Add model for 3x3 sample size

This commit is contained in:
2025-10-22 08:00:59 +02:00
parent f41458db85
commit a02e3e6ee9

View File

@@ -29,6 +29,35 @@ class singlePhotonNet_250909(nn.Module):
x = self.fc(x)
return x
class singlePhotonNet_251020(nn.Module):
'''
Smaller input size (3x3)
'''
def weight_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def __init__(self):
super(singlePhotonNet_251020, self).__init__()
self.conv1 = nn.Conv2d(1, 5, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(5, 10, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(10, 20, kernel_size=3, padding=1)
self.fc = nn.Linear(20*3*3, 2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class doublePhotonNet_250909(nn.Module):
def __init__(self):
super(doublePhotonNet_250909, self).__init__()