCAE4PgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQoqrg3HfffVEqlQ5ZzjjjjJGaDYA60ljtDueff3785Cc/GXjc0NAwrAMBUJ+qDk5jY6OrGgCqVnVwduzYEVOmTIlyuRzz5s2Lr3/96/HRj370qNtXKpWoVCoDjw8ePBhvvPFGTJo0KUql0tCmBqAmiqKInp6emDJlSowZU91tAKVqvp7gmWeeiTfffDNmzpwZe/bsieXLl8evf/3r2L59e0yaNOmI+9x3332xbNmyqoYCYHTr7OyMqVOnVrVPVcH5U729vXHWWWfFl770pViyZMkRt/nTK5yurq6YPn16XBrXRmOMHepTnxDGNJ9U6xGOC6Vx42o9wnGh//U3aj0CdaAv3onn48exb9++aGtrq2rfql9S+6Dm5ua44IILYseOHUfdplwuR7lcPsITj43GkuB8mDGlplqPcFwojXGeBqPk543h8MdLlKG8JXJMv4dTqVTipZdeismTJx/LYQA4AVQVnLvvvjvWr18fO3fujF/84hdx4403Rnd3dyxatGik5gOgTlT1ktrvf//7uOmmm+K1116LU089NT75yU/Gxo0b48wzzxyp+QCoE1UFZ9WqVSM1BwB1zmepAZBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0CKYwpOR0dHlEqluOuuu4ZpHADq1ZCDs2nTpnj44Ydj9uzZwzkPAHVqSMHZv39/3HzzzfHII4/EySefPNwzAVCHGoey0+LFi+O6666La665JpYvX/6h21YqlahUKgOPu7u7IyKi1NgYpdKQnv6E8ZuHZtZ6hOPCzy7/x1qPcFy47VM313qE40Lfzn+p9Qh1q+o/8VetWhUvvPBCbNq0aVDbd3R0xLJly6oeDID6UtVLap2dnXHnnXfGD37wgxg3btyg9lm6dGl0dXUNLJ2dnUMaFIDjW1VXOFu2bIm9e/fGnDlzBtb19/fHhg0bYsWKFVGpVKKhoeGQfcrlcpTL5eGZFoDjVlXBufrqq2Pbtm2HrPv85z8f5557bnz5y18+LDYA8J6qgtPS0hKzZs06ZF1zc3NMmjTpsPUA8EE+aQCAFMd8X/K6deuGYQwA6p0rHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkaaz0AZBj78jvR/PTbUf6/70Tjzv4ovVPEwbYxceD8xnj7k03R+5fjojjJ379gJAkOdW3sb/pi4t90x/h/PhD9J5eiMqcp3vyLcVE0RTS8djCatvVF8+rumPhfe6Lrr5qja3FzRFOp1mNDXRIc6lbL996MiX/bHX1TG2Lvt9rizX8/7ogxaezsi5bvvhkf+Yf90bzm7dj7yEeib7ofDRhuXkOgLrU+1BuT/kt39Nx0UvzrM6fEm385/qhXLn3TGuMPf90au//HpCj1FnHGjW9EY2df8sRQ/wSHujPu/1Ri4vKe2Le4Od7429Yoxg/uJbIDs8bGqz+aGMXYUpx6W1dEXzHCk8KJpargrFy5MmbPnh2tra3R2toa7e3t8cwzz4zUbFC10ttFTLq7O96eNzb2fWlC1fv3n94Qr/1jWzRteydav/3mCEwIJ66qgjN16tS4//77Y/PmzbF58+a46qqr4vrrr4/t27eP1HxQlZP+59sxdld/vN7RFjFmaG/+Vy5qiv03jY/WR3oj3nGVA8OlquAsXLgwrr322pg5c2bMnDkzvva1r8WECRNi48aNIzUfVKXlsTfjrcua4p2PHdub/t3/8aRo3HswTvrflWGaDBjyT2V/f3/88Ic/jN7e3mhvbz/qdpVKJSqV939ou7u73/2XhoaIUsNQnx4GTG/840tnB4oobX01ir8+5f11QzUropjaFaduiSj+4hiPNVoUrtaorapvGti2bVtMmDAhyuVy3HrrrbF69eo477zzjrp9R0dHtLW1DSzTpk07poHhqH57IEoHImJWeXiOd0E54leucGC4VB2cc845J7Zu3RobN26M2267LRYtWhS/+tWvjrr90qVLo6ura2Dp7Ow8poHhqHoOvvvPk4fpyvnkhojug8NzLKD6l9Sampri7LPPjoiIuXPnxqZNm+KBBx6Ihx566Ijbl8vlKJeH6W+c8GHKf7xJ4K1hisRbB98/JnDMjvn3cIqiOOQ9GqiZs5qiKEXErw8Mz/FeOhAxs2l4jgVUd4Vzzz33xIIFC2LatGnR09MTq1atinXr1sWaNWtGaj4YvAljImY2Ren5t6L4XOuxHWtvX8RvDkTxnz4yLKMBVQZnz549ccstt8Tu3bujra0tZs+eHWvWrIlPf/rTIzUfVKW4sSVKf/dGxLJTIiYdw3s5/9T97stp1zYP33BwgqsqON/5zndGag4YHje1Rvz9G1HqeD2KvzttaMf4174o/fd9EZ9tjWhz6z4MF5+lRn2Z1BDF35wSpX/qjvjx/ur3P1BE6a49ESeVovjyxOGfD05ggkP9uaU1ioUTonTbqxFP9wx+v56DUfqr3RG/eCuKFadHfMTVDQwnwaH+lErvBuPaCTHmP++J0u17In7/ztG3P1hErNkfpSt3RfzzW1E8Ojni352UNy+cIHzLFPWpqRTFg6dHceVJUbr3tSit7om46qQo5o2POKfp3RsC/l9/lF58O+J/9UbpX/qiuGx8FP/t30RMG1vr6aEuCQ71q1SK+A+tUVw3IeKJniit7onS378Rpd73P1OsmN4Y0T4+Dj7YFvFvy+/uA4wIwaH+NY+JuKUtilvaIg4WUezpf/drB9rGuAsNEgkOJ5YxpYjJ/reHWnDTAAApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSVBWcjo6OuPjii6OlpSVOO+20uOGGG+Lll18eqdkAqCNVBWf9+vWxePHi2LhxY6xduzb6+vpi/vz50dvbO1LzAVAnGqvZeM2aNYc8fvTRR+O0006LLVu2xOWXX37EfSqVSlQqlYHH3d3dQxgTgONdVcH5U11dXRERMXHixKNu09HREcuWLTtsfVGpRFE6eCxPX/dm3vZKrUc4LlxbvrrWIxwX+l/vrPUInOBKRVEUQ9mxKIq4/vrr4w9/+EM899xzR93uSFc406ZNiyvi+mgsjR3KU58wxrS01HqE40Kp3FTrEY4L/a+/UesRjg9D+yPxhNFXvBPr4qno6uqK1tbWqvYd8hXO7bffHi+++GI8//zzH7pduVyOcrk81KcBoE4MKTh33HFHPP3007Fhw4aYOnXqcM8EQB2qKjhFUcQdd9wRq1evjnXr1sWMGTNGai4A6kxVwVm8eHE89thj8dRTT0VLS0u8+uqrERHR1tYW48ePH5EBAagPVf0ezsqVK6OrqyuuuOKKmDx58sDy+OOPj9R8ANSJql9SA4Ch8FlqAKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJCi6uBs2LAhFi5cGFOmTIlSqRRPPvnkCIwFQL2pOji9vb1x4YUXxooVK0ZiHgDqVGO1OyxYsCAWLFgw6O0rlUpUKpWBx93d3dU+JQB1oOrgVKujoyOWLVs20k9Tlw729NR6hOOD0wTHhRG/aWDp0qXR1dU1sHR2do70UwIwCo34FU65XI5yuTzSTwPAKOe2aABSCA4AKap+SW3//v3xyiuvDDzeuXNnbN26NSZOnBjTp08f1uEAqB9VB2fz5s1x5ZVXDjxesmRJREQsWrQovvvd7w7bYADUl6qDc8UVV0RRFCMxCwB1zHs4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBCcABIITgApBAcAFIIDgApBAeAFIIDQArBASCF4ACQQnAASCE4AKQQHABSCA4AKQQHgBSCA0AKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJBiSMF58MEHY8aMGTFu3LiYM2dOPPfcc8M9FwB1purgPP7443HXXXfFV7/61fjlL38Zl112WSxYsCB27do1EvMBUCdKRVEU1ewwb968uOiii2LlypUD6z7+8Y/HDTfcEB0dHYdtX6lUolKpDDzu6uqK6dOnx6VxbTTG2GMYHYBsffFOPB8/jn379kVbW1t1OxdVqFQqRUNDQ/HEE08csv6LX/xicfnllx9xn3vvvbeICIvFYrHU0fLb3/62mnwURVEUjVGF1157Lfr7++P0008/ZP3pp58er7766hH3Wbp0aSxZsmTg8b59++LMM8+MXbt2VV/HE0h3d3dMmzYtOjs7o7W1tdbjjErO0eA4T4PjPA3Oe69STZw4sep9qwrOe0ql0iGPi6I4bN17yuVylMvlw9a3tbX5jzoIra2tztOf4RwNjvM0OM7T4IwZU/09Z1Xtccopp0RDQ8NhVzN79+497KoHAD6oquA0NTXFnDlzYu3atYesX7t2bVxyySXDOhgA9aXql9SWLFkSt9xyS8ydOzfa29vj4Ycfjl27dsWtt946qP3L5XLce++9R3yZjfc5T3+eczQ4ztPgOE+DcyznqerboiPe/cXPb3zjG7F79+6YNWtWfPOb34zLL7+86icH4MQxpOAAQLV8lhoAKQQHgBSCA0AKwQEgRWpwfK3Bn7dhw4ZYuHBhTJkyJUqlUjz55JO1HmnU6ejoiIsvvjhaWlritNNOixtuuCFefvnlWo816qxcuTJmz5498Jvz7e3t8cwzz9R6rFGvo6MjSqVS3HXXXbUeZVS57777olQqHbKcccYZVR0jLTi+1mBwent748ILL4wVK1bUepRRa/369bF48eLYuHFjrF27Nvr6+mL+/PnR29tb69FGlalTp8b9998fmzdvjs2bN8dVV10V119/fWzfvr3Wo41amzZtiocffjhmz55d61FGpfPPPz927949sGzbtq26A1T9cZ9D9IlPfKK49dZbD1l37rnnFl/5yleyRjjuRESxevXqWo8x6u3du7eIiGL9+vW1HmXUO/nkk4tvf/vbtR5jVOrp6Sk+9rGPFWvXri0+9alPFXfeeWetRxpV7r333uLCCy88pmOkXOEcOHAgtmzZEvPnzz9k/fz58+PnP/95xgjUsa6uroiIIX167Ymiv78/Vq1aFb29vdHe3l7rcUalxYsXx3XXXRfXXHNNrUcZtXbs2BFTpkyJGTNmxOc+97n43e9+V9X+Q/q06GoN5WsNYDCKooglS5bEpZdeGrNmzar1OKPOtm3bor29Pd5+++2YMGFCrF69Os4777xajzXqrFq1Kl544YXYtGlTrUcZtebNmxff//73Y+bMmbFnz55Yvnx5XHLJJbF9+/aYNGnSoI6REpz3VPO1BjAYt99+e7z44ovx/PPP13qUUemcc86JrVu3xr59++JHP/pRLFq0KNavXy86H9DZ2Rl33nlnPPvsszFu3LhajzNqLViwYODfL7jggmhvb4+zzjorvve97x3ynWcfJiU4vtaAkXDHHXfE008/HRs2bIipU6fWepxRqampKc4+++yIiJg7d25s2rQpHnjggXjooYdqPNnosWXLlti7d2/MmTNnYF1/f39s2LAhVqxYEZVKJRoaGmo44ejU3NwcF1xwQezYsWPQ+6S8h+NrDRhORVHE7bffHk888UT89Kc/jRkzZtR6pONGURRRqVRqPcaocvXVV8e2bdti69atA8vcuXPj5ptvjq1bt4rNUVQqlXjppZdi8uTJg94n7SW1Y/1agxPF/v3745VXXhl4vHPnzti6dWtMnDgxpk+fXsPJRo/FixfHY489Fk899VS0tLQMXDm3tbXF+PHjazzd6HHPPffEggULYtq0adHT0xOrVq2KdevWxZo1a2o92qjS0tJy2Pt/zc3NMWnSJO8LfsDdd98dCxcujOnTp8fevXtj+fLl0d3dHYsWLRr8QY79ZrnB+9a3vlWceeaZRVNTU3HRRRe5jfUIfvaznxURcdiyaNGiWo82ahzp/ERE8eijj9Z6tFHlC1/4wsDP26mnnlpcffXVxbPPPlvrsY4Lbos+3Gc/+9li8uTJxdixY4spU6YUn/nMZ4rt27dXdQxfTwBACp+lBkAKwQEgheAAkEJwAEghOACkEBwAUggOACkEB4AUggNACsEBIIXgAJDi/wPBaDDLiQlp1AAAAABJRU5ErkJggg==",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import h5py\n",
|
|
"\n",
|
|
"data = np.load('/mnt/sls_det_storage/moench_data/MLXID/Samples/Simulation/Moench040/15keV_Moench040_150V_4.npz')\n",
|
|
"samples = data['samples']\n",
|
|
"labels = data['labels']\n",
|
|
"# with h5py.File('/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_15.h5', 'r') as hf:\n",
|
|
"# samples = hf['samples'][:]\n",
|
|
"# labels = hf['labels'][:]\n",
|
|
"print(labels.shape)\n",
|
|
"idx = 1000\n",
|
|
"plt.imshow(samples[idx], origin='lower', extent = (0, samples.shape[1], 0, samples.shape[2]))\n",
|
|
"x,y,z,e = labels[idx]\n",
|
|
"print(x,y,e)\n",
|
|
"plt.scatter(x, y, s=200, facecolors='none', edgecolors='r')"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "pytorch_nightly",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.18"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|