musrsim/geant4/TaoLEMuSR/G4Modified/G4MuonDecayChannel.cc
2008-03-20 09:23:20 +00:00

210 lines
6.6 KiB
C++

//
// ********************************************************************
// * DISCLAIMER *
// * *
// * The following disclaimer summarizes all the specific disclaimers *
// * of contributors to this software. The specific disclaimers,which *
// * govern, are listed with their locations in: *
// * http://cern.ch/geant4/license *
// * *
// * Neither the authors of this software system, nor their employing *
// * institutes,nor the agencies providing financial support for this *
// * work make any representation or warranty, express or implied, *
// * regarding this software system or assume any liability for its *
// * use. *
// * *
// * This code implementation is the intellectual property of the *
// * GEANT4 collaboration. *
// * By copying, distributing or modifying the Program (or any work *
// * based on the Program) you indicate your acceptance of this *
// * statement, and all its terms. *
// ********************************************************************
//
//
// $Id: G4MuonDecayChannel.cc,v 1.13 2005/06/23 11:02:26 gcosmo Exp $
// GEANT4 tag $Name: geant4-07-01 $
//
//
// ------------------------------------------------------------
// GEANT 4 class header file
//
// History: first implementation, based on object model of
// 30 May 1997 H.Kurashige
//
// Fix bug in calcuration of electron energy in DecayIt 28 Feb. 01 H.Kurashige
//2005
// M. Melissas ( melissas AT cppm.in2p3.fr)
// J. Brunner ( brunner AT cppm.in2p3.fr)
// Adding V-A fluxes for neutrinos using a new algortithm :
// ------------------------------------------------------------
#include "G4ParticleDefinition.hh"
#include "G4DecayProducts.hh"
#include "G4VDecayChannel.hh"
#include "G4MuonDecayChannel.hh"
#include "Randomize.hh"
#include "G4LorentzVector.hh"
#include "G4LorentzRotation.hh"
#include "G4RotationMatrix.hh"
G4MuonDecayChannel::G4MuonDecayChannel(const G4String& theParentName,
G4double theBR)
:G4VDecayChannel("Muon Decay",1)
{
// set names for daughter particles
if (theParentName == "mu+") {
SetBR(theBR);
SetParent("mu+");
SetNumberOfDaughters(3);
SetDaughter(0, "e+");
SetDaughter(1, "nu_e");
SetDaughter(2, "anti_nu_mu");
} else if (theParentName == "Mu") {
SetBR(theBR);
SetParent("Mu");
SetNumberOfDaughters(3);
SetDaughter(0, "e+");
SetDaughter(1, "nu_e");
SetDaughter(2, "anti_nu_mu");
} else if (theParentName == "mu-") {
SetBR(theBR);
SetParent("mu-");
SetNumberOfDaughters(3);
SetDaughter(0, "e-");
SetDaughter(1, "anti_nu_e");
SetDaughter(2, "nu_mu");
} else {
#ifdef G4VERBOSE
if (GetVerboseLevel()>0) {
G4cout << "G4MuonDecayChannel:: constructor :";
G4cout << " parent particle is not muon but ";
G4cout << theParentName << G4endl;
}
#endif
}
}
G4MuonDecayChannel::~G4MuonDecayChannel()
{
}
G4DecayProducts *G4MuonDecayChannel::DecayIt(G4double)
{
// this version neglects muon polarization,and electron mass
// assumes the pure V-A coupling
// the Neutrinos are correctly V-A.
#ifdef G4VERBOSE
if (GetVerboseLevel()>1) G4cout << "G4MuonDecayChannel::DecayIt ";
#endif
if (parent == 0) FillParent();
if (daughters == 0) FillDaughters();
// parent mass
G4double parentmass = parent->GetPDGMass();
//daughters'mass
G4double daughtermass[3];
G4double sumofdaughtermass = 0.0;
for (G4int index=0; index<3; index++){
daughtermass[index] = daughters[index]->GetPDGMass();
sumofdaughtermass += daughtermass[index];
}
//create parent G4DynamicParticle at rest
G4ThreeVector dummy;
G4DynamicParticle * parentparticle = new G4DynamicParticle( parent, dummy, 0.0);
//create G4Decayproducts
G4DecayProducts *products = new G4DecayProducts(*parentparticle);
delete parentparticle;
// calculate daughter momentum
G4double daughtermomentum[3];
// calcurate electron energy
G4double xmax = (1.0+daughtermass[0]*daughtermass[0]/parentmass/parentmass);
G4double x;
G4double Ee,Ene;
G4double gam;
G4double EMax=parentmass/2-daughtermass[0];
//Generating Random Energy
do {
Ee=G4UniformRand();
do{
x=xmax*G4UniformRand();
gam=G4UniformRand();
}while (gam >x*(1.-x));
Ene=x;
} while ( Ene < (1.-Ee));
G4double Enm=(2.-Ee-Ene);
//initialisation of rotation parameters
G4double costheta,sintheta,rphi,rtheta,rpsi;
costheta= 1.-2./Ee-2./Ene+2./Ene/Ee;
sintheta=sqrt(1.-costheta*costheta);
rphi=twopi*G4UniformRand()*rad;
rtheta=(acos(2.*G4UniformRand()-1.));
rpsi=twopi*G4UniformRand()*rad;
G4RotationMatrix *rot= new G4RotationMatrix();
rot->set(rphi,rtheta,rpsi);
//electron 0
daughtermomentum[0]=sqrt(Ee*Ee*EMax*EMax+2.0*Ee*EMax * daughtermass[0]);
G4ThreeVector *direction0 =new G4ThreeVector(0.0,0.0,1.0);
*direction0 *= *rot;
G4DynamicParticle * daughterparticle = new G4DynamicParticle ( daughters[0], *direction0 * daughtermomentum[0]);
products->PushProducts(daughterparticle);
//electronic neutrino 1
daughtermomentum[1]=sqrt(Ene*Ene*EMax*EMax+2.0*Ene*EMax * daughtermass[1]);
G4ThreeVector *direction1 =new G4ThreeVector(sintheta,0.0,costheta);
*direction1 *= *rot;
G4DynamicParticle * daughterparticle1 = new G4DynamicParticle ( daughters[1], *direction1 * daughtermomentum[1]);
products->PushProducts(daughterparticle1);
//muonnic neutrino 2
daughtermomentum[2]=sqrt(Enm*Enm*EMax*EMax +2.0*Enm*EMax*daughtermass[2]);
G4ThreeVector *direction2 =new G4ThreeVector(-Ene/Enm*sintheta,0,-Ee/Enm-Ene/Enm*costheta);
*direction2 *= *rot;
G4DynamicParticle * daughterparticle2 = new G4DynamicParticle ( daughters[2],
*direction2 * daughtermomentum[2]);
products->PushProducts(daughterparticle2);
// output message
#ifdef G4VERBOSE
if (GetVerboseLevel()>1) {
G4cout << "G4MuonDecayChannel::DecayIt ";
G4cout << " create decay products in rest frame " <<G4endl;
products->DumpInfo();
}
#endif
return products;
}