1157 lines
40 KiB
Fortran
1157 lines
40 KiB
Fortran
c 462 -------------------------------------------------------------------------------
|
|
c Konstanten und Variable fuer Berechnung der Winkelaufstreuung in Triggerfolie
|
|
c mittels Meyer-Formel (L.Meyer, phys.stat.sol. (b) 44, 253 (1971)):
|
|
|
|
real g1, g2 ! Tabellierte Funktionen der Referenz
|
|
real effRedThick ! effektive reduzierte Dicke ('tau' der Referenz)
|
|
|
|
|
|
c - Parameter:
|
|
|
|
real Z1, Z2 ! die atomaren Nummern von Projektil und Target
|
|
real a0 ! Bohrscher Radius in cm
|
|
real screeningPar ! Screeningparameter 'a' in cm fuer Teilchen der
|
|
! Kernladungszahl Z1=1 in Kohlenstoff (Z2 = 6)
|
|
! bei Streichung von Z1 (vgl. Referenz, S. 268)
|
|
|
|
real r0Meyer ! r0(C) berechnet aus dem screeningParameter 'a'
|
|
! und dem ebenfalls bei Meyer angegebenem
|
|
! Verhaeltnis a/r0=0.26 (vgl. Referenz, S. 263 oben)
|
|
real eSquare ! elektrische Ladung zum Quadrat in keV*cm
|
|
real HWHM2sigma ! Umrechnungsfaktor von (halber!) Halbwertsbreite
|
|
! nach Sigma der Gaussfunktion
|
|
|
|
real Na ! die Avogadrokonstante
|
|
real mMolC ! molare Masse von C in ug
|
|
real Pi ! die Kreiszahl
|
|
|
|
parameter (Z1 = 1, Z2 = 6, a0 = 5.29E-9, ScreeningPar = 2.5764E-9)
|
|
parameter (r0Meyer = 9.909E-9, eSquare = 1.44E-10, HWHM2sigma = 1./1.17741)
|
|
parameter (Na = 6.022e23, mMolC = 12.011e6, Pi = 3.141592654)
|
|
|
|
|
|
c - Bei der Berechnung von Sigma auftretende Vorfaktoren.
|
|
c (Meyer_faktor 1 wird benoetigt fuer Berechnung der reduzierten Dicke aus der
|
|
c 'ug/cm2'-Angabe der Foliendicke. Meyer_faktor2 und Meyer_faktor3 werden
|
|
c direkt fuer die Berechnung von sigma aus den beiden tabellierten Funktionen
|
|
c g1 und g2 verwendet):
|
|
|
|
real Meyer_Faktor1, Meyer_Faktor2, Meyer_Faktor3
|
|
|
|
parameter (Meyer_faktor1 = Pi*screeningPar*screeningPar * Na/mMolC)
|
|
! Na/mMolC = 1/m(C-Atom)
|
|
parameter (Meyer_faktor2 = (2*Z1*Z2 * eSquare)/ScreeningPar * 180./Pi
|
|
+ * HWHM2sigma)
|
|
parameter (Meyer_faktor3 = (screeningPar/r0Meyer) * (screeningPar/r0Meyer))
|
|
|
|
|
|
c-------------------------------------------------------------------------------
|
|
c Kommentar zur Berechnung der Winkelaufstreuung nach Meyer:
|
|
c
|
|
c Als Bedingung fuer die Gueltigkeit der Rechnung wird verlangt, dass
|
|
c
|
|
c (1) die Anzahl n der Stoesse >> 20*(a/r0)^(4/3) sein muss. Fuer Protonen auf
|
|
c Graphit ist laut Referenz a/r0 gleich 0.26 (mit Dichte von 3.5 g/ccm habe
|
|
c ich einen Wert von 0.29 abgeschaetzt). Fuer Myonen hat man den selben
|
|
c Wert zu nehmen. Damit ergibt sich die Forderung, dass n >> 3.5 sein muss.
|
|
c
|
|
c (2) unabhaengig von (1) n >> 5 sein muss, was (1) also mit einschliesst.
|
|
c
|
|
c Mit n = Pi*r0*r0*Teilchen/Flaeche ergibt sich fuer eine Foliendicke von
|
|
c 3 ug/cm^2 als Abschaetzung fuer n ein Wert von 37. (r0 ueber r0 = 0.5 N^(1/3)
|
|
c und 3.5 g/ccm zu 8.9e-9 cm abgeschaetzt). D.h., dass die Bedingungen in
|
|
c unserem Fall gut erfuellt sind.
|
|
c In dem Paper wird eine Formel fuer Halbwertsbreiten angegeben. Ich habe nicht
|
|
c kontrolliert, in wie weit die Form der Verteilung tatsaechlich einer Gauss-
|
|
c verteilung entspricht. Zumindest im Bereich der Vorwaertsstreuung sollte
|
|
c die in diesem Programm verwendete Gaussverteilung aber eine sehr gute
|
|
c Naeherung abgeben. Abweichungen bei groesseren Winkeln koennten jedoch u. U.
|
|
c die absolute Streuintensitaet in Vorwaertsrichtung verfaelschen.
|
|
|
|
|
|
|
|
|
|
|
|
c (...)
|
|
|
|
|
|
c 1071 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
c Falls 'fromScratch':
|
|
c Die in den ab hier beginnenden Startparameter-Schleifen gesetzten Werte
|
|
c werden gegebenenfalls weiter unten durch zufallsverteilte Offsets modi-
|
|
c fiziert. (-> 'Zufallschleife': 'do 100 randomloop_ = 1, n_par(0))
|
|
c Andernfalls:
|
|
c Wurden waehrend ACCEL oder 'foilfile' fuer die Startparameter Zufalls-
|
|
c verteilungen verwendet, so werden die entsprechenden Groessen aus dem
|
|
c betreffenden NTupel eingelesen.
|
|
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
|
|
c Startparameter:
|
|
c ---------------
|
|
|
|
do 200 E0_ = par(1,ener),par(2,ener),par(3,ener) ! E0
|
|
if (.NOT.random_E0) then
|
|
E0 = E0_
|
|
v0_Betrag = sqrt(E0/Energie_Faktor)
|
|
endif
|
|
|
|
if (E0InterFromFile) then
|
|
lowerE0 = E0Low(nInt(E0_))
|
|
upperE0 = E0Low(nint(E0_+1))
|
|
endif
|
|
|
|
|
|
c falls Energieverlustberechnung aus ICRU-Tabelle verlangt ist und mittlerer
|
|
c Energieverlust nicht fuer jedes Teilchen extra berechnet werden soll (sinnvoll
|
|
c wenn alle Teilchen gleiche Startenergie haben oder Streuung der Startenergien
|
|
c klein ist, so dass die Streuung des mittleren Energieverlustes vernachlaessigt
|
|
c werden kann):
|
|
|
|
if (log_E_Verlust_ICRU .AND. .NOT.calculate_each) then
|
|
if (random_E0_equal) then
|
|
Ekin = E0_ + (upperE0+lowerE0)/2.
|
|
else
|
|
Ekin = E0_
|
|
endif
|
|
if (Gebiet0.EQ.target .OR. Gebiet0.EQ.upToGrid1) then
|
|
Ekin = Ekin + q*(U_Tgt - U_F)
|
|
elseif (Gebiet0.EQ.upToGrid2) then
|
|
Ekin = Ekin + q*(U_G1 - U_F)
|
|
endif
|
|
call CALC_ELOSS_ICRU(Ekin,q,m,Thickness,mean_E_Verlust)
|
|
endif
|
|
|
|
if (log_Meyer_F_Function) then
|
|
if (random_E0_equal) then
|
|
Ekin = E0_ + (upperE0+lowerE0)/2.
|
|
else
|
|
Ekin = E0_
|
|
endif
|
|
if (Gebiet0.EQ.target .OR. Gebiet0.EQ.upToGrid1) then
|
|
Ekin = Ekin + q*(U_Tgt - U_F)
|
|
elseif (Gebiet0.EQ.upToGrid2) then
|
|
Ekin = Ekin + q*(U_G1 - U_F)
|
|
endif
|
|
effRedThick = Meyer_Faktor1 * Thickness
|
|
call Get_F_Function_Meyer(effRedThick,Ekin)
|
|
endif
|
|
|
|
do 200 theta0_ = par(1,thetAng),par(2,thetAng),par(3,thetAng) ! theta0
|
|
if (.NOT.random_angle) then
|
|
theta0 = theta0_
|
|
Cos_theta0 = cosd(theta0)
|
|
Sin_theta0 = sind(theta0)
|
|
endif
|
|
do 200 phi0_ = par(1,phiAng),par(2,phiAng),par(3,phiAng) ! phi0
|
|
if (.NOT.random_angle) then
|
|
phi0 = phi0_
|
|
Cos_phi0 = cosd(phi0)
|
|
Sin_phi0 = sind(phi0)
|
|
endif
|
|
|
|
do 200 y0_ = par(1,yPos),par(2,yPos),par(3,yPos) ! y0
|
|
if (.NOT.random_pos) then
|
|
x0(2) = y0_
|
|
endif
|
|
|
|
do 200 z0_ = par(1,zPos),par(2,zPos),par(3,zPos) ! z0
|
|
if (.NOT.random_pos) then
|
|
x0(3) = z0_
|
|
endif
|
|
|
|
c die folgenden parWert(n) werden u.U. in der 'Zufallsschleife' weiter unten
|
|
c abgeaendert. Hier werden sie in jedem Fall fuer Tabellenausgaben, Debug-
|
|
c angelegenheiten u.s.w. erst einmal mit den aktuellen Werten der
|
|
c entsprechenden Schleifen gefuellt:
|
|
|
|
parWert(ener) = E0_
|
|
parWert(thetAng) = theta0_
|
|
parWert(phiAng) = phi0_
|
|
parWert(yPos) = y0_
|
|
parWert(zPos) = z0_
|
|
|
|
|
|
c falls fruehere Simulation fortgefuehrt wird:
|
|
c Berechne diejenige Eventnummer in NTP_read, ab welcher die relevanten
|
|
c Simulationsparameter von ACCEL bzw. des 'FoilFiles' mit den gegenwaertigen
|
|
c MUTRACK-(Schleifen)-Parametern uebereinstimmen:
|
|
|
|
if (.NOT.fromScratch) eventNr = firstEventNr()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c (...)
|
|
|
|
|
|
|
|
|
|
|
|
c 3106
|
|
c Einsprunglabel fuer Starts auf der Triggerfolie mit Startwinkelangaben
|
|
c im Kammersystem => transformiere Geschwindigkeitsvektor in das Triggersystem:
|
|
|
|
111 if (alfaTD.NE.0) then
|
|
help1= v(1) ! zur Zwischenspeicherung
|
|
v(1) = help1*Cos_alfaTD + v(2)*Sin_alfaTD
|
|
v(2) = -help1*Sin_alfaTD + v(2)*Cos_alfaTD
|
|
endif
|
|
|
|
|
|
c - pruefe, ob das Projektil die Folie trifft:
|
|
|
|
112 radiusQuad = x(2)*x(2) + x(3)*x(3)
|
|
If (radiusQuad.GT.radiusQuad_Folie) then
|
|
! zurueckrechnen in das Kammersystem:
|
|
if (alfaTD.NE.0) then
|
|
help1= x(1)
|
|
x(1) = (help1-d_Folie_Achse)*Cos_alfaTD -
|
|
+ x(2)*Sin_alfaTD + xTD
|
|
x(2) = (help1-d_Folie_Achse)*Sin_alfaTD +
|
|
+ x(2)*Cos_alfaTD
|
|
help1= v(1)
|
|
v(1) = help1*Cos_alfaTD - v(2)*Sin_alfaTD
|
|
v(2) = help1*Sin_alfaTD + v(2)*Cos_alfaTD
|
|
else
|
|
x(1) = x(1) + xTD - d_Folie_Achse
|
|
endif
|
|
|
|
destiny = code_vorbei
|
|
goto 555
|
|
endif
|
|
|
|
|
|
c So verlangt, schreibe die aktuellen Trajektoriengroessen in das 'FoilFile':
|
|
c (hier ist sichergestellt, dass die Folie getroffen worden ist, Wechsel-
|
|
c wirkungen mit der Folie wurden aber noch nicht beruecksichtigt).
|
|
c HIER WERDEN 'X' UND 'V' IM TRIGGERSYSTEM ABGESPEICHERT!
|
|
|
|
if (createFoilFile) then
|
|
! falls die Flugzeit bis zur Triggerfolie verschmiert in das
|
|
! NTupel aufgenommen werden soll:
|
|
if (smearS1Fo) then
|
|
call Gauss_Verteilung(sigmaS1Fo,help4)
|
|
S1FoOnly = t + help4
|
|
endif
|
|
if (NTP_stop) then
|
|
Ekin=(v(1)*v(1)+v(2)*v(2)+v(3)*v(3))*Energie_Faktor
|
|
endif
|
|
call HFNT(NTP_write)
|
|
NTPalreadyWritten = .true.
|
|
endif
|
|
|
|
|
|
c - Zeitpunkt bei Erreichen der Folie sichern:
|
|
|
|
113 S1Fo = t
|
|
if (createNTP.AND.Fo_triggered) fill_NTP = .true.
|
|
if (statNeeded(Nr_S1Fo)) call fill_statMem(S1Fo,Nr_S1Fo)
|
|
|
|
|
|
|
|
c - Speichern der Koordinaten fuer die Statistiken:
|
|
|
|
if (statNeeded(Nr_y_Fo)) then
|
|
call fill_statMem( x(2),Nr_y_Fo)
|
|
endif
|
|
if (statNeeded(Nr_z_Fo)) then
|
|
call fill_statMem( x(3),Nr_z_Fo)
|
|
endif
|
|
if (statNeeded(Nr_r_Fo)) then
|
|
radius = SQRT(x(2)*x(2) + x(3)*x(3))
|
|
call fill_statMem(radius,Nr_r_Fo)
|
|
endif
|
|
|
|
|
|
c - speichere Auftreffort des Projektils fuer die Berechnung der Folienelektronen:
|
|
|
|
if (generate_FE) then
|
|
x0FE(1) = x(1)
|
|
x0FE(2) = x(2)
|
|
x0FE(3) = x(3)
|
|
endif
|
|
|
|
|
|
c - falls nur bis zur Folie gerechnet werden soll, beende hier die Integration:
|
|
|
|
if (upToTDFoilOnly) then
|
|
! zurueckrechnen in das Kammersystem:
|
|
if (alfaTD.NE.0) then
|
|
help1= x(1)
|
|
x(1) = (help1-d_Folie_Achse)*Cos_alfaTD -
|
|
+ x(2)*Sin_alfaTD + xTD
|
|
x(2) = (help1-d_Folie_Achse)*Sin_alfaTD +
|
|
+ x(2)*Cos_alfaTD
|
|
help1= v(1)
|
|
v(1) = help1*Cos_alfaTD - v(2)*Sin_alfaTD
|
|
v(2) = help1*Sin_alfaTD + v(2)*Cos_alfaTD
|
|
else
|
|
x(1) = x(1) + xTD - d_Folie_Achse
|
|
endif
|
|
if (generate_FE) Gebiet = UpToExTD
|
|
goto 555
|
|
endif
|
|
|
|
|
|
c - pruefe, ob das Projektil auf das Stuetzgitter aufschlaegt:
|
|
|
|
if (testOnWireHit .AND. ran(seed).GT.TransTDFoil) then
|
|
destiny = code_Stuetzgitter
|
|
! zurueckrechnen in das Kammersystem:
|
|
if (alfaTD.NE.0) then
|
|
help1= x(1)
|
|
x(1) = (help1-d_Folie_Achse)*Cos_alfaTD -
|
|
+ x(2)*Sin_alfaTD + xTD
|
|
x(2) = (help1-d_Folie_Achse)*Sin_alfaTD +
|
|
+ x(2)*Cos_alfaTD
|
|
help1= v(1)
|
|
v(1) = help1*Cos_alfaTD - v(2)*Sin_alfaTD
|
|
v(2) = help1*Sin_alfaTD + v(2)*Cos_alfaTD
|
|
else
|
|
x(1) = x(1) + xTD - d_Folie_Achse
|
|
endif
|
|
goto 555
|
|
endif
|
|
|
|
|
|
c - Energieverlust und Winkelaufstreuung:
|
|
|
|
if (log_E_Verlust .OR. log_Aufstreu) then
|
|
if (Debug_) then
|
|
Steps = Steps + 1
|
|
call Output_Debug
|
|
endif
|
|
v_square = v(1)*v(1) + v(2)*v(2) + v(3)*v(3)
|
|
v_Betrag = SQRT(v_square)
|
|
Ekin = v_square * Energie_Faktor
|
|
endif
|
|
|
|
c -- Energieverlust (vorerst nur Gaussverteilt):
|
|
|
|
if (log_E_Verlust_defined.OR.log_Meyer_Gauss) then
|
|
! Berechne Bahnwinkel relativ zur Folienebene fuer effektive Folien-
|
|
! dicke:
|
|
alfa = atand(SQRT(v(2)*v(2)+v(3)*v(3))/v(1))
|
|
endif
|
|
|
|
if (log_E_Verlust) then
|
|
if (calculate_each) then
|
|
call CALC_ELOSS_ICRU(Ekin,q,m,Thickness,E_Verlust)
|
|
else
|
|
E_Verlust = mean_E_Verlust
|
|
endif
|
|
if (log_E_Verlust_defined) E_Verlust = E_Verlust / cosd(alfa)
|
|
if (debug_) write (lunLOG,*) ' mittlerer Energieverlust: ',E_Verlust
|
|
|
|
! Now we have the mean energy loss. We still have to modify it
|
|
! according to the distribution of energy losses, i.e.
|
|
! E_Verlust -> E_Verlust + delta_E_Verlust:
|
|
|
|
delta_E_Verlust = 0.
|
|
if (log_E_Straggling_sigma) then
|
|
400 call Gauss_Verteilung(sigmaE,delta_E_Verlust)
|
|
if (debug_) write (lunLOG,*) ' sigmaE,delta_E_Verlust: ',sigmaE,delta_E_Verlust
|
|
if (E_Verlust+delta_E_Verlust.LT.0.) goto 400
|
|
elseif (log_E_Straggling_equal) then
|
|
410 delta_E_Verlust = lowerE + (upperE - lowerE)*ran(seed)
|
|
if (E_Verlust+delta_E_Verlust.LT.0) goto 410
|
|
elseif (log_E_Straggling_Lindhard) then
|
|
! Streuung in Abhaengigkeit von mittlerer Energie in Folie:
|
|
call E_Straggling_Lindhard(Ekin-0.5*E_Verlust,m,sigmaE)
|
|
420 call Gauss_Verteilung(sigmaE,delta_E_Verlust)
|
|
if (debug_) write (lunLOG,*) ' sigmaE,delta_E_Verlust: ',sigmaE,delta_E_Verlust
|
|
if (E_Verlust+delta_E_Verlust.LT.0.) goto 420
|
|
elseif (log_E_Straggling_Yang) then
|
|
! Streuung in Abhaengigkeit von mittlerer Energie in Folie!
|
|
call E_Straggling_Yang(Ekin-0.5*E_Verlust,m,sigmaE)
|
|
430 call Gauss_Verteilung(sigmaE,delta_E_Verlust)
|
|
if (debug_) write (lunLOG,*) ' sigmaE,delta_E_Verlust: ',sigmaE,delta_E_Verlust
|
|
if (E_Verlust+delta_E_Verlust.LT.0.) goto 430
|
|
endif
|
|
|
|
if (E_Verlust+delta_E_Verlust.GE.Ekin) then
|
|
destiny = code_stopped_in_foil
|
|
goto 555
|
|
endif
|
|
E_Verlust = E_Verlust + delta_E_Verlust
|
|
|
|
! help1 == Reduzierungsfaktor fuer Geschw.Betrag
|
|
help1 = sqrt( (Ekin - E_Verlust)/Ekin )
|
|
v(1) = help1 * v(1)
|
|
v(2) = help1 * v(2)
|
|
v(3) = help1 * v(3)
|
|
v_Betrag = help1 * v_Betrag
|
|
if (debug_) write (lunLOG,*) ' Energieverlust: ',E_Verlust
|
|
endif
|
|
|
|
c -- Winkelaufstreuung (vorerst nur Gaussverteilt):
|
|
|
|
if (log_aufstreu) then
|
|
if (log_Meyer_F_Function) then
|
|
call throwMeyerAngle(thetaAufstreu)
|
|
else
|
|
if (log_Meyer_Gauss) then
|
|
if (log_E_Verlust) Ekin = Ekin - .5 * E_Verlust ! mittlere Energie
|
|
effRedThick = Meyer_Faktor1 * Thickness / cosd(alfa)
|
|
call g_Functions(g1,g2,effRedThick)
|
|
sigmaAufstreu = Meyer_Faktor2 / Ekin * (g1 + Meyer_Faktor3*g2)
|
|
if (debug_) then
|
|
write (lunLOG,*) ' effekt. red. Dicke: ',effRedThick
|
|
write (lunLOG,*) ' Sigma(Streuwinkel): ',sigmaAufstreu
|
|
endif
|
|
endif
|
|
|
|
call Gauss_Verteilung_theta(sigmaAufstreu,thetaAufstreu)
|
|
endif
|
|
|
|
st0 = sind(thetaAufstreu)
|
|
ct0 = cosd(thetaAufstreu)
|
|
phiAufstreu = 360.*ran(seed)
|
|
|
|
v_xy = SQRT(v(1)*v(1) + v(2)*v(2)) ! v_xy stets groesser 0
|
|
! wegen v(1)>0
|
|
|
|
help1 = v(1)
|
|
help2 = v(2)
|
|
help3 = v_Betrag*st0*cosd(phiAufstreu)/v_xy
|
|
help4 = st0*sind(phiAufstreu)
|
|
|
|
v(1) = ct0*help1 - help3*help2 - help4*help1*v(3)/v_xy
|
|
v(2) = ct0*help2 + help3*help1 - help4*help2*v(3)/v_xy
|
|
v(3) = ct0*v(3) + help4*v_xy
|
|
if (debug_) write (lunLOG,*) ' Aufstreuung: theta, phi =',
|
|
+ thetaAufstreu,phiAufstreu
|
|
endif
|
|
|
|
if (Debug_ .AND. (log_E_Verlust .OR. log_Aufstreu)) then
|
|
call Output_Debug
|
|
endif
|
|
|
|
|
|
c - Neutralisierung in der Folie?
|
|
|
|
if (log_neutralize) then
|
|
if (neutral_fract(q_).EQ.-1.0) then
|
|
v_square = v(1)*v(1) + v(2)*v(2) + v(3)*v(3)
|
|
Ekin = v_square * Energie_Faktor
|
|
call chargeStateYields(Ekin,m,YieldPlus,YieldNeutral)
|
|
YieldNeutral = 100. * YieldNeutral
|
|
else
|
|
YieldNeutral = neutral_fract(q_)
|
|
endif
|
|
if (100.*ran(seed).LE.YieldNeutral) then
|
|
q = 0.
|
|
qInt = 0
|
|
if (debug_) then
|
|
write (lunLOG,*) ' Teilchen wurde neutralisiert'
|
|
endif
|
|
nNeutral = nNeutral + 1
|
|
else
|
|
nCharged = nCharged + 1
|
|
endif
|
|
endif
|
|
|
|
c:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|
|
|
|
|
|
c (...)
|
|
c4300
|
|
c===============================================================================
|
|
|
|
|
|
OPTIONS /EXTEND_SOURCE
|
|
|
|
SUBROUTINE G_Functions(G1,G2,tau)
|
|
c =================================
|
|
|
|
c Diese Routine gibt in Abhaengigkeit von der reduzierten Dicke 'tau'
|
|
c Funktionswerte fuer g1 und g2 zurueck. g1 und g2 sind dabei die von
|
|
c Meyer angegebenen tabellierten Funktionen fuer die Berechnung von Halbwerts-
|
|
c breiten von Streuwinkelverteilungen. (L.Meyer, phys.stat.sol. (b) 44, 253
|
|
c (1971))
|
|
|
|
IMPLICIT NONE
|
|
|
|
real tau,g1,g2
|
|
real tau_(26),g1_(26),g2_(26)
|
|
real help
|
|
|
|
integer i
|
|
|
|
DATA tau_ /0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
|
|
+ 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0,
|
|
+ 10.0, 12.0, 14.0, 16.0, 18.0, 20.0 /
|
|
|
|
DATA g1_ /0.050,0.115,0.183,0.245,0.305,0.363,0.419,0.473,0.525,0.575,
|
|
+ 0.689,0.799,0.905,1.010,1.100,1.190,1.370,1.540,1.700,1.850,
|
|
+ 1.990,2.270,2.540,2.800,3.050,3.290 /
|
|
DATA g2_ / 0.00,1.25,0.91,0.79,0.73,0.69,0.65,0.63,0.61,0.59,
|
|
+ 0.56,0.53,0.50,0.47,0.45,0.43,0.40,0.37,0.34,0.32,
|
|
+ 0.30,0.26,0.22,0.18,0.15,0.13 /
|
|
|
|
if (tau.LT.tau_(1)) then
|
|
write(*,*)
|
|
write(*,*)'SUBROUTINE G_Functions:'
|
|
write(*,*)' Fehler bei Berechnung der g-Funktionen fuer Winkelaufstreuung:'
|
|
write(*,*)' aktuelles tau ist kleiner als kleinster Tabellenwert:'
|
|
write(*,*)' tau = ',tau
|
|
write(*,*)' tau_(1) = ',tau_(1)
|
|
write(*,*)
|
|
STOP
|
|
endif
|
|
|
|
i = 1
|
|
|
|
10 i = i + 1
|
|
if (i.EQ.27) then
|
|
write(*,*)
|
|
write(*,*)'SUBROUTINE G_Functions:'
|
|
write(*,*)' Fehler bei Berechnung der g-Funktionen fuer Winkelaufstreuung:'
|
|
write(*,*)' aktuelles tau ist groesser als groesster Tabellenwert:'
|
|
write(*,*)' tau = ',tau
|
|
write(*,*)' tau_(26) = ',tau_(26)
|
|
write(*,*)
|
|
STOP
|
|
elseif (tau.gt.tau_(i)) then
|
|
goto 10
|
|
endif
|
|
|
|
|
|
c lineare Interpolation zwischen Tabellenwerten:
|
|
|
|
help = (tau-tau_(i-1))/(tau_(i)-tau_(i-1))
|
|
|
|
g1 = g1_(i-1) + help*(g1_(i)-g1_(i-1))
|
|
g2 = g2_(i-1) + help*(g2_(i)-g2_(i-1))
|
|
|
|
|
|
END
|
|
|
|
|
|
c===============================================================================
|
|
|
|
options /extend_source
|
|
|
|
subroutine Get_F_Function_Meyer(tau,Ekin)
|
|
c =========================================
|
|
|
|
implicit none
|
|
|
|
real tau
|
|
real Ekin
|
|
|
|
real thetaSchlange,thetaSchlangeMax
|
|
real theta,thetaMax,thetaStep
|
|
real f1,f2,F
|
|
|
|
|
|
c------------------------------------
|
|
c - Parameter:
|
|
|
|
real Z1, Z2 ! die atomaren Nummern von Projektil und Target
|
|
c real a0 ! Bohrscher Radius in cm
|
|
real screeningPar ! Screeningparameter 'a' in cm fuer Teilchen der
|
|
! Kernladungszahl Z1=1 in Kohlenstoff (Z2 = 6)
|
|
! bei Streichung von Z1 (vgl. Referenz, S. 268)
|
|
|
|
real r0Meyer ! r0(C) berechnet aus dem screeningParameter 'a'
|
|
! und dem ebenfalls bei Meyer angegebenem
|
|
! Verhaeltnis a/r0=0.26 (vgl. Referenz, S. 263 oben)
|
|
real eSquare ! elektrische Ladung zum Quadrat in keV*cm
|
|
|
|
real Pi ! die Kreiszahl
|
|
|
|
c parameter (a0 = 5.29E-9)
|
|
parameter (Z1 = 1, Z2 = 6, ScreeningPar = 2.5764E-9)
|
|
parameter (r0Meyer = 9.909E-9, eSquare = 1.44E-10)
|
|
parameter (Pi = 3.141592654)
|
|
|
|
real Meyer_Faktor3
|
|
real Meyer_Faktor4
|
|
real zzz ! 'Hilfsparameter'
|
|
real Meyer_Faktor5
|
|
|
|
parameter (Meyer_faktor3 = (screeningPar/r0Meyer) * (screeningPar/r0Meyer))
|
|
parameter (Meyer_faktor4 = screeningPar / (2.*Z1*Z2*eSquare) * Pi/180.)
|
|
parameter (zzz = screeningPar / (2.*Z1*Z2*eSquare))
|
|
parameter (Meyer_faktor5 = zzz*zzz / (8*Pi*Pi))
|
|
|
|
c------------------------------------
|
|
|
|
integer nBin,nBinMax
|
|
parameter (nBinMax=201)
|
|
real value(0:nBinMax) /0.,nBinMax*0./
|
|
real area(nBinMax) / nBinMax*0./
|
|
real integ(0:nBinMax) /0.,nBinMax*0./
|
|
common /MeyerTable/ value,area,integ,thetaStep,nBin
|
|
|
|
integer i
|
|
real rhelp
|
|
|
|
integer HB_memsize
|
|
parameter(HB_memsize=500000)
|
|
real memory(HB_memsize)
|
|
COMMON /PAWC/ memory
|
|
|
|
|
|
c nur noch fuer Testzwecke:
|
|
|
|
real fValues(203)
|
|
real fValuesFolded(203)
|
|
|
|
integer idh
|
|
parameter (idh = 50)
|
|
|
|
INCLUDE 'mutrack$sourcedirectory:COM_DIRS.INC'
|
|
character filename*20 ! Name der Ausgabe-Dateien
|
|
COMMON /filename/ filename
|
|
|
|
c-------------------------------------------------------------------------------
|
|
|
|
c Festlegen des maximalen Theta-Wertes sowie der Schrittweite:
|
|
|
|
if (tau.LT.0.2) then
|
|
write(*,*) 'Subroutine ''Get_F_Function_Meyer'':'
|
|
write(*,*) 'Effektive Dicke ist kleiner als 0.2 => kann ich nicht ... => STOP'
|
|
call exit
|
|
elseif (tau.LE.2.) then
|
|
! => Tabelle A
|
|
thetaSchlangeMax = 4.0
|
|
elseif (tau.LE.8.) then
|
|
! => Tabelle B
|
|
thetaSchlangeMax = 7.0
|
|
elseif (tau.LE.20.) then
|
|
! => Tabelle C
|
|
thetaSchlangeMax = 20.0
|
|
else
|
|
write(*,*) 'Subroutine ''Get_F_Function_Meyer'':'
|
|
write(*,*) 'Effektive Dicke ist groesser als 20 => kann ich nicht ... => STOP'
|
|
call exit
|
|
endif
|
|
|
|
thetaMax = thetaSchlangeMax / Meyer_Faktor4 / Ekin
|
|
if (thetaMax.GT.50) then
|
|
thetaStep = .5
|
|
elseif (thetaMax.GT.25) then
|
|
thetaStep = .25
|
|
elseif (thetaMax.GT.12.5) then
|
|
thetaStep = .125
|
|
else
|
|
thetaStep = .0625
|
|
endif
|
|
|
|
|
|
c Tabelle der F-Werte erstellen:
|
|
|
|
nBin = 0
|
|
do theta = thetaStep, thetaMax, thetaStep
|
|
|
|
! Berechne aus theta das 'reduzierte' thetaSchlange (dabei gleich
|
|
! noch von degree bei theta in Radiant bei thetaSchlange umrechnen):
|
|
|
|
thetaSchlange = Meyer_faktor4 * Ekin * theta
|
|
|
|
! Auslesen der Tabellenwerte fuer die f-Funktionen:
|
|
|
|
call F_Functions_Meyer(tau,thetaSchlange,f1,f2)
|
|
if (thetaSchlange.EQ.-1) then
|
|
! wir sind jenseits von thetaSchlangeMax
|
|
goto 10
|
|
endif
|
|
|
|
! Berechnen der Streuintensitaet:
|
|
F = Meyer_faktor5 * Ekin*Ekin * (f1 - Meyer_faktor3*f2)
|
|
|
|
nBin = nBin + 1
|
|
if (nBin.GT.nBinMax) then
|
|
write(*,*) 'nBin > nBinMax => EXIT'
|
|
call exit
|
|
endif
|
|
value(nBin) = sind(theta)*F
|
|
|
|
fValues(nBin+1) = F ! fuer Testzwecke
|
|
fValuesFolded(nBin+1) = sind(theta)*F ! fuer Testzwecke
|
|
|
|
enddo
|
|
|
|
|
|
c Berechnen der Flaecheninhalte der einzelnen Kanaele sowie der Integrale:
|
|
|
|
10 do i = 1, nBin
|
|
area(i) = (value(i)+value(i-1))/2. * thetaStep
|
|
integ(i) = integ(i-1) + area(i)
|
|
enddo
|
|
|
|
|
|
c Normiere totale Flaeche auf 1:
|
|
|
|
rHelp = integ(nBin)
|
|
do i = 1, nBin
|
|
value(i) = value(i) / rHelp
|
|
area(i) = area(i) / rHelp
|
|
integ(i) = integ(i) / rHelp
|
|
enddo
|
|
|
|
|
|
c vorerst noch: gib Tabelle in Datei und Histogrammfile aus:
|
|
|
|
! Berechne die Werte fuer theta=0:
|
|
|
|
call F_Functions_Meyer(tau,0.,f1,f2)
|
|
F = Meyer_faktor5 * Ekin*Ekin * (f1 - Meyer_faktor3*f2)
|
|
fValues(1) = F
|
|
fValuesFolded(1) = 0.
|
|
|
|
! Gib die Werte in das Tabellenfile aus:
|
|
|
|
c theta = 0.
|
|
c open (10,file=outDir//':'//filename//'.TAB',status='NEW')
|
|
c do i = 1, nBin+1
|
|
c write(10,*) theta, fValues(i), fValuesFolded(i)
|
|
c theta = theta + thetaStep
|
|
c enddo
|
|
c close (10)
|
|
|
|
|
|
! Buchen und Fuellen der Histogramme:
|
|
|
|
call HBOOK1(idh,'F',nBin+1,-0.5*thetaStep,(real(nBin)+0.5)*thetaStep,0.)
|
|
call HPAK(idh,fValues)
|
|
call HRPUT(idh,outDir//':'//filename//'.RZ','N')
|
|
call HDELET(idh)
|
|
|
|
call HBOOK1(idh+1,'F*sin([q])',nBin+1,-0.5*thetaStep,(real(nBin)+0.5)*thetaStep,0.)
|
|
call HPAK(idh+1,fValuesFolded)
|
|
call HRPUT(idh+1,outDir//':'//filename//'.RZ','U')
|
|
call HDELET(idh+1)
|
|
|
|
|
|
END
|
|
|
|
|
|
c===============================================================================
|
|
|
|
options /extend_source
|
|
|
|
subroutine throwMeyerAngle (theta)
|
|
c ==================================
|
|
|
|
implicit none
|
|
|
|
real lowerbound,y1,y2,f,root,radiant,fraction
|
|
integer bin,nBin
|
|
integer nBinMax
|
|
parameter (nBinMax=201)
|
|
|
|
real theta,thetaStep
|
|
real value(0:nBinMax) /0.,nBinMax*0./
|
|
real area(nBinMax) / nBinMax*0./
|
|
real integ(0:nBinMax) /0.,nBinMax*0./
|
|
common /MeyerTable/ value,area,integ,thetaStep,nBin
|
|
|
|
real rhelp
|
|
|
|
real random
|
|
integer seed
|
|
common /seed/ seed
|
|
|
|
|
|
c bin: Nummer des Bins, innerhalb dessen das Integral den Wert von
|
|
c random erreicht oder ueberschreitet:
|
|
|
|
random = ran(seed)
|
|
|
|
bin = 1
|
|
do while (random.GT.integ(bin))
|
|
bin = bin + 1
|
|
if (bin.GT.nBin) then
|
|
write(*,*) 'error 1'
|
|
call exit
|
|
endif
|
|
enddo
|
|
|
|
fraction = (random-integ(bin-1)) / (integ(bin)-integ(bin-1))
|
|
y1 = value(bin-1)
|
|
y2 = value(bin)
|
|
f = thetaStep / (y2-y1)
|
|
rHelp = y1*f
|
|
|
|
radiant = rHelp*rHelp + fraction*thetaStep*(y1+y2)*f
|
|
root = SQRT(radiant)
|
|
lowerBound = real(bin-1)*thetaStep
|
|
if (f.GT.0) then
|
|
theta = lowerBound - rHelp + root
|
|
else
|
|
theta = lowerBound - rHelp - root
|
|
endif
|
|
|
|
|
|
END
|
|
|
|
|
|
c===============================================================================
|
|
|
|
options /extend_source
|
|
|
|
subroutine F_Functions_Meyer(tau,thetaSchlange,f1,f2)
|
|
c =====================================================
|
|
|
|
implicit none
|
|
|
|
c Diese Routine gibt in Abhaengigkeit von 'thetaSchlange' und 'tau'
|
|
c Funktionswerte fuer f1 und f2 zurueck. f1 und f2 entsprechen dabei den
|
|
c bei Meyer angegebenen Funktion gleichen Namens. Die in dieser Routine
|
|
c verwendeten Tabellen sind eben dieser Referenz entnommen:
|
|
c L.Meyer, phys.stat.sol. (b) 44, 253 (1971)
|
|
|
|
real tau,thetaSchlange
|
|
real f1, f2, f1_(2), f2_(2)
|
|
|
|
integer column_,column,row
|
|
|
|
integer iColumn
|
|
real weightCol, weightRow
|
|
|
|
c-------------------------------------------------------------------------------
|
|
|
|
c die Tabellendaten der Referenz (Tabellen 2 und 3):
|
|
|
|
integer nColumn
|
|
parameter (nColumn = 25)
|
|
real tau_(nColumn) /
|
|
+ 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0,
|
|
+ 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 10., 12., 14., 16., 18., 20. /
|
|
|
|
integer nRowA
|
|
parameter (nRowA = 25)
|
|
real thetaSchlangeA(nRowA) /
|
|
+ .00, .05, .10, .15, .20, .25, .30, .35, .40, .45, .50, .60,
|
|
+ .70, .80, .90, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0 /
|
|
|
|
integer nRowB
|
|
parameter (nRowB = 24)
|
|
real thetaSchlangeB(nRowB) /
|
|
+ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5, 1.6, 1.8,
|
|
+ 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0 /
|
|
|
|
integer nRowC
|
|
parameter (nRowC = 24)
|
|
real thetaSchlangeC(nRowC) /
|
|
+ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0,
|
|
+ 7.0, 8.0, 9.0, 10., 11., 12., 13., 14., 15., 16., 18., 20. /
|
|
|
|
|
|
real f1_A(9,nRowA)
|
|
+ /1.69E+2,4.55E+1,2.11E+1,1.25E+1,8.48E+0,6.21E+0,4.80E+0,3.86E+0,3.20E+0,
|
|
+ 9.82E+1,3.72E+1,1.97E+1,1.20E+1,8.27E+0,6.11E+0,4.74E+0,3.83E+0,3.17E+0,
|
|
+ 3.96E+1,2.58E+1,1.65E+1,1.09E+1,7.73E+0,5.82E+0,4.58E+0,3.72E+0,3.10E+0,
|
|
+ 1.76E+1,1.58E+1,1.27E+1,9.26E+0,6.93E+0,5.38E+0,4.31E+0,3.55E+0,2.99E+0,
|
|
+ 8.62E+0,1.01E+1,9.45E+0,7.58E+0,6.02E+0,4.85E+0,3.98E+0,3.33E+0,2.84E+0,
|
|
+ 4.65E+0,6.55E+0,6.91E+0,6.06E+0,5.11E+0,4.28E+0,3.62E+0,3.08E+0,2.66E+0,
|
|
+ 2.74E+0,4.45E+0,5.03E+0,4.78E+0,4.27E+0,3.72E+0,3.23E+0,2.82E+0,2.47E+0,
|
|
+ 1.77E+0,3.02E+0,3.71E+0,3.76E+0,3.53E+0,3.20E+0,2.86E+0,2.55E+0,2.27E+0,
|
|
+ 1.22E+0,2.19E+0,2.78E+0,2.96E+0,2.91E+0,2.73E+0,2.51E+0,2.28E+0,2.07E+0,
|
|
+ 8.82E-1,1.59E+0,2.12E+0,2.35E+0,2.39E+0,2.32E+0,2.19E+0,2.03E+0,1.87E+0,
|
|
+ 6.55E-1,1.20E+0,1.64E+0,1.88E+0,1.97E+0,1.96E+0,1.90E+0,1.79E+0,1.68E+0,
|
|
+ 3.80E-1,7.15E-1,1.01E+0,1.22E+0,1.35E+0,1.40E+0,1.41E+0,1.39E+0,1.34E+0,
|
|
+ 2.26E-1,4.45E-1,6.44E-1,8.08E-1,9.28E-1,1.01E+0,1.05E+0,1.06E+0,1.05E+0,
|
|
+ 1.39E-1,2.80E-1,4.21E-1,5.45E-1,6.46E-1,7.22E-1,7.75E-1,8.07E-1,8.21E-1,
|
|
+ 8.22E-2,1.76E-1,2.78E-1,3.71E-1,4.53E-1,5.21E-1,5.74E-1,6.12E-1,6.37E-1,
|
|
+ 5.04E-2,1.11E-1,1.86E-1,2.57E-1,3.22E-1,3.79E-1,4.27E-1,4.65E-1,4.94E-1,
|
|
+ 2.51E-2,5.60E-2,9.24E-2,1.31E-1,1.69E-1,2.02E-1,2.40E-1,2.71E-1,2.97E-1,
|
|
+ 1.52E-2,3.20E-2,5.08E-2,7.23E-2,9.51E-2,1.18E-1,1.41E-1,1.63E-1,1.83E-1,
|
|
+ 1.03E-2,2.05E-2,3.22E-2,4.55E-2,6.01E-2,7.53E-2,9.02E-2,1.05E-1,1.19E-1,
|
|
+ 8.80E-3,1.48E-2,2.25E-2,3.13E-2,4.01E-2,5.03E-2,6.01E-2,7.01E-2,8.01E-2,
|
|
+ 6.10E-3,1.15E-2,1.71E-2,2.28E-2,2.89E-2,3.52E-2,4.18E-2,4.86E-2,5.55E-2,
|
|
+ 0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,1.71E-2,1.98E-2,2.28E-2,2.58E-2,
|
|
+ 0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,8.90E-3,1.02E-2,1.16E-2,1.31E-2,
|
|
+ 0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,4.90E-3,5.70E-3,6.40E-3,7.20E-3,
|
|
+ 0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,2.90E-3,3.40E-3,3.90E-3,4.30E-3/
|
|
|
|
real f1_B(9,nRowB)
|
|
+ /2.71E+0,1.92E+0,1.46E+0,1.16E+0,9.52E-1,8.03E-1,6.90E-1,5.32E-1,4.28E-1,
|
|
+ 2.45E+0,1.79E+0,1.39E+0,1.12E+0,9.23E-1,7.82E-1,6.75E-1,5.23E-1,4.23E-1,
|
|
+ 1.87E+0,1.48E+0,1.20E+0,9.96E-1,8.42E-1,7.24E-1,6.32E-1,4.98E-1,4.07E-1,
|
|
+ 1.56E+0,1.30E+0,1.09E+0,9.19E-1,7.89E-1,6.86E-1,6.03E-1,4.80E-1,3.95E-1,
|
|
+ 1.28E+0,1.11E+0,9.62E-1,8.33E-1,7.27E-1,6.40E-1,5.69E-1,4.59E-1,3.81E-1,
|
|
+ 8.23E-1,7.90E-1,7.29E-1,6.64E-1,6.01E-1,5.44E-1,4.94E-1,4.12E-1,3.49E-1,
|
|
+ 5.14E-1,5.36E-1,5.29E-1,5.07E-1,4.78E-1,4.47E-1,4.16E-1,3.60E-1,3.13E-1,
|
|
+ 3.19E-1,3.58E-1,3.76E-1,3.78E-1,3.70E-1,3.57E-1,3.45E-1,3.08E-1,2.76E-1,
|
|
+ 2.02E-1,2.40E-1,2.64E-1,2.77E-1,2.82E-1,2.80E-1,2.65E-1,2.59E-1,2.39E-1,
|
|
+ 1.67E-1,1.96E-1,2.20E-1,2.36E-1,2.44E-1,2.47E-1,2.45E-1,2.35E-1,2.21E-1,
|
|
+ 1.33E-1,1.61E-1,1.85E-1,2.02E-1,2.12E-1,2.18E-1,2.18E-1,2.14E-1,2.03E-1,
|
|
+ 8.99E-2,1.12E-1,1.32E-1,1.48E-1,1.59E-1,1.67E-1,1.68E-1,1.75E-1,1.72E-1,
|
|
+ 6.24E-2,7.94E-2,9.50E-2,1.09E-1,1.20E-1,1.29E-1,1.35E-1,1.42E-1,1.43E-1,
|
|
+ 4.55E-2,5.74E-2,6.98E-2,8.11E-2,9.09E-2,9.92E-2,1.06E-1,1.15E-1,1.19E-1,
|
|
+ 3.35E-2,4.22E-2,5.19E-2,6.11E-2,6.95E-2,7.69E-2,8.33E-2,9.28E-2,9.85E-2,
|
|
+ 2.50E-2,3.16E-2,3.92E-2,4.66E-2,5.35E-2,6.00E-2,6.57E-2,7.49E-2,8.13E-2,
|
|
+ 1.90E-2,2.40E-2,2.99E-2,3.58E-2,4.16E-2,4.70E-2,5.20E-2,6.05E-2,6.70E-2,
|
|
+ 1.47E-2,1.86E-2,2.32E-2,2.79E-2,3.25E-2,3.70E-2,4.12E-2,4.89E-2,5.51E-2,
|
|
+ 8.10E-3,1.04E-2,1.30E-2,1.57E-2,1.84E-2,2.12E-2,2.40E-2,2.93E-2,3.42E-2,
|
|
+ 4.80E-3,6.20E-3,7.70E-3,9.30E-3,1.09E-2,1.26E-2,1.44E-2,1.79E-2,2.14E-2,
|
|
+ 2.80E-3,3.80E-3,4.70E-3,5.70E-3,6.70E-3,7.50E-3,8.90E-3,1.13E-2,1.36E-2,
|
|
+ 1.70E-3,2.30E-3,2.90E-3,3.60E-3,4.20E-3,4.90E-3,5.60E-3,7.20E-3,8.80E-3,
|
|
+ 0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,2.00E-3,2.80E-3,3.50E-3,
|
|
+ 0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,0.00 ,8.80E-4,1.20E-3,1.60E-3/
|
|
|
|
real f1_C(7,nRowC)
|
|
+ /3.65E-1,2.62E-1,2.05E-1,1.67E-1,1.41E-1,1.21E-1,1.05E-1,
|
|
+ 3.33E-1,2.50E-1,1.95E-1,1.61E-1,1.36E-1,1.18E-1,1.03E-1,
|
|
+ 2.75E-1,2.18E-1,1.76E-1,1.48E-1,1.27E-1,1.11E-1,9.80E-2,
|
|
+ 2.04E-1,1.75E-1,1.50E-1,1.29E-1,1.13E-1,1.01E-1,9.00E-2,
|
|
+ 1.41E-1,1.31E-1,1.19E-1,1.08E-1,9.71E-2,8.88E-2,8.01E-2,
|
|
+ 9.32E-2,9.42E-2,9.10E-2,8.75E-2,8.00E-2,7.44E-2,6.91E-2,
|
|
+ 5.98E-2,6.52E-2,6.72E-2,6.62E-2,6.40E-2,6.12E-2,5.82E-2,
|
|
+ 3.83E-2,4.45E-2,4.80E-2,4.96E-2,4.98E-2,4.90E-2,4.77E-2,
|
|
+ 2.46E-2,3.01E-2,3.40E-2,3.65E-2,3.79E-2,3.84E-2,3.83E-2,
|
|
+ 1.59E-2,2.03E-2,2.39E-2,2.66E-2,2.85E-2,2.97E-2,3.04E-2,
|
|
+ 1.04E-2,1.37E-2,1.66E-2,1.92E-2,2.12E-2,2.27E-2,2.37E-2,
|
|
+ 4.39E-3,6.26E-3,8.26E-3,9.96E-3,1.15E-2,1.29E-2,1.41E-2,
|
|
+ 2.06E-3,3.02E-3,4.24E-3,5.28E-3,6.32E-3,7.32E-3,8.26E-3,
|
|
+ 1.21E-3,1.69E-3,2.24E-3,2.85E-3,3.50E-3,4.16E-3,4.82E-3,
|
|
+ 8.50E-4,1.10E-3,1.38E-3,1.65E-3,2.03E-3,2.45E-3,2.88E-3,
|
|
+ 5.90E-4,7.40E-4,8.50E-4,9.90E-4,1.23E-3,1.49E-3,1.71E-3,
|
|
+ 3.90E-4,4.60E-4,5.20E-4,6.30E-4,7.65E-4,9.65E-4,1.12E-3,
|
|
+ 2.40E-4,2.70E-4,3.10E-4,3.98E-4,4.97E-4,6.03E-4,7.18E-4,
|
|
+ 1.50E-4,1.70E-4,2.15E-4,2.70E-4,3.35E-4,4.35E-4,5.00E-4,
|
|
+ 1.00E-4,1.20E-4,1.46E-4,1.90E-4,2.40E-4,2.88E-4,3.43E-4,
|
|
+ 0.00 ,0.00 ,1.04E-4,1.41E-4,1.80E-4,2.10E-4,2.50E-4,
|
|
+ 0.00 ,0.00 ,8.20E-5,1.06E-4,1.38E-4,1.58E-4,1.85E-4,
|
|
+ 0.00 ,0.00 ,5.40E-5,7.00E-5,8.60E-5,1.03E-4,1.20E-4,
|
|
+ 0.00 ,0.00 ,4.20E-5,5.40E-5,6.50E-5,7.70E-5,8.80E-5/
|
|
|
|
real f2_A(9,nRowA)
|
|
+ / 3.52E+3, 3.27E+2, 9.08E+1, 3.85E+1, 2.00E+1, 1.18E+1, 7.55E+0, 5.16E+0, 3.71E+0,
|
|
+ 2.58E+2, 1.63E+2, 7.30E+1, 3.42E+1, 1.85E+1, 1.11E+1, 7.18E+0, 4.96E+0, 3.59E+0,
|
|
+ -1.12E+2, 4.84E+0, 3.56E+1, 2.34E+1, 1.45E+1, 9.33E+0, 6.37E+0, 4.51E+0, 3.32E+0,
|
|
+ -5.60E+1,-1.12E+1, 9.87E+0, 1.24E+1, 9.59E+0, 7.01E+0, 5.16E+0, 3.83E+0, 2.91E+0,
|
|
+ -2.13E+1,-1.22E+1,-2.23E+0, 3.88E+0, 5.15E+0, 4.65E+0, 3.87E+0, 3.12E+0, 2.45E+0,
|
|
+ -8.25E+0,-9.58E+0,-5.59E+0,-1.40E+0, 1.76E+0, 2.71E+0, 2.71E+0, 2.35E+0, 1.95E+0,
|
|
+ -3.22E+0,-6.12E+0,-5.28E+0,-2.87E+0,-1.92E-1, 1.32E+0, 1.69E+0, 1.74E+0, 1.48E+0,
|
|
+ -1.11E+0,-3.40E+0,-4.12E+0,-3.08E+0,-6.30E-1, 3.60E-1, 9.20E-1, 1.03E+0, 1.04E+0,
|
|
+ -2.27E-1,-2.00E+0,-2.93E+0,-2.69E+0,-1.48E+0,-3.14E-1, 2.69E-1, 5.28E-1, 6.09E-1,
|
|
+ 1.54E-1,-1.09E+0,-2.10E+0,-2.15E+0,-1.47E+0,-6.77E-1,-1.80E-1, 1.08E-1, 2.70E-1,
|
|
+ 3.28E-1,-6.30E-1,-1.50E+0,-1.68E+0,-1.34E+0,-8.43E-1,-4.60E-1,-1.85E-1,-4.67E-3,
|
|
+ 3.32E-1,-2.06E-1,-7.32E-1,-9.90E-1,-9.42E-1,-8.20E-1,-6.06E-1,-4.51E-1,-3.01E-1,
|
|
+ 2.72E-1,-3.34E-2,-3.49E-1,-5.65E-1,-6.03E-1,-5.79E-1,-5.05E-1,-4.31E-1,-3.45E-1,
|
|
+ 2.02E-1, 2.80E-2,-1.54E-1,-3.00E-1,-3.59E-1,-3.76E-1,-4.60E-1,-3.40E-1,-3.08E-1,
|
|
+ 1.38E-1, 4.84E-2,-5.56E-2,-1.44E-1,-2.04E-1,-2.39E-1,-2.54E-1,-2.49E-1,-2.48E-1,
|
|
+ 9.47E-2, 4.86E-2,-1.08E-2,-6.44E-2,-1.02E-1,-1.34E-1,-1.62E-1,-1.79E-1,-1.87E-1,
|
|
+ 5.33E-2, 3.71E-2, 1.85E-2, 1.63E-3,-1.69E-2,-3.69E-2,-5.66E-2,-7.78E-2,-9.33E-2,
|
|
+ 3.38E-2, 2.40E-2, 1.62E-2, 9.90E-3, 3.76E-3,-4.93E-3,-1.66E-2,-3.05E-2,-4.22E-2,
|
|
+ 2.12E-2, 1.56E-2, 1.05E-2, 7.80E-3, 7.92E-3, 6.30E-3, 3.20E-4,-8.50E-3,-1.66E-2,
|
|
+ 1.40E-2, 9.20E-3, 5.30E-3, 4.70E-3, 6.31E-3, 8.40E-3, 5.30E-3, 8.80E-4,-3.30E-3,
|
|
+ 9.20E-3, 4.70E-3, 1.70E-3, 2.60E-3, 4.49E-3, 6.60E-3, 6.00E-3, 4.70E-3, 2.80E-3,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 /
|
|
|
|
real f2_B(9,nRowB)
|
|
+ / 2.75E+0, 1.94E+0, 9.13E-1, 6.06E-1, 4.26E-1, 3.14E-1, 2.40E-1, 1.51E-1, 1.03E-1,
|
|
+ 1.94E+0, 1.16E+0, 7.56E-1, 5.26E-1, 3.81E-1, 2.87E-1, 2.23E-1, 1.43E-1, 9.78E-2,
|
|
+ 5.85E-1, 5.04E-1, 4.10E-1, 3.30E-1, 2.69E-1, 2.17E-1, 1.78E-1, 1.22E-1, 8.71E-2,
|
|
+ 7.83E-2, 2.00E-1, 2.35E-1, 2.19E-1, 1.97E-1, 1.73E-1, 1.48E-1, 1.08E-1, 7.93E-2,
|
|
+ -1.82E-1, 1.56E-2, 1.04E-1, 1.36E-1, 1.38E-1, 1.31E-1, 1.19E-1, 9.46E-2, 7.19E-2,
|
|
+ -2.71E-1,-1.66E-1,-7.29E-2,-4.74E-3, 3.60E-2, 5.50E-2, 6.28E-2, 5.98E-2, 5.09E-2,
|
|
+ -1.87E-1,-1.58E-1,-1.09E-1,-5.80E-2,-2.03E-2, 2.48E-3, 1.99E-2, 3.36E-2, 3.27E-2,
|
|
+ -1.01E-1,-1.05E-1,-8.95E-2,-6.63E-2,-3.93E-2,-2.38E-2,-9.22E-3, 8.47E-3, 1.52E-2,
|
|
+ -5.19E-2,-6.47E-2,-6.51E-2,-5.62E-2,-4.51E-2,-3.49E-2,-2.45E-2,-8.19E-3, 2.05E-3,
|
|
+ -3.68E-2,-4.89E-2,-5.36E-2,-5.06E-2,-4.27E-2,-3.65E-2,-2.80E-2,-1.33E-2,-3.47E-3,
|
|
+ -2.33E-2,-3.69E-2,-4.41E-2,-4.38E-2,-3.97E-2,-3.50E-2,-2.88E-2,-1.60E-2,-6.68E-3,
|
|
+ -8.76E-3,-2.07E-2,-2.90E-2,-3.17E-2,-3.09E-2,-2.92E-2,-2.63E-2,-1.79E-2,-1.03E-2,
|
|
+ -1.20E-3,-1.11E-2,-1.90E-2,-2.20E-2,-2.32E-2,-2.24E-2,-2.10E-2,-1.66E-2,-1.11E-2,
|
|
+ 1.72E-3,-4.82E-3,-1.02E-2,-1.42E-2,-1.65E-2,-1.66E-2,-1.60E-2,-1.39E-2,-1.09E-2,
|
|
+ 2.68E-3,-1.18E-3,-5.19E-3,-8.30E-5,-1.01E-2,-1.14E-2,-1.16E-2,-1.16E-2,-9.99E-3,
|
|
+ 2.81E-3, 8.21E-4,-1.96E-3,-3.99E-3,-5.89E-3,-7.13E-3,-8.15E-3,-9.05E-3,-8.60E-3,
|
|
+ 2.61E-3, 1.35E-3,-2.99E-4,-1.79E-3,-3.12E-3,-4.44E-3,-5.61E-3,-7.01E-3,-7.27E-3,
|
|
+ 2.06E-3, 1.45E-3, 4.64E-4,-5.97E-4,-1.71E-3,-2.79E-3,-3.84E-3,-5.29E-3,-5.90E-3,
|
|
+ 1.07E-3, 9.39E-4, 8.22E-4, 3.58E-4,-1.15E-4,-6.60E-4,-1.18E-3,-2.15E-3,-2.88E-3,
|
|
+ 4.97E-4, 5.46E-4, 6.15E-4, 5.56E-4, 3.14E-4, 9.80E-5,-1.30E-4,-5.98E-4,-1.07E-4,
|
|
+ 1.85E-4, 3.11E-4, 4.25E-4, 4.08E-4, 3.63E-4, 3.04E-4, 2.24E-4, 2.80E-5,-2.10E-4,
|
|
+ 4.80E-5, 1.48E-4, 2.44E-4, 2.80E-4, 3.01E-4, 3.11E-4, 3.13E-4, 2.40E-4, 1.10E-4,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 1.39E-4, 1.80E-4, 1.80E-4,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 4.38E-5, 7.30E-5, 8.40E-5/
|
|
|
|
real f2_C(7,nRowC)
|
|
+ / 7.36E-2, 4.21E-2, 2.69E-2, 1.83E-2, 1.34E-2, 1.01E-2, 7.88E-3,
|
|
+ 5.79E-2, 3.61E-2, 2.34E-2, 1.64E-2, 1.21E-2, 9.26E-3, 7.28E-3,
|
|
+ 2.94E-2, 2.17E-2, 1.60E-2, 1.23E-2, 9.49E-3, 7.45E-3, 5.95E-3,
|
|
+ 2.30E-3, 7.07E-3, 7.76E-3, 7.02E-3, 6.13E-3, 5.17E-3, 4.34E-3,
|
|
+ -7.50E-3,-2.00E-3, 9.93E-4, 2.36E-3, 2.82E-3, 2.86E-3, 2.72E-3,
|
|
+ -8.27E-3,-5.37E-3,-2.58E-3,-7.96E-4, 3.75E-4, 9.71E-4, 1.28E-3,
|
|
+ -5.79E-3,-5.12E-3,-3.86E-3,-2.46E-3,-1.20E-3,-3.74E-4, 1.74E-4,
|
|
+ -3.26E-3,-3.43E-3,-3.26E-3,-2.68E-3,-1.84E-3,-1.12E-3,-4.54E-4,
|
|
+ -1.46E-3,-1.49E-3,-2.20E-3,-2.18E-3,-1.85E-3,-1.40E-3,-8.15E-4,
|
|
+ -4.29E-4,-9.44E-4,-1.29E-3,-1.50E-3,-1.51E-3,-1.36E-3,-9.57E-4,
|
|
+ -3.30E-5,-3.66E-4,-6.78E-4,-9.38E-4,-1.09E-3,-1.09E-3,-9.56E-4,
|
|
+ 1.50E-4, 3.10E-5,-1.38E-4,-3.06E-4,-4.67E-4,-5.48E-4,-6.08E-4,
|
|
+ 1.00E-4, 8.50E-5, 2.30E-5,-6.60E-5,-1.58E-4,-2.40E-4,-3.05E-4,
|
|
+ 5.40E-5, 6.50E-5, 4.90E-5, 1.20E-5,-3.60E-5,-8.90E-5,-1.31E-4,
|
|
+ 2.90E-5, 4.30E-5, 4.40E-5, 2.90E-5, 5.10E-6,-2.20E-5,-4.80E-5,
|
|
+ 1.40E-5, 2.40E-5, 2.80E-5, 2.60E-5, 1.90E-5, 7.50E-6,-1.10E-5,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 ,
|
|
+ 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 , 0.00 /
|
|
|
|
|
|
c===============================================================================
|
|
|
|
c Bestimme, welche Reihen der Tabellen fuer Interpolation benoetigt werden:
|
|
|
|
if (tau.LT.tau_(1)) then
|
|
write(*,*) 'tau is less than the lowest tabulated value:'
|
|
write(*,*) 'tau = ',tau
|
|
write(*,*) 'minimum = ',tau_(1)
|
|
call exit
|
|
elseif (tau.GT.tau_(nColumn)) then
|
|
write(*,*) 'tau is greater than the highest tabulated value:'
|
|
write(*,*) 'tau = ',tau
|
|
write(*,*) 'maximum = ',tau_(nColumn)
|
|
call exit
|
|
endif
|
|
|
|
column_ = 2
|
|
do while (tau.GT.tau_(column_))
|
|
column_ = column_ + 1
|
|
enddo
|
|
! Das Gewicht der Reihe zu groesserem Tau:
|
|
weightCol = (tau-tau_(column_-1)) / (tau_(column_)-tau_(column_-1))
|
|
|
|
|
|
c Besorge fuer gegebenes 'thetaSchlange' die interpolierten f1- und f2 -Werte
|
|
c der beiden relevanten Reihen:
|
|
c iColumn = 1 => Reihe mit hoeherem Index
|
|
c iColumn = 2 => Reihe mit kleinerem Index
|
|
|
|
|
|
iColumn = 1
|
|
|
|
|
|
5 continue
|
|
|
|
if (column_.LE.9) then ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Werte aus 1. Tabelle: 0.2 <= tau <= 1.8
|
|
|
|
column = column_
|
|
|
|
if (thetaSchlange.LT.thetaSchlangeA(1)) then
|
|
write(*,*) 'thetaSchlange is less than the lowest tabulated value in table 1:'
|
|
write(*,*) 'thetaSchlange = ',thetaSchlange
|
|
write(*,*) 'minimum = ',thetaSchlangeA(1)
|
|
call exit
|
|
elseif (thetaSchlange.GT.thetaSchlangeA(nRowA)) then
|
|
c write(*,*) 'thetaSchlange is greater than the highest tabulated value in table 1:'
|
|
c write(*,*) 'thetaSchlange = ',thetaSchlange
|
|
c write(*,*) 'maximum = ',thetaSchlangeA(nRowA)
|
|
c call exit
|
|
thetaSchlange = -1.
|
|
RETURN
|
|
endif
|
|
|
|
row = 2
|
|
do while (thetaSchlange.GT.thetaSchlangeA(row))
|
|
row = row + 1
|
|
enddo
|
|
! Gewicht des Tabellenwertes zu groesseren ThetaSchlange:
|
|
weightRow = (thetaSchlange-thetaSchlangeA(row-1)) /
|
|
+ (thetaSchlangeA(row)-thetaSchlangeA(row-1))
|
|
|
|
f1_(iColumn) = (1.-weightRow) * f1_A(column,row-1) +
|
|
+ weightRow * f1_A(column,row)
|
|
f2_(iColumn) = (1.-weightRow) * f2_A(column,row-1) +
|
|
+ weightRow * f2_A(column,row)
|
|
|
|
|
|
elseif (column_.LE.18) then ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Werte aus 2. Tabelle: 2.0 <= tau <= 7.0
|
|
|
|
column = column_ - 9
|
|
|
|
if (thetaSchlange.LT.thetaSchlangeB(1)) then
|
|
write(*,*) 'thetaSchlange is less than the lowest tabulated value in table 1:'
|
|
write(*,*) 'thetaSchlange = ',thetaSchlange
|
|
write(*,*) 'minimum = ',thetaSchlangeB(1)
|
|
call exit
|
|
elseif (thetaSchlange.GT.thetaSchlangeB(nRowB)) then
|
|
c write(*,*) 'thetaSchlange is greater than the highest tabulated value in table 1:'
|
|
c write(*,*) 'thetaSchlange = ',thetaSchlange
|
|
c write(*,*) 'maximum = ',thetaSchlangeB(nRowB)
|
|
c call exit
|
|
thetaSchlange = -1.
|
|
RETURN
|
|
endif
|
|
|
|
row = 2
|
|
do while (thetaSchlange.GT.thetaSchlangeB(row))
|
|
row = row + 1
|
|
enddo
|
|
! Gewicht des Tabellenwertes zu groesseren ThetaSchlange:
|
|
weightRow = (thetaSchlange-thetaSchlangeB(row-1)) /
|
|
+ (thetaSchlangeB(row)-thetaSchlangeB(row-1))
|
|
|
|
f1_(iColumn) = (1.-weightRow) * f1_B(column,row-1) +
|
|
+ weightRow * f1_B(column,row)
|
|
f2_(iColumn) = (1.-weightRow) * f2_B(column,row-1) +
|
|
+ weightRow * f2_B(column,row)
|
|
|
|
|
|
else ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
! Werte aus 3. Tabelle: 8.0 <= tau <= 20.
|
|
|
|
column = column_ - 18
|
|
|
|
if (thetaSchlange.LT.thetaSchlangeC(1)) then
|
|
write(*,*) 'thetaSchlange is less than the lowest tabulated value in table 1:'
|
|
write(*,*) 'thetaSchlange = ',thetaSchlange
|
|
write(*,*) 'minimum = ',thetaSchlangeC(1)
|
|
call exit
|
|
elseif (thetaSchlange.GT.thetaSchlangeC(nRowC)) then
|
|
c write(*,*) 'thetaSchlange is greater than the highest tabulated value in table 1:'
|
|
c write(*,*) 'thetaSchlange = ',thetaSchlange
|
|
c write(*,*) 'maximum = ',thetaSchlangeC(nRowC)
|
|
c call exit
|
|
thetaSchlange = -1.
|
|
RETURN
|
|
endif
|
|
|
|
row = 2
|
|
do while (thetaSchlange.GT.thetaSchlangeC(row))
|
|
row = row + 1
|
|
enddo
|
|
! Gewicht des Tabellenwertes zu groesseren ThetaSchlange:
|
|
weightRow = (thetaSchlange-thetaSchlangeC(row-1)) /
|
|
+ (thetaSchlangeC(row)-thetaSchlangeC(row-1))
|
|
|
|
f1_(iColumn) = (1.-weightRow) * f1_C(column,row-1) +
|
|
+ weightRow * f1_C(column,row)
|
|
f2_(iColumn) = (1.-weightRow) * f2_C(column,row-1) +
|
|
+ weightRow * f2_C(column,row)
|
|
|
|
|
|
endif ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
|
if (iColumn.EQ.1) then
|
|
column_ = column_ - 1
|
|
iColumn = 2
|
|
goto 5
|
|
endif
|
|
|
|
f1 = weightCol*f1_(1) + (1.-weightCol)*f1_(2)
|
|
f2 = weightCol*f2_(1) + (1.-weightCol)*f2_(2)
|
|
|
|
|
|
END
|
|
|
|
|
|
c===============================================================================
|
|
|