Files
DeepLearning/Train_DoublePhoton.py

183 lines
6.6 KiB
Python

import sys
sys.path.append('./src')
import torch
import numpy as np
import models
from datasets import *
import torch.optim as optim
from tqdm import tqdm
from torchinfo import summary
### random seed for reproducibility
torch.manual_seed(0)
np.random.seed(0)
modelVersion = '251001_2' # '250910' or '251001'
model = models.get_double_photon_model_class(modelVersion)().cuda()
Energy = '15.3keV'
TrainLosses, ValLosses = [], []
TestLoss = -1
LearningRate = 1e-3
Noise = 0.13 # in keV
def two_point_set_loss_l2(pred_xy, gt_xy):
def pair_cost_l2sq(p, q): # p,q: (...,2)
return ((p - q)**2).sum(dim=-1) # squared L2
p1, p2 = pred_xy[:,0], pred_xy[:,1]
g1, g2 = gt_xy[:,0], gt_xy[:,1]
c_a = pair_cost_l2sq(p1,g1) + pair_cost_l2sq(p2,g2)
c_b = pair_cost_l2sq(p1,g2) + pair_cost_l2sq(p2,g1)
return torch.minimum(c_a, c_b).mean()
# summary(model, input_size=(128, 1, 6, 6)) ### print model summary
loss_fn = two_point_set_loss_l2
def train(model, trainLoader, optimizer):
model.train()
batchLoss = 0
for batch_idx, (sample, label) in enumerate(trainLoader):
sample, label = sample.cuda(), label.cuda()
x1, y1, z1, e1 = label[:,0], label[:,1], label[:,2], label[:,3]
x2, y2, z2, e2 = label[:,4], label[:,5], label[:,6], label[:,7]
gt_xy = torch.stack((torch.stack((x1, y1), axis=1), torch.stack((x2, y2), axis=1)), axis=1)
optimizer.zero_grad()
output = model(sample)
pred_xy = torch.stack((output[:,0:2], output[:,2:4]), axis=1)
loss = loss_fn(pred_xy, gt_xy)
loss.backward()
optimizer.step()
batchLoss += loss.item() * sample.shape[0]
avgLoss = batchLoss / len(trainLoader.dataset) / 4 ### divide by 4 to get the average loss per photon per axis
print(f"[Train]\t Average Loss: {avgLoss:.6f} (RMS = {np.sqrt(avgLoss):.6f})")
TrainLosses.append(avgLoss)
def test(model, testLoader):
model.eval()
batchLoss = 0
gt_xy, out_xy = [], []
with torch.no_grad():
for batch_idx, (sample, label) in enumerate(testLoader):
sample, label = sample.cuda(), label.cuda()
x1, y1, z1, e1 = label[:,0], label[:,1], label[:,2], label[:,3]
x2, y2, z2, e2 = label[:,4], label[:,5], label[:,6], label[:,7]
_gt_xy = torch.stack((torch.stack((x1, y1), axis=1), torch.stack((x2, y2), axis=1)), axis=1)
output = model(sample)
_pred_xy = torch.stack((output[:,0:2], output[:,2:4]), axis=1)
loss = loss_fn(_pred_xy, _gt_xy)
batchLoss += loss.item() * sample.shape[0]
gt_xy.append(_gt_xy.cpu())
out_xy.append(_pred_xy.cpu())
gt_xy = torch.cat(gt_xy, dim=0)
out_xy = torch.cat(out_xy, dim=0)
avgLoss = batchLoss / len(testLoader.dataset) / 4 ### divide by 4 to get the average loss per photon per axis
datasetName = testLoader.dataset.datasetName
print(f"[{datasetName}]\t Average Loss: {avgLoss:.6f} (RMS = {np.sqrt(avgLoss):.6f})")
calculate_residuals(gt_xy, out_xy)
if datasetName == 'Val':
ValLosses.append(avgLoss)
else:
global TestLoss
TestLoss = avgLoss
return avgLoss
def calculate_residuals(gt_xy, out_xy):
"""
gt_xy: (N, 2, 2) — [ [x1, y1], [x2, y2] ]
out_xy: (N, 2, 2) — [ [x1', y1'], [x2', y2'] ]
"""
# Option A: match (p1->g1, p2->g2)
cost_a = (out_xy - gt_xy).pow(2).sum(dim=-1).sum(dim=-1) # (N,)
# Option B: match (p1->g2, p2->g1) → swap out_xy
out_swapped = out_xy[:, [1, 0], :] # swap the two points: (N, 2, 2)
cost_b = (out_swapped - gt_xy).pow(2).sum(dim=-1).sum(dim=-1) # (N,)
# Choose best assignment per sample
swap_mask = cost_b < cost_a # (N,)
# Apply swapping to get optimally matched predictions
out_matched = out_xy.clone()
out_matched[swap_mask] = out_xy[swap_mask][:, [1, 0], :]
# Compute residuals
residuals = out_matched - gt_xy # (N, 2, 2)
# Flatten to get all residuals (2N points)
residuals_x = residuals[:, :, 0].flatten().cpu().numpy()
residuals_y = residuals[:, :, 1].flatten().cpu().numpy()
# Print statistics
print(f"\t\tResiduals X: mean={np.mean(residuals_x):.4f}, std={np.std(residuals_x):.4f}")
print(f"\t\tResiduals Y: mean={np.mean(residuals_y):.4f}, std={np.std(residuals_y):.4f}")
sampleFolder = '/mnt/sls_det_storage/moench_data/MLXID/Samples/Simulation/Moench040'
trainDataset = doublePhotonDataset(
[f'{sampleFolder}/{Energy}_Moench040_150V_{i}.npz' for i in range(13)],
sampleRatio=1.0,
datasetName='Train',
reuselFactor=1,
noiseKeV = Noise,
)
valDataset = doublePhotonDataset(
[f'{sampleFolder}/{Energy}_Moench040_150V_{i}.npz' for i in range(13,14)],
sampleRatio=1.0,
datasetName='Val',
reuselFactor=1,
noiseKeV = Noise,
)
testDataset = doublePhotonDataset(
[f'{sampleFolder}/{Energy}_Moench040_150V_{i}.npz' for i in range(15,16)],
sampleRatio=1.0,
datasetName='Test',
reuselFactor=1,
noiseKeV = Noise,
)
trainLoader = torch.utils.data.DataLoader(
trainDataset,
batch_size=1024,
pin_memory = True,
shuffle=True,
num_workers=16
)
valLoader = torch.utils.data.DataLoader(
valDataset,
batch_size=4096,
shuffle=False,
num_workers=16
)
testLoader = torch.utils.data.DataLoader(
testDataset,
batch_size=4096,
shuffle=False,
num_workers=16
)
optimizer = torch.optim.Adam(model.parameters(), lr=LearningRate, weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.7, patience = 5)
if __name__ == "__main__":
for epoch in tqdm(range(1, 301)):
train(model, trainLoader, optimizer)
test(model, valLoader)
scheduler.step(ValLosses[-1])
print(f"Learning Rate: {optimizer.param_groups[0]['lr']}")
if epoch in [20, 50, 100, 200, 300, 500, 750, 1000]:
torch.save(model.state_dict(), f'Models/doublePhoton{modelVersion}_{Energy}_Noise{Noise}keV_E{epoch}.pth')
test(model, testLoader)
torch.save(model.state_dict(), f'Models/doublePhotonNet_{modelVersion}.pth')
def plot_loss_curve(TrainLosses, ValLosses, TestLoss, modelVersion):
import matplotlib.pyplot as plt
plt.figure(figsize=(8,6))
plt.plot(TrainLosses, label='Train Loss', color='blue')
plt.plot(ValLosses, label='Validation Loss', color='orange')
if TestLoss > 0:
plt.axhline(y=TestLoss, color='green', linestyle='--', label='Test Loss')
plt.yscale('log')
plt.xlabel('Epoch')
plt.ylabel('MSE Loss')
plt.legend()
plt.grid()
plt.savefig(f'Results/loss_curve_doublePhoton_{modelVersion}.png', dpi=300)
plot_loss_curve(TrainLosses, ValLosses, TestLoss, modelVersion=modelVersion)