import torch import sys sys.path.append('./src') from models import * from datasets import * from tqdm import tqdm from matplotlib import pyplot as plt configs = {} configs['SiemenStar'] = { 'dataFiles': [f'/home/xie_x1/MLXID/DeepLearning/SiemenStarClusters/clusters_chunk{i}.h5' for i in range(100)], 'modelVersion': 'singlePhotonNet_251020', 'roi': [140, 230, 120, 210], # x_min, x_max, y_min, y_max, 'noise': 0.13 # in keV } BinningFactor = 10 Roi = configs['SiemenStar']['roi'] X_st, X_ed, Y_st, Y_ed = Roi mlSuperFrame = np.zeros(((Y_ed-Y_st)*BinningFactor, (X_ed-X_st)*BinningFactor)) countFrame = np.zeros((Y_ed-Y_st, X_ed-X_st)) subpixelDistribution = np.zeros((BinningFactor, BinningFactor)) if __name__ == "__main__": task = 'SiemenStar' config = configs[task] if config['modelVersion'] == 'singlePhotonNet_251020': model = singlePhotonNet_251020().cuda() model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhotonNet_Noise{config["noise"]}keV_251020.pth', weights_only=True)) dataset = singlePhotonDataset(config['dataFiles'], sampleRatio=1.0, datasetName='Inference') dataLoader = torch.utils.data.DataLoader( dataset, batch_size=4096, shuffle=False, num_workers=16, pin_memory=True, ) referencePoints = dataset.referencePoint predictions = [] with torch.no_grad(): for batch in tqdm(dataLoader): inputs, _ = batch inputs = inputs.cuda() outputs = model(inputs) predictions.append(outputs.cpu()) predictions = torch.cat(predictions, dim=0) print(f'mean x = {torch.mean(predictions[:, 0])}, std x = {torch.std(predictions[:, 0])}') print(f'mean y = {torch.mean(predictions[:, 1])}, std y = {torch.std(predictions[:, 1])}') absolutePositions = predictions.numpy() + referencePoints[:, :2] - 1 hit_x = np.floor((absolutePositions[:, 0] - Roi[0]) * BinningFactor).astype(int) hit_x = np.clip(hit_x, 0, mlSuperFrame.shape[1]-1) hit_y = np.floor((absolutePositions[:, 1] - Roi[2]) * BinningFactor).astype(int) hit_y = np.clip(hit_y, 0, mlSuperFrame.shape[0]-1) np.add.at(mlSuperFrame, (hit_y, hit_x), 1) np.add.at(countFrame, ((referencePoints[:, 1] - Roi[2]).astype(int), (referencePoints[:, 0] - Roi[0]).astype(int)), 1) np.add.at(subpixelDistribution, (np.floor((absolutePositions[:, 1] % 1) * BinningFactor).astype(int), np.floor((absolutePositions[:, 0] % 1) * BinningFactor).astype(int)), 1) plt.imshow(mlSuperFrame, origin='lower', extent=[Y_st, Y_ed, X_st, X_ed]) plt.colorbar() plt.savefig('InferenceResults/SiemenStar_ML_superFrame.png', dpi=300) np.save('InferenceResults/SiemenStar_ML_superFrame.npy', mlSuperFrame) plt.clf() plt.imshow(countFrame, origin='lower', extent=[Y_st, Y_ed, X_st, X_ed]) plt.colorbar() plt.savefig('InferenceResults/SiemenStar_count_Frame.png', dpi=300) np.save('InferenceResults/SiemenStar_count_Frame.npy', countFrame) plt.clf() plt.imshow(subpixelDistribution, origin='lower') plt.colorbar() plt.savefig('InferenceResults/SiemenStar_subpixel_Distribution.png', dpi=300) np.save('InferenceResults/SiemenStar_subpixel_Distribution.npy', subpixelDistribution)