Files
musrsim/geant4/TaoLEMuSR/src/LEMuSREqMagElectricField.cc
2008-03-20 09:23:20 +00:00

92 lines
3.3 KiB
C++

//
// ********************************************************************
// * DISCLAIMER *
// * *
// * The following disclaimer summarizes all the specific disclaimers *
// * of contributors to this software. The specific disclaimers,which *
// * govern, are listed with their locations in: *
// * http://cern.ch/geant4/license *
// * *
// * Neither the authors of this software system, nor their employing *
// * institutes,nor the agencies providing financial support for this *
// * work make any representation or warranty, express or implied, *
// * regarding this software system or assume any liability for its *
// * use. *
// * *
// * This code implementation is the intellectual property of the *
// * GEANT4 collaboration. *
// * By copying, distributing or modifying the Program (or any work *
// * based on the Program) you indicate your acceptance of this *
// * statement, and all its terms. *
// ********************************************************************
//
//
// $Id$
// GEANT4 tag $Name: $
//
//
// This is the standard right-hand side for equation of motion.
//
// The only case another is required is when using a moving reference
// frame ... or extending the class to include additional Forces,
// eg an electric field
//
// 10.11.98 V.Grichine
//
// -------------------------------------------------------------------
#include "LEMuSREqMagElectricField.hh"
#include "globals.hh"
void
LEMuSREqMagElectricField::SetChargeMomentumMass(G4double particleCharge, // e+ units
G4double,
G4double particleMass)
{
fElectroMagCof = eplus*particleCharge*c_light ;
fMassCof = particleMass*particleMass ;
}
void
LEMuSREqMagElectricField::EvaluateRhsGivenB(const G4double y[],
const G4double Field[],
G4double dydx[] ) const
{
// Components of y:
// 0-2 dr/ds,
// 3-5 dp/ds - momentum derivatives
G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
G4double Energy = sqrt( pSquared + fMassCof );
G4double cof2 = Energy/c_light ;
G4double pModuleInverse = 1.0/sqrt(pSquared) ;
// G4double inverse_velocity = Energy * c_light * pModuleInverse;
G4double inverse_velocity = Energy * pModuleInverse / c_light;
G4double cof1 = fElectroMagCof*pModuleInverse ;
// G4double vDotE = y[3]*Field[3] + y[4]*Field[4] + y[5]*Field[5] ;
dydx[0] = y[3]*pModuleInverse ;
dydx[1] = y[4]*pModuleInverse ;
dydx[2] = y[5]*pModuleInverse ;
dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
// Lab Time of flight
dydx[7] = inverse_velocity;
return ;
}