Add model for 3x3 sample size
This commit is contained in:
@@ -29,6 +29,35 @@ class singlePhotonNet_250909(nn.Module):
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
class singlePhotonNet_251020(nn.Module):
|
||||
'''
|
||||
Smaller input size (3x3)
|
||||
'''
|
||||
def weight_init(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def __init__(self):
|
||||
super(singlePhotonNet_251020, self).__init__()
|
||||
self.conv1 = nn.Conv2d(1, 5, kernel_size=3, padding=1)
|
||||
self.conv2 = nn.Conv2d(5, 10, kernel_size=3, padding=1)
|
||||
self.conv3 = nn.Conv2d(10, 20, kernel_size=3, padding=1)
|
||||
self.fc = nn.Linear(20*3*3, 2)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.conv1(x))
|
||||
x = F.relu(self.conv2(x))
|
||||
x = F.relu(self.conv3(x))
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
return x
|
||||
|
||||
class doublePhotonNet_250909(nn.Module):
|
||||
def __init__(self):
|
||||
super(doublePhotonNet_250909, self).__init__()
|
||||
|
||||
Reference in New Issue
Block a user