musrsim/geant4/LEMuSR/G4Modified/G4MuonDecayChannelWithSpin.cc
2006-02-22 01:23:06 +00:00

265 lines
8.3 KiB
C++

//
// ********************************************************************
// * DISCLAIMER *
// * *
// * The following disclaimer summarizes all the specific disclaimers *
// * of contributors to this software. The specific disclaimers,which *
// * govern, are listed with their locations in: *
// * http://cern.ch/geant4/license *
// * *
// * Neither the authors of this software system, nor their employing *
// * institutes,nor the agencies providing financial support for this *
// * work make any representation or warranty, express or implied, *
// * regarding this software system or assume any liability for its *
// * use. *
// * *
// * This code implementation is the intellectual property of the *
// * GEANT4 collaboration. *
// * By copying, distributing or modifying the Program (or any work *
// * based on the Program) you indicate your acceptance of this *
// * statement, and all its terms. *
// ********************************************************************
//
// ------------------------------------------------------------
// GEANT 4 class header file
//
// History:
// 17 August 2004 P.Gumplinger and T.MacPhail
// samples Michel spectrum including 1st order
// radiative corrections
// Reference: Florian Scheck "Muon Physics", in Physics Reports
// (Review Section of Physics Letters) 44, No. 4 (1978)
// 187-248. North-Holland Publishing Company, Amsterdam
// at page 210 cc.
//
// W.E. Fisher and F. Scheck, Nucl. Phys. B83 (1974) 25.
//
// ------------------------------------------------------------
//
#include "G4MuonDecayChannelWithSpin.hh"
#include "Randomize.hh"
#include "G4DecayProducts.hh"
#include "G4LorentzVector.hh"
G4MuonDecayChannelWithSpin::G4MuonDecayChannelWithSpin(const G4String& theParentName,
G4double theBR)
: G4MuonDecayChannel(theParentName,theBR)
{
}
G4MuonDecayChannelWithSpin::~G4MuonDecayChannelWithSpin()
{
}
G4DecayProducts *G4MuonDecayChannelWithSpin::DecayIt(G4double)
{
// This version assumes V-A coupling with 1st order radiative correctons,
// the standard model Michel parameter values, but
// gives incorrect energy spectrum for neutrinos
#ifdef G4VERBOSE
if (GetVerboseLevel()>1) G4cout << "G4MuonDecayChannelWithSpin::DecayIt ";
#endif
if (parent == 0) FillParent();
if (daughters == 0) FillDaughters();
// parent mass
G4double parentmass = parent->GetPDGMass();
EMMU = parentmass;
//daughters'mass
G4double daughtermass[3];
G4double sumofdaughtermass = 0.0;
for (G4int index=0; index<3; index++){
daughtermass[index] = daughters[index]->GetPDGMass();
sumofdaughtermass += daughtermass[index];
}
EMASS = daughtermass[0];
//create parent G4DynamicParticle at rest
G4ThreeVector dummy;
G4DynamicParticle * parentparticle = new G4DynamicParticle( parent, dummy, 0.0);
//create G4Decayproducts
G4DecayProducts *products = new G4DecayProducts(*parentparticle);
delete parentparticle;
// calcurate electron energy
G4double michel_rho = 0.75; //Standard Model Michel rho
G4double michel_delta = 0.75; //Standard Model Michel delta
G4double michel_xsi = 1.00; //Standard Model Michel xsi
G4double michel_eta = 0.00; //Standard Model eta
G4double rndm, x, ctheta;
G4double FG;
G4double FG_max = 2.00;
G4double W_mue = (EMMU*EMMU+EMASS*EMASS)/(2.*EMMU);
G4double x0 = EMASS/W_mue;
G4double x0_squared = x0*x0;
// ***************************************************
// x0 <= x <= 1. and -1 <= y <= 1
//
// F(x,y) = f(x)*g(x,y); g(x,y) = 1.+g(x)*y
// ***************************************************
// ***** sampling F(x,y) directly (brute force) *****
do{
// Sample the positron energy by sampling from F
rndm = G4UniformRand();
x = x0 + rndm*(1.-x0);
G4double x_squared = x*x;
G4double F_IS, F_AS, G_IS, G_AS;
F_IS = 1./6.*(-2.*x_squared+3.*x-x0_squared);
F_AS = 1./6.*std::sqrt(x_squared-x0_squared)*(2.*x-2.+std::sqrt(1.-x0_squared));
G_IS = 2./9.*(michel_rho-0.75)*(4.*x_squared-3.*x-x0_squared);
G_IS = G_IS + michel_eta*(1.-x)*x0;
G_AS = 3.*(michel_xsi-1.)*(1.-x);
G_AS = G_AS+2.*(michel_xsi*michel_delta-0.75)*(4.*x-4.+std::sqrt(1.-x0_squared));
G_AS = 1./9.*std::sqrt(x_squared-x0_squared)*G_AS;
F_IS = F_IS + G_IS;
F_AS = F_AS + G_AS;
// *** Radiative Corrections ***
G4double R_IS = F_c(x,x0);
G4double F = 6.*F_IS + R_IS/std::sqrt(x_squared-x0_squared);
// *** Radiative Corrections ***
G4double R_AS = F_theta(x,x0);
rndm = G4UniformRand();
ctheta = 2.*rndm-1.;
G4double G = 6.*F_AS - R_AS/std::sqrt(x_squared-x0_squared);
FG = std::sqrt(x_squared-x0_squared)*F*(1.+(G/F)*ctheta);
if(FG>FG_max){
G4cout<<"***Problem in Muon Decay *** : FG > FG_max"<<G4endl;
FG_max = FG;
}
rndm = G4UniformRand();
}while(FG<rndm*FG_max);
G4double energy = x * W_mue;
rndm = G4UniformRand();
G4double phi = twopi * rndm;
if(energy < EMASS) energy = EMASS;
// calculate daughter momentum
G4double daughtermomentum[3];
daughtermomentum[0] = std::sqrt(energy*energy - EMASS*EMASS);
G4double stheta = std::sqrt(1.-ctheta*ctheta);
G4double cphi = std::cos(phi);
G4double sphi = std::sin(phi);
//Coordinates of the decay positron with respect to the muon spin
G4double px = stheta*cphi;
G4double py = stheta*sphi;
G4double pz = ctheta;
G4ThreeVector direction0(px,py,pz);
direction0.rotateUz(parent_polarization);
G4DynamicParticle * daughterparticle0
= new G4DynamicParticle( daughters[0], daughtermomentum[0]*direction0);
products->PushProducts(daughterparticle0);
// daughter 1 ,2 (neutrinos)
// create neutrinos in the C.M frame of two neutrinos
G4double energy2 = parentmass*(1.0 - x/2.0);
G4double vmass = std::sqrt((energy2-daughtermomentum[0])*(energy2+daughtermomentum[0]));
G4double beta = -1.0*daughtermomentum[0]/energy2;
G4double costhetan = 2.*G4UniformRand()-1.0;
G4double sinthetan = std::sqrt((1.0-costhetan)*(1.0+costhetan));
G4double phin = twopi*G4UniformRand()*rad;
G4double sinphin = std::sin(phin);
G4double cosphin = std::cos(phin);
G4ThreeVector direction1(sinthetan*cosphin,sinthetan*sinphin,costhetan);
G4DynamicParticle * daughterparticle1
= new G4DynamicParticle( daughters[1], direction1*(vmass/2.));
G4DynamicParticle * daughterparticle2
= new G4DynamicParticle( daughters[2], direction1*(-1.0*vmass/2.));
// boost to the muon rest frame
G4LorentzVector p4;
p4 = daughterparticle1->Get4Momentum();
p4.boost( direction0.x()*beta, direction0.y()*beta, direction0.z()*beta);
daughterparticle1->Set4Momentum(p4);
p4 = daughterparticle2->Get4Momentum();
p4.boost( direction0.x()*beta, direction0.y()*beta, direction0.z()*beta);
daughterparticle2->Set4Momentum(p4);
products->PushProducts(daughterparticle1);
products->PushProducts(daughterparticle2);
daughtermomentum[1] = daughterparticle1->GetTotalMomentum();
daughtermomentum[2] = daughterparticle2->GetTotalMomentum();
// output message
#ifdef G4VERBOSE
if (GetVerboseLevel()>1) {
G4cout << "G4MuonDecayChannelWithSpin::DecayIt ";
G4cout << " create decay products in rest frame " <<G4endl;
products->DumpInfo();
}
#endif
return products;
}
G4double G4MuonDecayChannelWithSpin::R_c(G4double x){
G4int n_max = (int)(100.*x);
if(n_max<10)n_max=10;
G4double L2 = 0.0;
for(G4int n=1; n<=n_max; n++){
L2 += std::pow(x,n)/(n*n);
}
G4double omega = std::log(EMMU/EMASS);
G4double r_c;
r_c = 2.*L2-(pi*pi/3.)-2.;
r_c = r_c + omega * (1.5+2.*std::log((1.-x)/x));
r_c = r_c - std::log(x)*(2.*std::log(x)-1.);
r_c = r_c + (3.*std::log(x)-1.-1./x)*std::log(1.-x);
return r_c;
}