musrsim/geant4/spin_rot/include/sr1TabulatedElementField3D.hh
2008-12-22 17:53:30 +00:00

77 lines
2.9 KiB
C++

#ifndef sr1TabulatedElementField3D_h
#define sr1TabulatedElementField3D_h 1
#include "F04ElementField.hh"
#include "F04GlobalField.hh"
#include "globals.hh"
#include "G4ios.hh"
#include <fstream>
#include <vector>
#include <cmath>
// Class for reading 3D electric and magnetic field map, either with or without coordinates.
class sr1TabulatedElementField3D : public F04ElementField
{
public: // with description
// Class constructor for 3D field map (x, y, z, EMx, EMy, EMz) - with EM = E or B
sr1TabulatedElementField3D(const char* filename, const char fieldType, G4double fieldValue, G4LogicalVolume* logVolume, G4ThreeVector positionOfTheCenter);
//
// "fieldType" is the type of EM field: electric - E, or magnetic - B
// "fieldValue" is the field to be applied (in T, or in kV/mm). The normalised field
// map values are multiplied by this value. The field-map itself has no units!
// "lenUnit" is the unit in which the grid coordinates of the field-map are specified
// "fieldNormalisation" is the normalisation factor that once applied to the tabulated field values
// satisfies the condition: (max. field value)*fieldNormalisation = 1
// To revert field direction, change its sign to negative.
// Virtual destructor
virtual ~sr1TabulatedElementField3D() {}
// addFieldValue() adds the field for THIS particular map into field[].
// point[] is expressed in GLOBAL coordinates.
void addFieldValue( const G4double Point[4], G4double* field) const;
// Usual Set and Get functions
G4double GetNominalFieldValue();
void SetNominalFieldValue(G4double newFieldValue);
// getWidth(), getHeight(), getLength(), return the dimensions of the field
// (used to define the boundary of the field)
virtual G4double getWidth() { return dx; } // x coordinate
virtual G4double getHeight() { return dy; } // y coordinate
virtual G4double getLength() { return dz; } // z coordinate
private:
// Storage space for the 3D table
std::vector< std::vector< std::vector< double > > > xField;
std::vector< std::vector< std::vector< double > > > yField;
std::vector< std::vector< std::vector< double > > > zField;
// The field-map dimensions
int nx, ny, nz;
// The field map Length unit (string and number)
///G4String lUnit;
char lUnit[50];
double lenUnit;
// The DEFAULT user-defined field units for E and B (kilovolt/mm and tesla)
G4String fUnit;
double fieUnit;
// The field-map Field normalisation factor
double fieldNormalisation;
// The physical limits of the defined region
double minimumx, maximumx, minimumy, maximumy, minimumz, maximumz;
// The physical extent of the defined region
double dx, dy, dz;
// See the description under the class constructor
char fldType;
double ffieldValue;
void Invert(const char* indexToInvert);
};
#endif