musrsim/dynamics/dynamics.f90
2007-09-25 14:27:20 +00:00

784 lines
26 KiB
Fortran
Executable File

! dynamics.f90
!
!
!****************************************************************************
!
! PROGRAM: dynamics
!
! PURPOSE: Simulation of the asymmetry of an artificial spinglass.
! DYNAMICS assumes the spinglass to have an FCC lattice.
! The dimensions of the lattice are w * w * d, along the
! x-, y- and z-axis respectively. The magnetic moments
! are randomly distributed over the latticepoints, the muons
! are placed on the centers of the FCC-cube.
! The directions of the magnetic moments is choosen randomly
! over the whole sphere.
! The program calculates the magnetic field at the site of
! muon by adding all dilopar contributions from about 300
! magnetic moments which nearest by the muonsite. Periodic
! boundary conditions are applied in the x- and y-direction.
! The z-direction is assumed to perpendicular to a thin
! film surface.
! The dynamics of the magnetic spins is included in one of
! the following ways:
! For fluctuationrates larger then 100 MHz,
! a timestep tau is choosen from a
! log distrubution ( tau = - ln(random) / fluctuationrate )
! The muon then rotates for tau microseconds, after all spins
! are rotated over an angle between - dtetha en dtheta and - dphi and dphi.
! This process is repeated until the total time is 10 microsecods or more.
! Output of the muon position is done about every time_resolution microsecond.
! For fluctuationrates smaller then 100 MHz
! the muons rotate 1000 times for time_resolution microsecond, after each rotation
! a fraction (= fluctuationrate / 100) of the magnetic ions are rotated
! over an angle between - dtetha en dtheta and - dphi and dphi.
! After each fluctuation the fields at the muonsites are recalculated.
! "deporization" functions are calculated for
! left-right, up-down and forward-backward detectors,
! being the x-, y- and z-components of the muon spin vector.
! For arbitrary direction one has to take the scalar product of
! that specific direction with the results produced by this program
!
! USE: The parameters used for the simulation are supposed to be on
! file with the generic name <calculation>.inp.
! The program can be started in two ways:
!
! typing DYNAMICS
! the user will be prompted for the name of the calculation
!
! typing DYNAMICS <calculation>
! the name of the calculation will be read from the commandline.
!
! Output will be written on <calculation>.out and on separate files
! (for each set of parameters) named <calculation>_###.g_t, where
! ### can a unique number according to the following rules:
! If a file \simulations\counter.his can be opened, the program will
! the number in this file and uses that as a start for numbering
! the *.g_t files. The program will update \simulations\counter.his.
! If that file is not present, the program will start at number 1.
!
! INPUT: For each simulation the following set of parameters has to be
! given on one line in the file <calculation>.inp
!
! lattice parameter [nm]
! magnetic moment [Bohr-magneton]
! external field, three component [tesla]
! thickness d [nm]
! width w [nm]
! concentration [at.%]
! number of muons #
! initial muon spin direction in
! spherical coordinates, theta, phi [degree]
! note that the z-axis is perpendicular to the film
! muon stopping range, from d1 to d2 [nm]
! d1 and d2 are note restricted by 0 and d, stopping outside
! the actual sample is possible
! fluctuationrate [ 1/ microsecond ]
! fluctuation amplitude, in
! spherical coordinates, d-theta, d-phi [degree]
!
! Lines with parameters can be interlaced with comments,
! Commentlines should have a ! at position 1.
!
!
!
!****************************************************************************
program dynamics
Use DFPORT
Use DFLIB
implicit none
! Variables
integer*4,parameter::max_spins = 50000, & ! maximum number of magnetic moments
& max_muons = 10000, & ! maximum number of muons
& max_nn = 500, & ! maximum number of nearest neighbours
& n_time_steps = 500 ! number of time steps calculated
! Should be future variable
! Should be future variable
! Structure to store the position (as lattice site-indexes)
! and the direction-cosines of each spin.
structure /spin/
integer*4 x,y,z
real*8 theta,phi,dir(3)
end structure
structure /muon/
integer*4 x,y,z, ns, s(max_nn)
real*8 dir(3), r(3,max_nn), r_2(max_nn), r_5(max_nn), omega(3)
end structure
! Declarations, maximumnumber of spins: max_spins, maxd is the maximum number of
! unitcell-distance for which the spin in included in the calculation
real*8, time_resolution=0.01 ! time resolution
! (approximate time between points
! on the *.g_t file)
character*10 dddd, tttt, zone
character*4 file_index
integer*4 dt(8), ifile, l_calc, n_steps, i_step
character*80 calculation
character*127 line
logical unique
integer*4 i,j,k,l,nw,nd,nsp,n_spin, n_site
integer*4 iseed, nd1, nd2
record /spin/ s(max_spins)
record /muon/ m(max_muons)
real*8 dummy, a, d, concentration, w, depth1, depth2
real*8 factor, moment, b_ext(3)
real*8 fluctuationrate, tau, dphi, dtheta, fraction
real*8 g_t(3), omega, b_abs, b_sq, ca_sq, his, radiussq
real*8 t_ini, p_ini, emu(3), Pi
real*8 step, exp_time, write_time, f_c
! Body of dynamics
! Read the parameters from the input file
! with name : <calculation>.inp
! The output will go to <calculation>.out
! and <calculation>_###.g_t
Write(6,*) ' '
Write(6,*) ' ---------------------------------------------------------------------'
Write(6,*) ' | Program field-calculation of muons due to random dynamic spins |'
Write(6,*) ' | |'
Write(6,*) ' | Version of November 16 2005 |'
Write(6,*) ' | |'
Write(6,*) ' | Input is read from an input file that should be named |'
Write(6,*) ' | <calculation>.inp and contains for each simulation on |'
Write(6,*) ' | one line: |'
Write(6,*) ' | |'
Write(6,*) ' | lattice-constant [nm], magnetic moment [mu_B], |'
Write(6,*) ' | ext. field(3) ,thickness, width, c, number_of_muons, |'
Write(6,*) ' | initial-muon-direction(theta, phi)[degrees], |'
Write(6,*) ' | (muon-positions from) depth1, (to) depth2 [nm], |'
Write(6,*) ' | fluctions rate [inverse microsec], |'
Write(6,*) ' | fluctuation amplitude parallel to film [0..360degr.],|'
Write(6,*) ' | fluctuation amplitude perpendicular to film |'
Write(6,*) ' | [0..180degr.] |'
Write(6,*) ' | |'
Write(6,*) ' | Lines with a ! in the first position are treated as comments. |'
Write(6,*) ' | |'
Write(6,*) ' | <calculation> can be issued as a commandline parameter |'
Write(6,*) ' ---------------------------------------------------------------------'
! files :
inquire( file='\simulations\counter.his', exist = unique )
IF ( unique ) THEN
open(9,file='\simulations\counter.his',status='old',err=994)
read(9,*) ifile ! initialize outputfile counter
ELSE
ifile = 0
END IF
IF ( iargc() .GT. 0 ) THEN
call getarg(1, calculation)
Write(6,*) ' Calculation taken from commandline > ',calculation
ELSE
200 write(6,201)
201 format(' '/' Give name of the calculation > ', \)
read(5,'(a60)') calculation
END IF
l_calc = index( calculation, ' ') - 1
IF ( l_calc .GT. 0 ) THEN
open(1,file=calculation(1:l_calc)//'.inp',status='old',action='read',err=995 )
open(2,file=calculation(1:l_calc)//'.out',status='unknown',action='write',err=996)
END IF
! initialization of randomumber generator and Pi
iseed = 1234567
Pi = acos( -1.0D+00 )
! Read everything from the input file, one line per calculation
DO WHILE ( .NOT. Eof(1) ) ! WHILE LOOP(1) over the input file
10 read(1,'(a127)',end=999) line
IF ( line(1:1) .EQ. '!' ) THEN
Write(2,'(a)') line
GOTO 10
END IF
read(line,*,err=998,end=999) a, moment, b_ext, d, w, concentration, &
& n_site, t_ini, p_ini, depth1, depth2, &
& fluctuationrate, dphi, dtheta
IF ( n_site .GT. 0.8 * max_muons ) n_site = 0.8 * max_muons
! Estimate optimum time_step
b_abs = sqrt( sum( b_ext * b_ext ) )
f_c = 135.5 * b_abs + 0.3 * moment * comcentration / (a*a*a)
time_step = min( 0.01, 0.1 / f_c )
! Initialize randomnumber generator "randomly"
call date_and_time( dddd, tttt, zone, dt )
DO i = 1, dt(8) ! number milliseconds on the clock
dummy = ran(iseed)
END DO
!
write(2,100) calculation(1:73),(dt(j),j=1,3),(dt(j),j=5,8)
100 format(' '/' ',73('-')/' ',a73/' ',73('-')/ &
& ' Calculation started ',i5,'-',i2,'-',i2, &
& ' at ',2(i2,':'),i2,'.',i3/' ',73('-')/' ')
write(2,'(a,f8.3)') ' lattice parameter = ', a
write(2,'(a,f8.3)') ' magnetic moment = ', moment
write(2,'(a,3f8.3)') ' external field = ', b_ext
write(2,'(a,f8.3)') ' concentration = ', concentration
write(2,'(a,2f8.3)') ' init.muon theta,phi = ', t_ini, p_ini
write(2,'(a,f8.3)') ' fluctuationrate = ', fluctuationrate
write(2,'(a,2f8.3)') ' fluctuation amp. = ', dphi, dtheta
emu(1) = sin(t_ini*Pi/180.0) * cos(p_ini*Pi/180.0)
emu(2) = sin(t_ini*Pi/180.0) * sin(p_ini*Pi/180.0)
emu(3) = cos(t_ini*Pi/180.0)
DO j = 1, max_muons
m(j).dir = emu
END DO
exp_time = 0.0D+00
write_time = 0.0D+00
! update file index for
ifile = ifile + 1 ! increase outputfile number
IF ( unique ) THEN
rewind(9)
write(9,*) ifile ! store for next program
END IF
write(file_index,'(''_'',i3)') ifile ! generate file_name
DO j = 2, 4
IF (file_index(j:j) .EQ. ' ' ) file_index(j:j) = '0'
END DO
open(3,file=calculation(1:l_calc)//file_index//'.g_t', &
& status='unknown',action='write', err=997 )
! output time=0 asymmetries
write(3,'(4F19.6)' ) exp_time, emu
write_time = write_time + time_resolution
! Initialize randomnumber generator "randomly"
call date_and_time( dddd, tttt, zone, dt )
DO i = 1, dt(8) ! number milliseconds on the clock
dummy = ran(iseed)
END DO
! make lattice, spinglass, choose muon sites and calculates "interaction matrix"
CALL lattice( iseed, d, w, a, concentration, n_spin, nd, nw, s, &
& n_site, depth1, depth2, m )
write(2,'(a,f8.3)') ' thickness = ', d
write(2,'(a,f8.3)') ' width = ', w
write(2,'(a,i10)') ' number of spins = ', n_spin
write(2,'(a,i10)') ' number of muons = ', n_site
write(2,'(a,2f8.3)') ' muons penetrate betw. ', depth1, depth2
write(2,'(a,a)') ' Output will be written on ', &
& calculation(1:l_calc)//file_index//'.g_t'
write(6,'(a,f8.3)') ' lattice parameter = ', a
write(6,'(a,f8.3)') ' magnetic moment = ', moment
write(6,'(a,3f8.3)') ' external field = ', b_ext
write(6,'(a,f8.3)') ' concentration = ', concentration
write(6,'(a,2f8.3)') ' init.muon theta,phi = ', t_ini, p_ini
write(6,'(a,f8.3)') ' fluctuationrate = ', fluctuationrate
write(6,'(a,2f8.3)') ' fluctuation amp. = ', dphi, dtheta
write(6,'(a,f8.3)') ' thickness = ', d
write(6,'(a,f8.3)') ' width = ', w
write(6,'(a,i10)') ' number of spins = ', n_spin
write(6,'(a,i10)') ' number of muons = ', n_site
write(6,'(a,2f8.3)') ' muons penetrate betw. ', depth1, depth2
write(6,'(a,a)') ' Output will be written on ', &
& calculation(1:l_calc)//file_index//'.g_t'
! The fluctuations are incorporated as follows:
! for rates larger then 1/time_resolution MHz,
! a timestep tau is choosen from a
! log distrubution ( tau = - ln(random) / fluctuationrate )
! The muon then rotates for tau microseconds, after all spins
! are rotated over an angle between - dtetha en dtheta and - dphi and dphi.
! This process is repeated until the total time is n_time_steps*time_resolution
! microsecods or more.
! Output of the muon position is about every time_resolution microsecond.
! for rates smaller then 1/time_resolution MHz
! the muons rotate 1000 times for time_resolution microsecond, after each rotation
! a fraction (= fluctuationrate *time_resolution) of the magnetic ions are rotated
! over an angle between - dtetha en dtheta and - dphi and dphi.
! After each fluctuation the fields at the muonsites are recalculated.
! "deporization" functions are calculated for
! left-right, up-down and forward-backward detectors,
! being the x-, y- and z-components of the muon spin vector.
! For arbitrary direction one has to take the scalar product of
! that specific direction with the results produced by this program
IF ( fluctuationrate .GT. 1.0/time_resolution ) THEN ! Rapid fluctuations
fraction = 1.0
! Start of WHILE loop(2) over exp_time
DO WHILE ( exp_time .LT. time_resolution * float(n_time_steps) )
tau = - log( ran(iseed) ) / fluctuationrate
IF ( exp_time + tau .GT. time_resolution * float(n_time_steps) ) &
& tau = time_resolution * float(n_time_steps) - exp_time
! take at least time_resolution microsec. steps, even if tau is larger
n_steps = floor( tau / time_resolution ) + 1
step = tau / float( n_steps )
CALL fields( a, moment, b_ext, s, n_site, m)
DO i_step = 1, n_steps
exp_time = exp_time + step
call muonrotation( n_site, m, step )
g_t = 0.0
DO j = 1, n_site
DO k = 1, 3
g_t(k) = g_t(k) + m(j).dir(k)
END DO
END DO
g_t = g_t / float(n_site)
IF ( exp_time .GT. write_time ) THEN
write(3,'(4F19.6)' ) exp_time, g_t
write_time = exp_time + time_resolution
END IF
END DO
! after tau, change spin directions and repeat the above.
! however, stop when 10 microsec has been reached.
CALL fluctuation( iseed, n_spin, s, dtheta, dphi, fraction )
END DO ! END of WHILE loop(2)
ELSE ! fluctuationrate < 1/time_resolution
fraction = fluctuationrate * time_resolution
step = time_resolution
n_steps = n_time_steps
DO i_step = 1, n_steps
exp_time = exp_time + step
CALL fields( a, moment, b_ext, s, n_site, m)
CALL muonrotation( n_site, m, step )
g_t = 0.0
DO j = 1, n_site
DO k = 1, 3
g_t(k) = g_t(k) + m(j).dir(k)
END DO
END DO
g_t = g_t / float(n_site)
write(3,'(4F19.6)' ) exp_time, g_t
CALL fluctuation( iseed, n_spin, s, dtheta, dphi, fraction )
END DO
END IF
END DO ! END of WHILE loop(1)
STOP ' Program DYNAMICS stopped where it should stop '
994 STOP ' FATAL: Cannot open counter.his '
995 STOP ' FATAL: Cannot open input file '
996 STOP ' FATAL: Cannot open output file '
997 Write(2,*) ' Cannot open g_t file '
STOP ' FATAL: Cannot open g_t file '
998 Write(2,*) ' Error in input file '
STOP ' FATAL: Due to error in input file '
999 Write(2,*) ' End of input-file '
STOP ' STOP End of input file '
end program dynamics
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
! LATTICE calculates the actual dimensions of the sample, places magnetic spins
! randomly according to concentration, gives the spins a random direction
! in space. It also generates a table of muonsites.
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Subroutine lattice( iseed, d, w, a, concentration, n_spin, nd, nw, s, &
& n_site, depth1, depth2, m )
! Structure to store the position (as lattice site-indexes)
! and the direction-cosines of each spin and muon.
implicit none
integer*4,parameter::max_spins = 50000, & ! maximum number of magnetic moments
& max_muons = 10000, & ! maximum number of muons
& max_nn = 500 ! maximum number of nearest neighbours
structure /spin/
integer*4 x,y,z
real*8 theta,phi,dir(3)
end structure
structure /muon/
integer*4 x,y,z, ns, s(max_nn)
real*8 dir(3), r(3,max_nn), r_2(max_nn), r_5(max_nn), omega(3)
end structure
real*8 d, w, a, concentration, c, depth1, depth2, fraction, radiussq
real*8 Pi, r(3), r_2, r_3, r_5, help
integer*4 iseed, nd, nw, nat, n_spin, n_site, nd1, nd2
integer*4 i, j, k, l, hw, kw, ns
record /spin/ s(*)
record /muon/ m(*)
Pi = acos( -1.0D+00 )
c = concentration / 100.0
! Calculate the 'rounded' number of spins for a lattice m*m*n for
! the given concentration.
! n is the number of atoms (half unitcells) perpendicular
! to the layer (== z-direction).
! m is the size of the layer in the x- and y-direction
nd = floor(2.0 * d / a ) + 2
nw = floor(2.0 * w / a ) + 2
nat = nd * nw * nw / 2
n_spin = floor( nat * c )
d = float(nd) * a / 2.0
w = float(nw) * a / 2.0
hw = nw / 2
IF ( c .GT. 0.0 ) THEN
radiussq = (( 1.6 * float(max_nn) / c ) / ( 4.0 * Pi / 3.0 ))**(2.0/3.0)
ELSE
radiussq = 1D+10
END IF
write(2,*) ' radius = ', sqrt( radiussq )
nd1 = floor( 2.0 * depth1 / a )
nd2 = floor( 2.0 * depth2 / a )
IF ( mod( nd1 , 2 ) .EQ. 0 ) nd1 = nd1 + 1 ! nd1 should be odd
IF ( nd2 .LT. nd1 + 1 ) nd2 = nd1 + 1
depth1 = float(nd1) * a / 2.0
depth2 = float(nd2) * a / 2.0
fraction = float(n_site) / (float((nd2-nd1)*nw*nw) / 8.0)
! Place the spins randomly on the fcc-lattice
! Run over a whole simple cubic lattice in steps
! of half of the fcc-unitcell.
! Then take care of the fcc-structure and
! decide whether or not to place a spin.
n_spin = 0
DO j = 0, nw-1
DO k = 0, nw-1
DO l = 0, nd-1
IF ( mod(j+k+l,2) .EQ. 0 ) THEN ! This takes care of the fcc structure.
IF ( ran(iseed) .LT. c ) THEN ! Takes care of concentration
n_spin = n_spin + 1
IF ( n_spin .GT. max_spins ) STOP ' Stopped because number of spin too large '
s(n_spin).x = j
s(n_spin).y = k
s(n_spin).z = l
! Give the spin an arbitrary direction
s(n_spin).theta = Pi * ran(iseed)
s(n_spin).phi = (Pi+Pi) * ran(iseed)
s(n_spin).dir(1) = sin(s(n_spin).theta) * cos(s(n_spin).phi)
s(n_spin).dir(2) = sin(s(n_spin).theta) * sin(s(n_spin).phi)
s(n_spin).dir(3) = cos(s(n_spin).theta)
END IF
END IF
END DO
END DO
END DO
! determine positions of the muons
n_site = 0
DO j = 1, nw-1, 2
DO k = 1, nw-1, 2
DO l = nd1, nd2, 2
IF ( ran(iseed) .LT. fraction ) THEN
n_site = n_site + 1
m(n_site).x = j
m(n_site).y = k
m(n_site).x = l
ns = 0
DO i = 1, n_spin
kw = j - s(i).x
IF ( kw .LT. -hw ) kw = kw + nw ! periodic boundary condition
IF ( kw .GT. hw ) kw = kw - nw ! periodic boundary condition
r(1) = dble(float(kw))
kw = k - s(i).y
IF ( kw .LT. -hw ) kw = kw + nw ! periodic boundary condition
IF ( kw .GT. hw ) kw = kw - nw ! periodic boundary condition
r(2) = dble(float(kw))
r(3) = dble(float(l-s(i).z)) ! NO periodic boundary condition
r_2 = sum( r * r )
IF ( r_2 .LE. radiussq ) THEN ! skip calculation if distance
! is too large
help = sqrt( r_2 )
r_3 = r_2 * help
r_5 = r_2 * r_3
ns = ns + 1
IF (ns .GT. max_nn) STOP ' Stopped because NS becomes too large '
m(n_site).s(ns) = i
m(n_site).r(1,ns) = r(1)
m(n_site).r(2,ns) = r(2)
m(n_site).r(3,ns) = r(3)
m(n_site).r_2(ns) = r_2
m(n_site).r_5(ns) = r_5
END IF
END DO
m(n_site).ns = ns
END IF
END DO
END DO
END DO
RETURN
END
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
! FIELDS calculates all internal fields at the muonsites and
! adds the external field
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Subroutine fields( a, moment, b_ext, s, n_site, m)
implicit none
integer*4,parameter::max_spins = 50000, & ! maximum number of magnetic moments
& max_muons = 10000, & ! maximum number of muons
& max_nn = 500 ! maximum number of nearest neighbours
structure /spin/
integer*4 x,y,z
real*8 theta,phi,dir(3)
end structure
structure /muon/
integer*4 x,y,z, ns, s(max_nn)
real*8 dir(3), r(3,max_nn), r_2(max_nn), r_5(max_nn), omega(3)
end structure
real*8 Pi, Gyro, p_r, a, factor
real*8 b(3), b_ext(3), moment
integer*4 j, k, l, n_site
record /spin/ s(*)
record /muon/ m(*)
Pi = acos(-1D+00)
Gyro = (Pi+Pi) * 135.54 ! gyro-magnetic ratio of muon [tesla^-1 s^-1]
factor = 1D-07 * moment * 9.2740019D-24 / ( a*a*a * 0.125D-27 )
DO j = 1, n_site
b = 0
DO k = 1, m(j).ns
l = m(j).s(k)
p_r = m(j).r(1,k) * s(l).dir(1) + &
& m(j).r(2,k) * s(l).dir(2) + &
& m(j).r(3,k) * s(l).dir(3)
b(1) = b(1) + (3.0D+00*p_r*m(j).r(1,k)-m(j).r_2(k)*s(l).dir(1))/m(j).r_5(k)
b(2) = b(2) + (3.0D+00*p_r*m(j).r(2,k)-m(j).r_2(k)*s(l).dir(2))/m(j).r_5(k)
b(3) = b(3) + (3.0D+00*p_r*m(j).r(3,k)-m(j).r_2(k)*s(l).dir(3))/m(j).r_5(k)
END DO
b = factor * b + b_ext
m(j).omega(1) = Gyro * b(1)
m(j).omega(2) = Gyro * b(2)
m(j).omega(3) = Gyro * b(3)
END DO
RETURN
END
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
! FLUCTUATION changes all directions of the spins with a random amount
! DTHETA and DPHI
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Subroutine fluctuation( iseed, n_spin, s, dtheta, dphi, fraction )
implicit none
integer*4,parameter::max_spins = 50000, & ! maximum number of magnetic moments
& max_muons = 10000, & ! maximum number of muons
& max_nn = 500 ! maximum number of nearest neighbours
structure /spin/
integer*4 x,y,z
real*8 theta,phi,dir(3)
end structure
record /spin/ s(*)
real*8 dtheta, dphi, dt, dp, Pi, fraction
integer*4 iseed, n_spin, i_spin
IF ( fraction .LT. 1.0D-06 .OR. &
& ( dtheta .LT. 1.0D-06 .AND. dphi .LT. 1.0D-06 ) ) RETURN
Pi = acos( -1.0D+00 )
dt = dtheta * Pi / 180.0 ! amplitude of the fluctuation in theta
dp = dphi * Pi / 180.0 ! amplitude of the fluctuation in phi
DO i_spin = 1, n_spin
IF ( ran(iseed) .LT. fraction ) THEN
s(i_spin).theta = s(i_spin).theta + 2.0 * dt * (ran(iseed)-0.5)
s(i_spin).phi = s(i_spin).phi + 2.0 * dp * (ran(iseed)-0.5)
s(i_spin).dir(1) = sin(s(i_spin).theta) * cos(s(i_spin).phi)
s(i_spin).dir(2) = sin(s(i_spin).theta) * sin(s(i_spin).phi)
s(i_spin).dir(3) = cos(s(i_spin).theta)
END IF
END DO
RETURN
END
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
! MUONROTATION rotates all muons over the vector m.omega * step
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Subroutine muonrotation( n_site, m, step )
implicit none
integer*4,parameter::max_spins = 50000, & ! maximum number of magnetic moments
& max_muons = 10000, & ! maximum number of muons
& max_nn = 500 ! maximum number of nearest neighbours
structure /muon/
integer*4 x,y,z, ns, s(max_nn)
real*8 dir(3), r(3,max_nn), r_2(max_nn), r_5(max_nn), omega(3)
end structure
record /muon/ m(*)
real*8 v(3), OM(3), step
integer*4 j, n_site
DO j = 1, n_site
OM(1) = m(j).omega(1)
OM(2) = m(j).omega(2)
OM(3) = m(j).omega(3)
OM = OM * step
v(1) = m(j).dir(1)
v(2) = m(j).dir(2)
v(3) = m(j).dir(3)
call rotation( v, OM )
m(j).dir(1) = v(1)
m(j).dir(2) = v(2)
m(j).dir(3) = v(3)
END DO
RETURN
END
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
! ROTATION rotates a vector V around the vector O
!$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Subroutine rotation( v, o )
implicit none
real*8 v(3), o(3), uo(3), r(3), o_abs, cc, ss
o_abs = sqrt( sum( o * o ) )
IF ( o_abs .GT. 1D-08 ) THEN
uo = o / o_abs
cc = cos( o_abs )
ss = sin( o_abs )
r(1) = ( cc+uo(1)*uo(1)*(1-cc) ) * v(1) + &
& ( -uo(3)*ss+uo(1)*uo(2)*(1-cc) ) * v(2) + &
& ( uo(2)*ss+uo(1)*uo(3)*(1-cc) ) * v(3)
r(2) = ( uo(3)*ss+uo(1)*uo(2)*(1-cc) ) * v(1) + &
& ( cc+uo(2)*uo(2)*(1-cc) ) * v(2) + &
& ( -uo(1)*ss+uo(2)*uo(3)*(1-cc) ) * v(3)
r(3) = ( -uo(2)*ss+uo(1)*uo(3)*(1-cc) ) * v(1) + &
& ( uo(1)*ss+uo(2)*uo(3)*(1-cc) ) * v(2) + &
& ( cc+uo(3)*uo(3)*(1-cc) ) * v(3)
v = r
END IF
RETURN
END