# MLXID: Eta Interpolation ## Overview The project provides functions, scripts, and notebooks for: - Generating and visualizing eta interpolation lookup tables (LUTs) - Processing raw detector data (calibration and cluster finding) - Mapping non-uniform 2D distributions to uniform distributions using Rosenblatt or DoubleCDF methods ## Example Workflows ### Eta Interpolation for MC (see `Examples/etaInterpolation_MC.ipynb`) - Generate a non-uniform 2D distribution (e.g., spiral) - Build 2D histograms and LUTs using Rosenblatt or DoubleCDF methods - Map (x, y) to (u, v) for uniformity - Visualize results and evaluate residuals ### Eta Interpolation for SiemenStar data (see `Examples/etaInterpolation_SiemenStar.ipynb`) - Configure measurement parameters (ROI, calibration files, LUTs) - Initialize and process raw detector frames - Generate and visualize interpolated 2D histograms ## Requirements - Python 3.8+ - numpy, matplotlib, glob - ROOT (for histogramming and advanced analysis) - Jupyter Notebook (for interactive analysis)