musrsim/include/musrMuFormation.hh
Kamil Sedlak 1e050e6976 2008-05-26 Kamil Sedlak
- a copyright information added to all relevant *.cc and *.hh files
   - the file "COPYING" added to the main directory of the musrSim
2009-05-26 09:49:42 +00:00

99 lines
4.0 KiB
C++

/***************************************************************************
* musrSim - the program for the simulation of (mainly) muSR instruments. *
* More info on http://lmu.web.psi.ch/simulation/index.html . *
* musrSim is based od Geant4 (http://geant4.web.cern.ch/geant4/) *
* *
* Copyright (C) 2009 by Paul Scherrer Institut, 5232 Villigen PSI, *
* Switzerland *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
***************************************************************************/
//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
// Muonium Formation according to yield.cc function (through GetYields method).
// Id : musrMuFormation.hh, v 1.4
// Author: Taofiq PARAISO, T. Shiroka
// Date : 2007-12
//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
#ifndef musrMuFormation_h
#define musrMuFormation_h 1
#include "G4VDiscreteProcess.hh"
#include "G4ParticleTable.hh"
#include "yields.hh"
/*! musrMuFormation class defines the muonium formation process in the Carbon foil
* according to yields from Gonin's paper Sci. Rev. Instrum. 65(3), 648-652 (1994).
* \image html yields3.gif The muonium formation yields.
* The main parameters are the foil thickness and muon energy. For a given energy,
* a corresponding proportion of the muons will be converted into Muonium.
* Concretely, the muon is eliminated and replaced by a Muonium with identical
* properties, including time, energy, momentum, position etc.
*
* The process is executed at the END of a step, i.e. the muon is converted into
* Muonium AFTER flying through the Carbon foil (see also yields.hh). */
class musrMuFormation : public G4VDiscreteProcess
{
public:
musrMuFormation(const G4String& name = "MuFormation", // process description
G4ProcessType aType = fElectromagnetic);
~musrMuFormation();
//! - Main method. Muonium formation process is executed at the END of a step. */
G4VParticleChange* PostStepDoIt(
const G4Track&,
const G4Step&);
G4double GetMeanFreePath(const G4Track& aTrack,
G4double previousStepSize,
G4ForceCondition* condition);
//! Condition for process application (step Object).
G4bool CheckCondition(const G4Step& aStep);
//! Condition for process application (step Pointer).
G4bool CheckCondition(const G4Step* aStep);
G4String p_name;
G4bool condition;
void GetDatas( const G4Step* aStep);
// model parameters
G4ParticleTable* particleTable;
G4ParticleDefinition* particle;
Yields Gonin;
G4double yvector[3];
G4double rnd;
G4DynamicParticle *DP;
//! The particle change object.
G4VParticleChange fParticleChange;
void PrepareSecondary(const G4Track&);
G4Track* aSecondary;
void InitializeSecondaries(const G4Track&);
};
#endif