musrsim/trimsp/work/trvmc95-7L.txt

1056 lines
48 KiB
Plaintext

c Stand Juli 2000
c
c fuer Version TrimSp7L
c die entsprechenden Arrays wurden von 3 Layern auf 7 Layern erweitert
c fuer Version TrimSp7L-test
c es werden 1000 Stuetzstellen verwendet
c
c program trvmc
cc
c static trim.sp for reflection and sputtering of a
c multi-component target
c
c w.eckstein ipp/op d-85748 garching frg
c
c vectorized version to run on a cray or vp-200
c (established at ipp garching and ipp nagoya)
c
c the compilation on workstations must be done with double
c precision (IBM : xlf -qautodbl=dblpad)
c
c calculated data on disc
c
c
c
c program description november 1995
c see w.eckstein , computer simulation of ion-solid interactions,
c springer series in material science, vol.10,
c springer, heidelberg, berlin 1991
c
c
c input data (see table 6.1 in book above)
c
c 1. record [100 format(2F7.2,1F12.2,7F9.2)]
c z1 atomic number of projectile
c m1 mass (in amu) of projectile
c e0 energy of projectile (in ev)
c if e0.gt.0. the projectile has the fixed
c energy e0
c if e0.lt.0. a maxwellian velocity distribution for
c the projectile is assumed with an ion
c temperature ti=-e0
c if e0.lt.0.and alpha.lt.0. a maxwellian energy
c distribution for the projectile is assumed with an ion
c temperature ti=-e0
c esig sigma of a gaussian energy distribution (in eV)
c if esig.eq.0. then the particle energy is e0
c if not then a gaussian energy distribution is used
c alpha angle of incidence (in degree) with respect to the
c surface normal
c if alpha.ge.0. the projectile impinges at the fixed
c angle of incidence alpha
c if alpha.gt.90. the projectile starts inside the solid
c with an angle alpha (x0 should be larger than 0.)
c if alpha.eq.-1. a random distribution of the projectile
c is assumed
c if alpha.lt.-2. a cosine distribution for the projectile
c is assumed
c alphasig sigma of a gaussian distribution for alpha. If alpha >= 0. and
c alphasig > 0. then a gaussian distribution for the angle of
c incidence is used.
c ef cutoff energy of projectiles (in ev)
c ef must be larger than zero
c esb surface binding energies for projectiles (in ev)
c sheath sheath potential (in ev)
c typically 3kT : sheath = 3 |e0|
c erc recoil cutoff energy; it is usually equal to the
c surface binding energy (sbe); it can be applied to
c cases, where erc.gt.sbe
c
c 2. record [101 format(I9,3F8.0,1F7.2,1F7.0,2F7.2,6I4,I3)]
c nh number of projectiles
c ri initial random number
c necessary for an exact repetition of a calculation
c ri2 initial random number for a gaussion energy distribution
c ri3 initial random number for a gaussion distribution of alpha
c x0 starting depth of projectile (in a)
c if x0 is zero or negative the projectile starts at
c x=-su=-2.*pmax. the uppermost target atoms are at
c x=0. they do not form a complete layer, they are
c distributed randomly
c rd depth to which recoils are followed
c rd = 50 usually sufficient for sputtering if the
c projectile energy is not too high
c rd = 100 cw for following the full cascade
c cw depth interval for calculated depth distributions (in A)
c ca correction factor to the firsov screening length
c for collisions between projectile and target atom
c (only for application of moliere-potential)
c usually ca = 1.00
c kk0 maximum order of weak (simultaneous) collisions
c between projectiles and target atoms. kk0 must be
c between 0 and 4 (0 means no weak collisions included)
c kk0r maximum order of weak (simultaneous) collisions bet-
c ween target atoms. kk0r must be between 0 and 4
c kdee1 inelastic energy loss model for projectiles
c =1 nonlocal, lindhard-scharff
c =2 local, oen-robinson
c =3 equipartition of 1 and 2
c =4 nonlocal, andersen-ziegler tables for hydrogen
c =5 nonlocal, ziegler tables for helium
c kdee2 inelastic energy loss for target atoms
c =1 nonlocal, lindhard-scharff
c =2 local, oen-robinson
c =3 equipartition of 1 and 2
c ipot interaction potential between projectile and target atom
c =1 krypton-carbon potential
c =2 moliere potential
c =3 ziegler-biersack-littmark potential
c ipotr interaction potential between target atoms
c =1 krypton-carbon potential
c =2 moliere potential
c =3 ziegler-biersack-littmark potential
c irl =0 no recoils are generated (no sputtering); to speed
c up the calculation if only ranges are of interest
c
c 3. record(for each of three layers) [102 format(3F9.2,6F7.2)]
c dx(i) layer thickness (in A)
c rho(i) layer density (in g cm{-3})
c ck(i) correction factor to the lindhard-scharff nonlocal
c inelastic energy loss of the projectile
c
c records 4 - 14 appear three times for each of the three
c possible layers
c
c 4. record [103 format(5F9.4)]
c z(i,j) atomic number of target atoms (j<=5) in layer i
c
c 5. record [103 format(5F9.4)]
c m(i,j) mass (in amu) of target atoms (j<=5) in layer i
c
c 6. record [103 format(5F9.4)]
c c(i,j) concentration of target atoms (j<=5) in layer i
c
c 7. record [103 format(5F9.4)]
c sbe(i,j) surface binding energy of target atoms (j<=5)
c in layer i
c
c 8. record [103 format(5F9.4)]
c ed(i,j) displacement energy of target atoms (j<=5) in layer i
c
c 9. record [103 format(5F9.4)]
c be(i,j) bulk binding energy of target atoms (j<=5) in layer i
c usually always zero
c
c 10.-14.record constants for the nonlocal inelastic energy
c loss given by the andersen ziegler tables for
c hydrogen or by the ziegler tables for helium
c 10. record [107 format(5F12.6)]
c ch1(i,j) value A-1 of the ziegler tables
c 11. record [107 format(5F12.6)]
c ch2(i,j) value A-2 of the ziegler tables
c 12. record [107 format(5F12.6)]
c ch3(i,j) value A-3 of the ziegler tables
c 13. record [107 format(5F12.6)]
c ch4(i,j) value A-4 of the ziegler tables
c 14. record [107 format(5F12.6)]
c ch5(i,j) value A-5 of the ziegler tables
c
c
c
c additional remarks
c
c tt target thickness should be chosen larger than the
c range of projectiles if transmission is not of
c interest
c
c ed for sputtering and backscattering calculations ed is
c not of importance, only in determination of damage
c profiles. ed is of the order of 30 ev
c
c sheath a sheath potential is only used for a maxwellian
c distribution of projectiles (e0.lt.0.)
c
c ef for low projectile energies (lt 1000 ev) and esb=0.
c ef should be of the order of 0.2 ev. with increasing
c energy ef can be increased to save computing time,
c but not above sbe (for sputtering data)
c
c ca the use of ca.ne.1 is only reasonable for the
c application of the moliere potential
c
c ri with the same initial random number ri the calculation
c will be exactly reproduced if nothing has been changed
c
c esb this value is zero for the noble gases but esb should
c be larger than zero if the projectile is an active
c chemically species. esb=sbe for selfsputtering cal-
c culations
c
c be this value should be taken as zero (see j.p.biersack,
c w.eckstein appl.phys.34(1984)73)
c
c sbe the heat of sublimation should be used
c
c kk0 usually kk0=2 is used. only for very heavy particles
c kk0 may be increased to 3 or even 4 but on the ex-
c pense of increasing computing time
c
c kk0r the same applies as for kk0
c
c kdee1 usually kdee1=3 is used. kdee1=1,2,or 3 can only be
c used at energies below the stopping power maximum.
c for hydrogen kdee1=4 must be used for projectile
c energies above 10 kev, for helium kdee1=5 must be
c used for energies above 50 kev
c
c kdee2 usually kdee2=3 is used. the stopping power maximum
c for heavy atoms is well above 100 kev, so that only
c kdee2=1,2,and 3 is available
c
c
c
c output data
c
c calculated constants
c in the case of a maxwellian distribution three values
c are given
c ti ion temperature
c zarg adjustment factor for the projectile mass
c velc adjustment factor for the sheath potential
c
c hlm distance above the surface (x=0.) , where an inelastic
c energy loss can be taken into account. usually
c hlm=0., but if inel.ne.0 then hlm=-.5*lm
c hlmt distance above the surface (x=tt) , where an inelastic
c energy loss can be taken into account. usually
c hlmt=tt, but if inel.ne.0 then hlmt=tt+0.5*lm
c su1 su=2.*pmax(1)
c su2 su=pmax(1)*(1.kk0)
c sur su=pmax(1)*(1.kk0r)
c su su=max(su1,su2,sur) , distance above the front surface, where
c collisions are taken into account
c sut sut=tt+su , su calculated with pmax(l)
c distance outside the backsurface, where
c collisions are taken into account
c xc xc=-su , starting point above the surface
c rt rt=tt-rd , see rd
c inel inel=0 : no electronic energy loss outside the bulk
c inel=1 : electronic energy loss outside the bulk for a
c distance 0.5*lm , see hlm and hlmt
c l number of layers
c lj number of target species
c
c values for each layer
c eps0(i) reduced projectile energy
c z2(i) mean atomic number of layer i
c m2(i) mean atomic mass of layer i
c arho(i) density (atoms/A**3})
c lm(i) mean distance between collisions (A)
c pmax(i) maximum impact parameter (A)
c asig(i) constant for inelastic energy loss (atoms/A**2)
c sb(i) mean surface binding energy of layer i
c xx(i)target thickness (A) of layer i
c n(i) number of target species in layer i
c a1(i) screening length for projectiles
c kor1(i) constant in the local oen-robinson inelastic energy
c loss for projectiles
c a(i) screening length for target atoms
c kor(i) constant in the local oen-robinson inelastic energy
c loss for target atoms
c
cc f1 constant to transfer the energy of a projectile into
cc a reduced energy (eps)
cc f(i,j) constant to transfer the energy of a target atom into
cc a reduced energy (epsr)
cc ec maximum transferable energy between projectile and
cc target atom
c sfe minimum of the mean surface binding energies of
c first and last layer (l=3); for one layer (l=1)
c sfe=sb(1). sb(l) is the mean binding energy of layer (l)
c
c values giving information about some loops in the calculation
c nproj number how often the projectile loop is entered
c kib number of backscattered projectiles which cannot overcome
c the surface barrier (esb)
c kit number of transmitted projectiles which cannot overcome
c the surface barrier (esb)
c maxa maximum number of simultaneously processed target atoms
c in the vectorized target collision loop
c nall number of times the target atom collision loop has to
c be passed
c npa number of primary knockon atoms
c nsa number of secondary knockon atoms
c kis number of sputtered target atoms which cannot overcome
c the surface barrier (sbe)
c kist number of transmission sputtered target atoms which
c cannot overcome the surface barrier (sbe)
c
c
c calculated results
c
c iim number of transmitted projectiles
c eim energy of all transmitted projectiles
c ib number of reflected projectiles
c eb energy of all reflected projectiles
c it number of transmitted projectiles
c et energy of all transmitted projectiles
c ibsp number of backsputtered target atoms
c ebsp energy of all backsputtered target atoms
c itsp number of transmission sputtered target atoms
c etsp energy of all transmission sputtered target atoms
c
c projectiles
c avcsum mean number of collisions
c avcdis mean number of collisions
c (transferred energy > displacement energy)
c avcsms mean number of collisions
c (transferred energy > mean surface binding energy)
c
c penetration of projectiles
c
c fix0 mean penetration depth , 1. moment
c sex variance of the depth distribution
c thx skewness of the depth distribution
c fox kurtosis of the depth distribution
c sigmax square root of the variance
c dfix0 error of mean depth
c dsex error of the variance
c dthx error of the skewness
c
c fir0 mean lateral spread of the penetration
c ser variance of the spread distribution
c thr skewness of the spread distribution
c for kurtosis of the spread distribution
c sigmar square root of the variance
c dfir0 error of mean spread
c dser error of the variance
c dthr error of the skewness
c
c fip0 mean pathlength
c sep variance of the pathlength distribution
c thp skewness of the pathlength distribution
c fop kurtosis of the pathlength distribution
c sigmap square root of the variance
c dfip0 error of mean pathlength
c dsep error of the variance
c dthp error of the skewness
c
c avnli mean elastic loss
c vanli variance of the elastic loss distribution
c signli square root of the variance
c dfinli error in the mean elastic loss
c
c avili mean electronic loss
c vaili variance of the electronic loss distribution
c sigili square root of the variance
c dfiili error in the mean electronic loss
c
c fie0 mean nuclear energy loss
c see variance of the nuclear energy loss distribution
c the skewness of the nuclear energy loss distribution
c foe kurtosis of the nuclear energy loss distribution
c sigmae square root of the variance
c dfie0 error of mean nuclear energy loss
c dsee error of the variance
c dthe error of the skewness
c
c fiw0 mean nuclear energy loss in weak collisions
c sew variance
c thw skewness
c fow kurtosis
c sigmaw square root of the variance
c dfiw0 error of mean
c dsew error of the variance
c dthw error of the skewness
c
c fii0 mean electronic energy loss
c sei variance
c thi skewness
c foi kurtosis
c sigmai square root of the variance
c dfii0 error of mean
c dsei error of the variance
c dthi error of the skewness
c
c fis0 mean nuclear energy loss in subthreshold collisions
c ses variance
c ths skewness
c fos kurtosis
c sigmas square root of the variance
c dfis0 error of mean
c dses error of the variance
c dths error of the skewness
c
c x1sd 1.moment of the penetration depth distribution
c x2sd 2.moment of the penetration depth distribution
c x3sd 3.moment of the penetration depth distribution
c x4sd 4.moment of the penetration depth distribution
c x5sd 5.moment of the penetration depth distribution
c x6sd 6.moment of the penetration depth distribution
c
c recoiles created by recoils normalized to the number of
c projectiles (hn)
c acsumr mean number of collisions
c acdisr mean number of collisions
c (transferred energy > displacement energy)
c acsber mean number of collisions
c (transferred energy > mean surface binding energy)
c
c recoiles created by recoils normalized to the number of
c knockons (npa+nsa)
c acsur mean number of collisions
c acdir mean number of collisions
c (transferred energy > displacement energy)
c acsbr mean number of collisions
c (transferred energy > mean surface binding energy)
c acdr11 mean number of collisions between species 1 and 1 in
c layer 1 (transferred energy > displacement energy)
c acdr12 mean number of collisions between species 1 and 2 in
c layer 1 (transferred energy > displacement energy)
c acdr21 mean number of collisions between species 2 and 1 in
c layer 1 (transferred energy > displacement energy)
c acdr22 mean number of collisions between species 2 and 2 in
c layer 1 (transferred energy > displacement energy)
c
c depth distributions (projectiles)
c d1,d2 lower and upper limit of depth interval
c 100 intervals, in steps of cw (in A)
c irp(i) number of implanted projectiles in interval i
c , 'particles'
c rirp(i) implantation profile normalized to all implanted
c projectiles (norm.distr) , 'norm.depth'
c ipl(i) number of projectiles with pathlength in interval i
c , 'pathlength'
c ion(i) electronic energy loss (ev) , 'inloss'
c dent(i) total nuclear energy loss (ev), (central collision +
c weak collisions) , 'teloss'
c dmgn(i) nuclear energy loss (ev), (central collision only)
c , 'elloss'
c elgd(i) nuclear energy loss (ev) larger than the displacement
c energy ed (central collision only) , 'damage'
c phon(i) nuclear energy loss smaller than the displacement
c energy (ev), energy into phonons , 'phonon'
c casmot(i) defect producing energy (ev) (see biersack and
c haggmark nim 174 (1980) 257) , 'cascad'
c icdt(i) number of displacements (collisions gt ed) , 'dpa'
c ele(i,j) nuclear energy loss of projectile to species j
c (central collision only)
c eli(i,j) electronic energy loss of species j
c eld(i,j) nuclear energy loss larger than the displacement
c energy for projectiles to species j
c (central collision only)
c elp(i,j) nuclear energy loss lower than the displacement
c energy for species j (central collision only)
c icd(i,j) number of displacements of species j
c
c depth distributions (recoils)
c ionr(i) inelastic energy loss (ev) by target atoms , 'inloss'
c dentr(i) total nuclear energy loss (ev) , (central collision +
c weak collisions) , 'teloss'
c dmgnr(i) elastic energy loss (ev) by target atoms (central
c collisions only) , 'elloss'
c eler(i,j) nuclear energy loss of recoils to species j
c (central collision only)
c elir(i,j) electronic energy loss of species j
c eldr(i,j) nuclear energy loss larger than the displacement
c energy for species j (central collision only)
c elpr(i,j) nuclear energy loss lower than the displacement
c energy for species j (central collision only)
c icdr(i,j) number of displacements of species j
c icdiri(i,j,k) number of displacements of species k by species j
c
c the last line gives the sum over the distributions
c
c
c backscattered projectiles
c
c rn particle reflection coefficient
c emean mean energy of backscattered projectiles
c emeanr relative mean energy of backscattered projectiles
c re energy reflection coefficient
c
c fib0 mean energy of backscattered projectiles
c seb variance
c thb skewness
c fob kurtosis
c sigmab square root of the variance
c dfib0 error of mean
c dseb error of the variance
c dthb error of the skewness
c
c fipb0 mean pathlength of backscattered projectiles
c sepb variance
c tphb skewness
c fpob kurtosis
c sigmpb square root of the variance
c dfipb0 error of mean
c dsepb error of the variance
c dthpb error of the skewness
c
c avnlb mean elastic loss
c vanlb variance of the elastic loss distribution
c signlb square root of the variance
c dfinlb error in the mean elastic loss
c
c avilb mean electronic loss
c vailb variance of the electronic loss distribution
c sigilb square root of the variance
c dfiilb error in the mean electronic loss
c
c eb1b 1.moment of the energy distr. of backsc. proj.
c eb2b 2.moment of the energy distr. of backsc. proj.
c eb3b 3.moment of the energy distr. of backsc. proj.
c eb4b 4.moment of the energy distr. of backsc. proj.
c eb5b 5.moment of the energy distr. of backsc. proj.
c eb6b 6.moment of the energy distr. of backsc. proj.
c
c eb1bl 1.logarithmic moment of the energy distr.
c eb2bl 2.logarithmic moment of the energy distr.
c eb3bl 3.logarithmic moment of the energy distr.
c eb4bl 4.logarithmic moment of the energy distr.
c eb5bl 5.logarithmic moment of the energy distr.
c eb6bl 6.logarithmic moment of the energy distr.
c
c pl1s 1.moment of the pathlength distribution
c pl2s 2.moment of the pathlength distribution
c pl3s 3.moment of the pathlength distribution
c pl4s 4.moment of the pathlength distribution
c pl5s 5.moment of the pathlength distribution
c pl6s 6.moment of the pathlength distribution
c
c
c transmitted projectiles
c
c tn particle transmission coefficient
c emeant mean energy of transmitted projectiles
c tmeanr relative mean energy of transmitted projectiles
c te energy transmission coefficient
c
c fit0 mean energy of transmitted projectiles
c set variance
c tht skewness
c fot kurtosis
c sigmat square root of the variance
c dfit0 error of mean
c dset error of the variance
c dtht error of the skewness
c
c fipt0 mean pathlength of transmitted projectiles
c sept variance
c tpht skewness
c fpot kurtosis
c sigmpt square root of the variance
c dfipt0 error of mean
c dsept error of the variance
c dthpt error of the skewness
c
c avnlt mean elastic loss
c vanlt variance of the elastic loss distribution
c signlt square root of the variance
c dfinlt error in the mean elastic loss
c
c avilt mean electronic loss
c vailt variance of the electronic loss distribution
c sigilt square root of the variance
c dfiilt error in the mean electronic loss
c
c
c backsputtered target atoms (for each species j)
c
c ispa total sputtering yield
c espa total sputtered energy
c ispal(i) sputtering yield of layer i
c espal(i) sputtered energy of layer i
c spy(j) sputtering yield of species j
c spe(j) sputtered energy of species j
c rey(j) relative mean energy of sputtered target atoms
c emsp(j) mean energy of sputtered target atoms
c
c 4 different processes for sputtering
c ispip(j) number of primary knock-on atoms, ion in
c rip(j) fraction of primary knock-on atoms, ion in
c normalized to all sputtered atoms
c ripj(j) fraction of primary knock-on
c normalized to sputtered atoms of species j
c espip(j) energy of primary knock-on atoms, ion in
c reip(j) fraction of energy of primary knock-on atoms, ion in
c normalized to energy of all sputtered atoms
c reipj(j) fraction of energy of primary knock-on atoms, ion in
c normalized to energy of sputtered atom species j
c espmip(j) mean energy of process (pka, ion in)
c ispis(j) number of secondary knock-on atoms, ion in
c ris(j) fraction of secondary knock-on atoms, ion in
c normalized to all sputtered atoms
c risj(j) fraction of secondary knock-on atoms, ion in
c normalized to sputtered atoms of species j
c espis(j) energy of secondary knock-on atoms,ion in
c reis(j) fraction of energy of secondary knock-on atoms, ion in
c normalized to energy of all sputtered atoms
c reisj(j) fraction of energy of secondary knock-on atoms, ion in
c normalized to energy of sputtered atom species j
c espmis(j) mean energy of process (ska, ion in)
c ispop(j) number of primary knock-on atoms, ion out
c rop(j) fraction of primary knock-on atoms, ion out
c normalized to all sputtered atoms
c ropj(j) fraction of primary knock-on atoms, ion out
c normalized to sputtered atoms of species j
c espop(i) energy of primary knock-on atoms, ion out
c reop(j) fraction of energy of primary knock-on atoms, ion out
c normalized to energy of all sputtered atoms
c reopj(j) fraction of energy of primary knock-on atoms, ion out
c normalized to energy of sputtered atom species j
c espmop(j) mean energy of process (pka, ion out)
c ispos(j) number of secondary knock-on atoms, ion out
c ros(j) fraction of secondary knock-on atoms, ion out
c normalized to all sputtered atoms
c rosj(j) fraction of secondary knock-on atoms, ion out
c normalized to sputtered atoms of species j
c espos(j) energy of secondary knock-on atoms, ion out
c reos(j) fraction of energy of secondary knock-on atoms, ion out
c normalized to energy of all sputtered atoms
c reosj(j) fraction of energy of secondary knock-on atoms, ion out
c normalized to energy of sputtered atom species j
c espmos(j) mean energy of process (ska, ion out)
c
c fies0 mean energy of backsputtered target atoms
c sees variance
c thes skewness
c foes kurtosis
c sigmes square root of the variance
c dfies0 error of mean
c dsees error of the variance
c dthes error of the skewness
c
c ebsp1 1.moment of the energy distribution
c ebsp2 2.moment of the energy distribution
c ebsp3 3.moment of the energy distribution
c ebsp4 4.moment of the energy distribution
c ebsp5 5.moment of the energy distribution
c ebsp6 6.moment of the energy distribution
c
c ebsp1l 1.logarithmic moment of the energy distribution
c ebsp2l 2.logarithmic moment of the energy distribution
c ebsp3l 3.logarithmic moment of the energy distribution
c ebsp4l 4.logarithmic moment of the energy distribution
c ebsp5l 5.logarithmic moment of the energy distribution
c ebsp6l 6.logarithmic moment of the energy distribution
c
c
c transmission sputtered target atoms (for each species j)
c
c ispat total sputtering yield
c espat total sputtered energy
c ispalt(i) sputtering yield of layer i
c espalt(i) sputtered energy of layer i
c spyt(j) sputtering yield of species j
c spet(j) sputtered energy of species j
c reyt(j) relative mean energy of sputtered target atoms
c emspt(j) mean energy of sputtered target atoms
c
c 4 different processes for sputtering
c ispipt(j) number of primary knock-on atoms, ion in
c ript(j) fraction of primary knock-on atoms, ion in
c normalized to all sputtered atoms
c espipt(j) energy of primary knock-on atoms, ion in
c reipt(j) fraction of energy of primary knock-on atoms, ion in
c normalized to energy of all sputtered atoms
c espmipt(j) mean energy of process (pka, ion in)
c ispist(j) number of secondary knock-on atoms, ion in
c rist(j) fraction of secondary knock-on atoms, ion in
c normalized to all sputtered atoms
c espist(j) energy of secondary knock-on atoms,ion in
c reist(j) fraction of energy of secondary knock-on atoms, ion in
c normalized to energy of all sputtered atoms
c espmist(j) mean energy of process (ska, ion in)
c ispopt(j) number of primary knock-on atoms, ion out
c ropt(j) fraction of primary knock-on atoms, ion out
c normalized to all sputtered atoms
c espopt(i) energy of primary knock-on atoms, ion out
c reopt(j) fraction of energy of primary knock-on atoms, ion out
c normalized to energy of all sputtered atoms
c espmopt(j) mean energy of process (pka, ion out)
c ispost(j) number of secondary knock-on atoms, ion out
c rost(j) fraction of secondary knock-on atoms, ion out
c normalized to all sputtered atoms
c espost(j) energy of secondary knock-on atoms, ion out
c reost(j) fraction of energy of secondary knock-on atoms, ion out
c normalized to energy of all sputtered atoms
c espmost(j) mean energy of process (ska, ion out)
c
c
c angular distributions
c
c a(i) 20 equal cosine intervals of the polar exit angle
c kadb(i) number of reflected projectiles in interval i
c rkadb(i) fraction of reflected projectiles in interval i
c kadt(i) number of transmitted projectiles in interval i
c rkadt(i) fraction of transmitted projectiles in interval i
c kads(i) number of all sputtered target atoms in interval i
c rkads(i) fraction of all sputtered target atoms in interval i
c kadsl(i,j) number of sputtered atoms from layer j in interval i
c rkadsl(i,j) fraction of sputtered atoms from layer j in interval i
c kadsj(i,j) number of sputtered species j in interval i
c rkadsj(i,j) fraction of sputtered species j in interval i
c kadst(i) number of all transmission sputtered atoms in interval i
c rkadst(i) fraction of all transm. sputtered atoms in interval i
c kdstl(i,j) number of transm. sputtered atoms from layer j in interval i
c rkdslt(i,j) fraction of transm. sputtered atoms from layer j in interval i
c kdstj(i,j) number of transm. sputtered species j in interval i
c rkdstj(i,j) fraction of transm. sputtered species j in interval i
cc kadrip(i) number of sputtered primary knock-on atoms, ion in
cc rkdrip(i) fraction of sputtered primary knock-on atoms, ion in
cc kadris(i) number of sputtered secondary knock-on atoms, ion in
cc rkdris(i) fraction of sputtered secondary knock-on atoms, ion in
cc kadrop(i) number of sputtered primary knock-on atoms, ion out
cc rkdrop(i) fraction of sputtered primary knock-on atoms, ion out
cc kadros(i) number of sputtered secondary knock-on atoms, ion out
cc rkdros(i) fraction of sputtered secondary knock-on atoms, ion out
c
c
c 2- and 3-dimensional distributions
c
c the first row and the first column give the upper limit of
c the interval
c the last row gives the sum over the columns and
c the last column gives the sum over the rows
c the matrix-output is only given , if more than 10000 particles
c are sputtered, reflected or transmitted
c
c backsputtered target atoms
c
c meas(i,j,k) number of sputtered target atoms versus energy
c (column) and polar emission angle (row)
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval j: cosine interval of 0.05,
c 20 intervals
c 10 target species k (2 layers)
c in the last interval (99-100 ev) all sputtered
c target atoms with energies above 100 ev are
c included
c dimension : meas(102,22,10)
c
c mease(i,j,k) number of sputtered target atoms versus energy
c (column) and polar emission angle (row)
c energy interval i: 1 ev , 100 intervals
c polar angle interval j: cosine interval of 0.05,
c 20 intervals
c 10 target species k (2 layers)
c in the last interval (99-100 ev) all sputtered
c target atoms with energies above 100 ev are
c included
c dimension : meas(102,22,10)
c
c magsa(i,j,k) number of sputtered target atoms versus azimuthal
c (column) and polar (row) emission angles
c azimuthal angle interval i: 3 deg, 60 intervals
c polar angle interval j: 3 deg, 30 intervals
c 10 target species k (2 layers)
c dimension : magsa(62,32,10)
c
c measl(i,j,k) number of sputtered target atoms versus energy
c (column) and polar emission angle (row)
c energy interval i: a decade is divided into 12
c equal logarithmic intervals from 0.1 to 10**5 ev
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c 10 target species k (2 layers)
c the last column gives the number of sputtered
c atoms per ev, solid angle, and projectile
c dimension : measl(75,21,10)
c
c easl(i,j) logarithmic energy distribution (intensity per
c logarithmic energy interval)
c energy interval i: a decade is divided into 12
c equal logarithmic intervals from 0.1 to 10**5 ev
c 10 target species j (2 layers)
c dimension : easl(75,10)
c
c meags(i,j,k,l) number of sputtered target atoms versus energy
c (column), polar (row) and azimuthal (matrix)
c emission angles
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval k: cosine interval of 0.05,
c 20 intervals
c azimuthal angle interval j: 15 deg, 12 matrices
c 10 target species l (2 layers)
c these matrices are not calculated, if the angle
c of incidence, alpha, is smaller than 1 deg
c dimension : meags(102,12,22,10)
c
c mags(i,j,k) number of sputtered target atoms versus azimu-
c thal (column) and polar (row) emission angles
c dimension : mags(62,22,10)
c
c transmission sputtered target atoms
c
c meast(i,j,k) number of sputtered target atoms versus energy
c (column) and polar emission angle (row)
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval j: cosine interval of 0.05,
c 20 intervals
c 10 target species k (2 layers)
c in the last interval (99-100 ev) all sputtered
c target atoms with energies above 100 ev are
c included
c dimension : meast(102,22,10)
c
c meastl(i,j,k) number of sputtered target atoms versus energy
c (column) and polar emission angle (row)
c energy interval i: a decade is divided into 12
c equal logarithmic intervals from 0.1 to 10**5 ev
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c 10 target species k (2 layers)
c the last column gives the number of sputtered
c atoms per ev, solid angle, and projectile
c dimension : meastl(75,21,10)
c
c eastl(i,j) logarithmic energy distribution (intensity per
c logarithmic energy interval)
c energy interval i: a decade is divided into 12
c equal logarithmic intervals from 0.1 to 10**5 ev
c 10 target species j (2 layers)
c dimension : eastl(75,10)
c
c magst(i,j,k) number of sputtered target atoms versus azimu-
c thal (column) and polar (row) emission angles
c dimension : magst(62,22,10)
c
c backscattered projectiles
c
c meab(i,j) number of backscattered projectiles versus
c energy (column) and polar emission angle (row)
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval j: cosine interval of 0.05,
c 20 intervals
c dimension : meab(102,22)
c
c meabl(i,k) number of backscattered projectiles versus
c energy (column) and polar emission angle (row)
c energy interval i: a decade is divided into 12
c equal logarithmic intervals from 0.1 to 10**5 ev
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c dimension : meabl(75,21)
c
c meagb(i,j,k) number of backscattered projectiles versus
c energy (column), polar (row) and azimuthal
c (matrix) emission angles
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval k: cosine interval of 0.05,
c 20 intervals
c azimuthal angle interval j: 15 deg, 12 matrices
c 10 target species l (2 layers)
c these matrices are not calculated, if the angle
c of incidence, alpha, is smaller than 1 deg
c dimension : meagb(102,12,22)
c
c magb(i,j) number of backscattered projectiles versus
c azimuthal (column) and polar (row) emission
c angles
c azimuthal angle interval i: 3 deg, 60 intervals
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c dimension : magb(62,22)
c
c ema(i,j) backscattered energy versus azimuthal (column)
c and polar (row) emission angles
c azimuthal angle interval i: 3 deg, 60 intervals
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c dimension : ema(62,22)
c
c mepb(i,j) number of backscattered projectiles versus
c energy (column) and pathlength (row)
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c pathlength interval j: cw , 100 intervals
c dimension : mepb(102,102)
c
c transmitted projectiles
c
c meat(i,j) number of transmitted projectiles versus
c energy (column) and polar emission angle (row)
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval j: cosine interval of 0.05,
c 20 intervals
c dimension : meat(102,22)
c
c meatl(i,k) number of transmitted projectiles versus
c energy (column) and polar emission angle (row)
c energy interval i: a decade is divided into 12
c equal logarithmic intervals from 0.1 to 10**5 ev
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c dimension : meatl(75,21)
c
c meatb(i,j,k) number of transmitted projectiles versus
c energy (column), polar (row) and azimuthal
c (matrix) emission angles
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c polar angle interval k: cosine interval of 0.05,
c 20 intervals
c azimuthal angle interval j: 15 deg, 12 matrices
c 10 target species l (2 layers)
c these matrices are not calculated, if the angle
c of incidence, alpha, is smaller than 1 deg
c dimension : meatb(102,12,22)
c
c magt(i,j) number of transmitted projectiles versus
c azimuthal (column) and polar (row) emission
c angles
c azimuthal angle interval i: 3 deg, 60 intervals
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c dimension : magt(62,22)
c
c emat(i,j) transmitted energy versus azimuthal (column)
c and polar (row) emission angles
c azimuthal angle interval i: 3 deg, 60 intervals
c polar angle interval j: cosine intervals of 0.05,
c 20 intervals
c dimension : emat(62,22)
c
c mept(i,j) number of transmitted projectiles versus
c energy (column) and pathlength (row)
c energy interval i: 1% of the projectile energy e0,
c 100 intervals
c pathlength interval j: cw , 100 intervals
c dimension : mept(102,102)
c
c
c remarks
c the matrix output is in most cases only reasonable for a large
c number of histories (nh.gt.10**5)
c
c
c data on disc (fort.17) , unformatted
c
c z1,m1,e0,alpha,ef,esb,sheath
c ,nh,ri,x0,rd,cw,ca,kk0,kk0r,kdee1,kdee2
c (dx(i),i=1,3),(rho(i),i=1,3),(ck(i),i=1,3)
c ,((zt(i,j),j=1,5),i=1,3),((mt(i,j),j=1,5),i=1,3)
c ,((co(i,j),j=1,5),i=1,3),((sbe(i,j),j=1,5),i=1,3)
c ,((ed(i,j),j=1,5),i=1,3),((be(i,j),j=1,5),i=1,3)
c ti,zarg,velc
c ,hlm,hlmt,su,sut,xc,rt,inel,l,lj
c ,nproj,kib,kit,maxa,nall,npa,nsa,kis,kist
c ,iim,eim,ib,eb,it,et,ispa,espa,ispat,espat
c ,fix0,sex,thx,fox,sigmax,dfix0,dsex,dthx
c ,fir0,ser,thr,for,sigmar,dfir0,dser,dthr
c ,fip0,sep,thp,fop,sigmap,dfip0,dsep,dthp
c ,avnli,vanli,signli,dfinli
c ,avili,vaili,sigili,dfiili
c avcsum,avcdis
c ,fie0,see,the,foe,sigmae,dfie0,dsee,dthe
c ,fiw0,sew,thw,fow,sigmaw,dfiw0,dsew,dthw
c ,fii0,sei,thi,foi,sigmai,dfii0,dsei,dthi
c ,fis0,ses,ths,fos,sigmas,dfis0,dses,dths
c ,iirp,trirp,iipl,tion,tdmgn,tcasmo,tphon,tdent
c rn,re,emeanr,emean,tn,te,tmeanr,emeant
c ,fib0,seb,thb,fob,sigmab,dfib0,dseb,dthb
c ,fipb0,sepb,thpb,fopb,sigmpb,dfipb0,dsepb,dthpb
c ,avnlb,vanlb,signlb,dfinlb
c ,avilb,vailb,sigilb,dfiilb
c fit0,set,tht,fot,sigmat,dfit0,dset,dtht
c ,fipt0,sept,thpt,fopt,sigmpt,dfipt0,dsept,dthpt
c ,avnlt,vanlt,signlt,dfinlt
c ,avilt,vailt,sigilt,dfiilt
c (irp(i),i=0,100),(rirp(i),i=0,100)
c ,(ipl(i),i=1,100),(ion(i),i=1,100),(dmgn(i),i=1,100)
c ,(casmot(i),i=1,100),(phon(i),i=1,100),(dent(i),i=1,100)
c (fiesb(j),j=1,10),(seesb(j),j=1,10),(thesb(j),j=1,10)
c ,(foesb(j),j=1,10),(sgmesb(j),j=1,10)
c ,(dfiesb(j),j=1,10),(dseesb(j),j=1,10)
c ,(dthesb(j),j=1,10)
c ((ele(i,j),j=1,15),i=1,100),((eli(i,j),j=1,15),i=1,100)
c ,((elp(i,j),j=1,15),i=1,100)
c ,(elet(j),j=1,15),(elit(j),j=1,15),(elpt(j),j=1,15)
c (ai(i),i=1,20),(kadb(i),i=1,20),(kadt(i),i=1,20)
c ,(rkadb(i),i=1,20),(rkadt(i),i=1,20)
c (kads(i),i=1,20),(kadst(i),i=1,20)
c ,(rkads(i),i=1,20),(rkadst(i),i=1,20)
c ((kadrip(i,j),j=1,10),i=1,20)
c ,((kadris(i,j),j=1,10),i=1,20)
c ,((kadrop(i,j),j=1,10),i=1,20)
c ,((kadros(i,j),j=1,10),i=1,20)
c ((KAdsj(i,j),j=1,10),i=1,20)
c ,((rkadsj(i,j),j=1,10),i=1,20)
c ,((kadsl(i,j),j=1,2),i=1,20)
c ,((kkadsl(i,j),j=1,2),i=1,20)
c ((kdstj(i,j),j=1,10),i=1,20)
c ,((rkdstj(i,j),j=1,10),i=1,20)
c ,((kdstl(i,j),j=1,2),i=1,20)
c ,((rkdstl(i,j),j=1,2),i=1,20)
c (ibsp(i),i=1,15),(ebsp(i),i=1,15)
c ,(spy(i),i=1,15),(spe(i),i=1,15)
c ,(rey(i),i=1,15),(emsp(i),i=1,15)
c ,(ispal(i),i=1,3),(espal(i),i=1,3)
c (ispip(i),i=1,15),(ispis(i),i=1,15)
c ,(ispop(i),i=1,15),(ispos(i),i=1,15)
c ,(espip(i),i=1,15),(espis(i),i=1,15)
c ,(espop(i),i=1,15),(espos(i),i=1,15)
c ,(rip(i),i=1,15),(ris(i),i=1,15)
c ,(rop(i),i=1,15),(ros(i),i=1,15)
c ,(reip(i),i=1,15),(reis(i),i=1,15)
c ,(reop(i),i=1,15),(reos(i),i=1,15)
c (itsp(i),i=1,15),(etsp(i),i=1,15)
c ,(spyt(i),i=1,15),(spet(i),i=1,15)
c ,(reyt(i),i=1,15),(emspt(i),i=1,15)
c ,(ispalt(i),i=1,3),(espalt(i),i=1,3)
c (ispipt(i),i=1,15),(ispist(i),i=1,15)
c ,(ispopt(i),i=1,15),(ispost(i),i=1,15)
c ,(espipt(i),i=1,15),(espist(i),i=1,15)
c ,(espopt(i),i=1,15),(espost(i),i=1,15)
c ,(ript(i),i=1,15),(rist(i),i=1,15)
c ,(ropt(i),i=1,15),(rost(i),i=1,15)
c ,(reipt(i),i=1,15),(reist(i),i=1,15)
c ,(reopt(i),i=1,15),(reost(i),i=1,15)
c ((meab(i,j),j=1,22),i=1,102)
c ,((magb(i,j),j=1,22),i=1,62)
c ,(((meagb(i,j,k),k=1,22),j=1,36),i=1,102)
c ,((ema(i,j),j=1,22),i=1,62),(elog(i),i=1,75)
c ,(eabl(i),i=1,75),((meabl(i,j),j=1,21),i=1,75)
c ,((mepb(i,j),j=1,102),i=1,102)
c ((meat(i,j),j=1,22),i=1,102)
c ,((magt(i,j),j=1,22),i=1,62)
c ,(((meagt(i,j,k),k=1,22),j=1,36),i=1,102)
c ,((emat(i,j),j=1,22),i=1,62)
c ,(eatl(i),i=1,75),((meatl(i,j),j=1,21),i=1,75)
c ,((mept(i,j),j=1,102),i=1,102)
c (((meas(i,j,k),k=1,10),j=1,22),i=1,102)
c ,(((mags(i,j,k),k=1,10),j=1,22),i=1,62)
c ,((easl(i,j),j=1,10),i=1,75)
c ,(((measl(i,j,k),k=1,10),j=1,21),i=1,75)
c (((meast(i,j,k),k=1,10),j=1,22),i=1,102)
c ,(((magst(i,j,k),k=1,10),j=1,22),i=1,62)
c ,((eastl(i,j),j=1,10),i=1,75)
c ,(((meastl(i,j,k),k=1,10),j=1,21),i=1,75)
c ((((meags(i,j,k,mn),mn=1,10),k=1,22),j=1,12),i=1,102)
c ,(((magsa(i,j,k),k=1,10),j=1,32),i=1,62)
CC ,((((MEAGST(I,J,K,L),L=1,10),K=1,22),J=1,36),I=1,102)
c ((eld(i,j),i=1,100),j=1,15)
c xsum,x2sum,x3sum,x4sum,x5sum,x6sum
c eb,eb2sum,eb3sum,eb4sum,eb5sum,eb6sum
c ,eb1sul,eb2sul,eb3sul,eb4sul,eb5sul,eb6sul
c (ebsp(j),j=1,15),(spe2s(j),j=1,15),(spe3s(j),j=1,15)
c ,(spe4s(j),j=1,15),(spe5s(j),j=1,15),(spe6s(j),j=1,15)
c (spe1sl(j),j=1,15),(spe2sl(j),j=1,15),(spe3sl(j),j=1,15)
c ,(spe4sl(j),j=1,15),(spe5sl(j),j=1,15)
c ,(spe6sl(j),j=1,15)
c ((icd(i,j),j=1,15),i=1,100),((icdr(i,j),j=1,15),i=1,100)
c (((icdiri(i,j,k),k=1,15),j=1,15),i=1,100)
c ,((icdirn(i,j),j=1,15),i=1,100)
c exi1s,exi2s,exi3s,exi4s,exi5s,exi6s
c ,coss1s,coss2s,coss3s,coss4s,coss5s,coss6s
c ibl,(ibsp(i),i=1,15)