
Internal PSI draft

MANUAL OF MUSRSIM

KAMIL SEDLÁK AND TONI SHIROKA PSI

The program “musrSim” is a simulation program based on Geant4 optimised for

the µSR instruments. This document describes some of the commands used in

the user macros of the simulation program for the µSR instruments based on the

Geant4. The root output variables are also described.

1 Initial muon parameters

/gun/vertex x0 y0 z0 unit

(default: /gun/vertex 0 0 -100 mm)
Set mean values of the x, y and z coordinates of the generated particles (muons). The smearing
around these mean values instead is set by /gun/vertexsigma and restricted by /gun/vertexboundary
(see below).
(Applicable also to TURTLE input).

/gun/vertexsigma xSigma ySigma zSigma unit

(default: /gun/vertexsigma 0 0 0 mm)
If xSigma > 0 ... set σ, i.e. the standard deviation (RMS), of the x coordinate of the generated
particles (muons) to σ = xSigma. The x coordinate of the initial muon is then generated according
to the Gaussian distribution with the mean value of x0 and the standard deviation of xSigma.
If xSigma < 0 ... the x coordinate of the initial muon is generated uniformly in the interval of (x0−
xSigma, x0+ xSigma).
If xSigma = 0 ... no smearing on the x coordinate is applied.
Similar is true for ySigma and zSigma.
This variables are ignored when TURTLE input is requested.

/gun/vertexboundary R max z min z max unit

Set maximum allowed radius, and minimum and maximum z coordinate of the generated particles
(muons). This command might be useful especially if the user wants to restrict the area, in which
initial particles are created, e.g. to force the initial muons to be created inside the beam pipe.

If the particles (muons) are read in from an external TURTLE file, only the restriction on the
maximum radius R max is applied on the initial particles, while z min and z max are ignored.

/gun/kenergy kineticEnergy unit

Set the mean kinetic energy of the initial particles (muons).

/gun/momentum momentum unit

Set the mean momentum of the initial particles (muons).

/gun/momentumsmearing momentumSigma unit

Set σ, i.e. the standard deviation (RMS), of the momentum spread, which is aplied randomly to
each generated initial particle (muon). It is the magnitude of the momentum, which is smeared.
(Ignored by the TURTLE input. However, a similar command “/gun/turtleMomentumBite” can be
used for the TURTLE input file.)

/gun/momentumboundary p min p max dummy unit

Set a boundary for the minimum and maximum momentum of the initial particles (muons). The
third argument dummy is ignored.
(Presently ignored by the TURTLE input).

/gun/tilt xangle0 yangle0 dummy unit

The “beam tilt” is understood as a constant angle tilt that is applied to all initial particles (muons)
regardless on their distance from the centre of the beam.
(Applicable also to TURTLE input).

1

2 PSI

/gun/tiltsigma xangleSigma yangleSigma dummy unit

Gaussian smearing of the tilt angle.
(Presently ignored by the TURTLE input).

/gun/pitch pitch unit

The “beam pitch” is understood as a variable angle applied to the initial particles (muons), which
is directly proportional to the distance from the beam axis. The particles closer to the beam axis
become smaller pitch than particles further away from the beam axis. The angle given as pitch will
be applied to a particle generated 1 mm away from the beam centre, i.e. the particle generated 7mm
away from the beam axis will be assigned the angle of 7 · pitch. The pitch allows the user to focus
or defocuse the initial particle beam. Particles will be focused for positive pitch and defocused for
the negative pitch.
(Applicable also to TURTLE input).

/gun/muonPolarizVector xpolaris ypolaris zpolaris

Set polarisation of the initial particle (muon) in a form of a vector P = (xpolaris, ypolaris, zpolaris).
The polarisation vector does not have to be normalised, the normalisation will be done internally by
the program. However note that if the magnitude of P is set to less than 1e-8, the user can achieve
an unpolarised muon beam. See the source code of musrPrimaryGeneratorAction.cc if you need to
use unpolarised beam by this parameter, because there is some trick based on the magnitude of P.
(Applicable also to TURTLE input).

/gun/muonPolarizFraction polarisFraction

Set the fraction of the muon polarisation. The variable polarisFraction has to be set in the range of
-1 to 1.
If polarisFraction is set to 1, all muons are polarised in the direction of polarisation vector defined
by “/gun/muonPolarizVector”.
If polarisFraction is set to 0, half of the muons are polarised in the direction of polarisation vector,
the second half is polarised in the oposite dirrection, so in the end the muon beam should act as
unpolarised.
If polarisFraction is set to -1, all muons are polarised in the direction oposite to the polarisation
vector.
If polarisFraction is set to 0.9, then 95% of the muons is polarised in in the direction
of polarisation vector, and 5% of them is polarised in the oposite dirrection!.
This command is ignored if magnitude of polarisation vector defined by
“/gun/muonPolarizVector” is smaller than 1e-8!
(Applicable also to TURTLE input).

/gun/decaytimelimits muDecayTimeMin muDecayTimeMax muMeanLife unit

(default: /gun/decaytimelimits −1 −1 2197.03ns)
If muDecayTimeMax is less or equal to zero, this command is ignored, and the muon decay time is set
internally by Geant4. Otherwise the muon will be forced to decay within a time interval given by
muDecayTimeMin and muDecayTimeMax, and the mean muon lifetime will be set to muMeanLife.
In such case muDecayTimeMin has to be equal or larger than 0 and muDecayTimeMax has to be
larger or equal to muDecayTimeMin.
(Applicable also to TURTLE input).

/gun/turtlefilename turtleFileName

Set the filename of the TURTLE input file. If this varialble is set, TURTLE file will be used to
initiate muons. Otherwise the mouns would be generated randomly.

/gun/turtleZ0position z0 InitialTurtle unit

Set the z-position which has been used to generate the TURTLE file.
If this value differes from the z0 value of the “/gun/vertex” command, than the particle initial po-
sition is extrapolated from z0 InitialTurtle to the point corresponding to z0, using the direction of
its momenta.
MORE DETAILS:
When running TURTLE (e.g. when generating the TURTLE file using the TURTLE program),
the user has to specify the z position, at which the TURTLE particles (muons) would be exported.
Sometimes this z position does not correspond to the point of origin of the musrSim geometry. In

musrSim 3

such case, the variable z0 InitialTurtle should be set to the value, that in musrSim coordinate system
corresponds to the point, at which the TURTLE file was exported. For example – if the TURTLE
file was exported just after the last quadrupole of a beam-pipe, and in the simulation the edge of the
last quadrupole corresponds to 100 cm, than the z0 InitialTurtle should be also set to 100 cm.

/gun/turtleMomentumBite turtleMomentumP0 turtleSmearingFactor dummy

Modify the smearing of the momentum bite specified in the TURTLE input file. Normally the muon
momentum is defined already in the turtle input file. This command allows the user to modify the
momentum smearing (momentum bite) of the muon beam. The variable turtleMomentumP0 will be
taken as the mean momentum (in MeV/c), around which the momentum will be increased/decreased.
It does not have to be the real mean value of the initial muon momentum distribution. The variable
turtleSmearingFactor is the smearing factor in per cent, by which the momentum bite will be in-
creased/decreased around the turtleMomentumP0. The following equation is used to change the muon
momentum: pnew = turtleMomentumP0 - (turtleMomentumP0-pTURTLE)·0.01·turtleSmearingFactor.
This means that:
turtleSmearingFactor = 100 ... the muon beam momentum will not be modified.
turtleSmearingFactor = 0 ... the muon beam momentum will be set to the constant value of turtle-
MomentumP0.
turtleSmearingFactor = 200 ... the muon beam will have two times broader distribution compared
to the original TURTLE file.

/gun/turtleFirstEventNr lineNumberOfTurtleFile

2 Detector construction

/musr/command rotation matrixName α β γ

/musr/command rotation matrixName vx vy vz angle

These commands define a rotation matrix of the name “matrixName” that can be used later on
during the definition of the detector geometry (see command “/musr/command construct”). It can
be defined either by the Euler angles (if there are three float parameters behind the matrixName)
or by the vector (vx,vy,vz) and an angle of rotation around this vector (if the fourth float parameter
behind the matrixName is non-zero). All angles are specified in degrees.

/musr/command construct solid=string name=string dimensions=float ... mate-

rial=string x=float y=float z=float motherVolume=string rotationMatrix=string sen-

sitiveClass=string idNumber=int
This command defines a volume in Geant4 (It comprises three steps of Geant4: defines a solid,
logical volume and physical volume. More details have to be found in Geant4 manual).

• solid can be one of the G4VSolid.cc particular types, presently “tubs”, “box”, “sphere”, or it can
be one of the specifically implemented solids by our program as “uprofile” (an U-profiled bar),
“alcSupportPlate” (shape specific to ALC support plate), “tubsbox” (a tube with a rectangular
hole along its axis) and ”tubsboxsegm” (a volume that looks like an intersection of tube and
box). Not all G4VSolids are presently supported, but it is relatively easy to implement a new
kind of solids in the musrDetectorConstruction.cc class.

• name stands for the name of the volume. As the “/musr/command construct” construct three
kinds of classes (volumes) – the solid, logical volume and physical volume – there are three names
of the concrete volume used internally inside the program: sol name, log name and phys name.
The main volume, inside which all other volumes are positioned, has to be called “World”.

• dimensions define the size of the required solid. They are kept equivalent to the dimensions of
solids as used in Geant4. For example the “box” is defined by its halfwidths along x, y and z

coordinates. Note that the number of dimensions varies for each type of solid.

• material one of the materials defined in Geant4, namely
in the file $G4INSTALL/source/materials/src/G4NistMaterialBuilder.cc (e.g. “G4 Galactic”
for vacuum, “G4 Cu” for copper, “G4 AIR” for air and “G4 PLASTIC SC VINYLTOLUENE”

4 PSI

for a scintillator). One can also define a new material inside the function musrDetectorCon-
struction::DefineMaterials(). Presently “Mylar”, “Brass” and “Steel” are defined there.

• x, y, z – coordinates of the volume, used to position the volume within its mother volume (as
used by the G4PVPlacement).

• motherVolume – name of the mother volume, in which the given volume should be positioned.
Note that the mother volume has to be defined first (before its daughter), and that the name of
mother starts with a string log name, following the naming convention defined above. When
the “World” volume is defined, its motherVolume should be set to “no logical volume”.

• rotationMatrix – name of the rotation matrix that will be used to position the volume inside
its mother volume (as used in member function G4PVPlacement()). Use string “norot” if no
rotation is required for the given volume. Otherwise the rotation matrix has to be defined by
the command line “/musr/command rotation” before the given is defined.

• sensitiveClass – specifies whether the volume is sensitive or not. Use the string “dead” for the
non-senstive volume (i.e. for the dead material), and the string “musr/ScintSD” for a scintillator
(a sensitive volume, i.e. a volume where hits are observed). No other detector type (other than
“dead” and “musr/ScintSD”) is supported at the moment, but the program might be extended
in the future (e.g. to properly include also the semiconductor tracking detectors, etc.).

• idNumber – idNumber serves as a unique identifier of the volume. It is primarily used in the out-
put Root tree to identify the volume: 1) in which muons stop (tree variable “muDecayDetID”),
2) in which hits were deposited in case of sensitive volume (the variable “det ID[det n]”).

/musr/command logicalVolumeToBeReweighted mu logicalVolume=string weight=int
(default: not defined; no reweighting is done unless explicitly requested by this command.)
Events can be reweighted by this command. If muon stops and decays in the volume logicalVolume,
the event will be reweighted using the requested weight. Namely, only each nth event will be stored
(n =weight) with the parameter “weight” in the Root output tree set to weight, while other (non-
nth) events will be aborted. (The decision which event is to be stored and which to be aborted is
done at random). This reweighting might be usefull in the cases when the user wants to speed-up
the simulation (respectively to reduce the number of fully simulated events), while keeping the high
number of events interesting for the analysis. For example, one can set the reweighting of events
in which muons stop in the collimator. One should then use the weight stored in the Root tree
when filling histograms. Compared to the simulation with no weighting applied, the histograms with
weighted events will have larger errors, but the distribution should not differ more then within the
statistical errors.
Note that the weight parameter is integer, and “mu” stands for “muons” (at the moment reweighting
based on electrons or positrons is not supported).

3 Visualisation

/musr/command visattributes volumeName color

/musr/command visattributes materialName color

In case of visualisation, one can set the color of a logical volume volumeName or of all volumes made
of the material with the name materialName. The distinction between the two options is by the first
four letters of the volumeName – if it contains the string “log ”, it is considered as volumeName,
otherwise it is considered to be a material with materialName.

Presently the following colors are predefined: “invisible”, “white”, “black”, “red”, “green”, “blue”,
“lightblue”, “yellow”, “gray”, “cyan” and “magenta”. New colours can be easily added, if needed,
in the member function “musrDetectorConstruction::SetColourOfLogicalVolume”.

4 Physics processes

/musr/command process addDiscreteProcess particle=string process=string
/musr/command process addProcess particle=string process=string ordAtRest-

DoIt=int ordAlongSteptDoIt=int ordPostStepDoIt=int
Adds processes for particles. See Geant4 manual for more details. Look in the file musrPhysic-
sList.cc for the list of defined processes (e.g. G4MultipleScattering, G4eIonisation, ...)

musrSim 5

There is one special process, combined from G4MultipleScattering and G4CoulombScattering, de-
fined by the following command:
/musr/command process addProcess particle=string MultipleAndCoulombScattering
ordAtRestDoIt=int ordAlongSteptDoIt=int ordPostStepDoIt=int G4Region1=string
[G4Region2=string] [G4Region3=string]
The G4MultipleScattering (rough but very fast approximation of scattering) will be applied elswhere
in the detector, except for the G4Region1 (and eventually G4Region2 and G4Region3), where more
precise but very slow process G4CoulombScattering will be applied instead of G4MultipleScattering.
Note that up to three G4Regions are supported at the moment, but this limitation is not intrinsic to
Geant4 and it can be therefore changed in musrPhysicsList.cc, if needed. The G4Regions have to
be defined in the detector construction phase by the command “/musr/command region define ...”.

6 PSI

5 Output root tree variables

The value of -999 or -1000 indicates that the given variable could not be filled (was undefined in a given
event). For example if the variable “muTargetTime” is set to -1000 it means that the initial muon missed
the sample, and therefore no time can be assigned to the sample hit.

runID (Int t) – run ID number.

eventID (Int t) – event ID number.

weight (Double t) – event weight.

BFieldAtDecay Bx, BFieldAtDecay By, BFieldAtDecay Bz, BFieldAtDecay B3, BField-
AtDecay B4, BFieldAtDecay B5 (Double t) – value of the 6 coordinates of the electromagnetic
field at the position and time where and when the muon decayed. The first three coordinates corre-
spond to the magnetic field, the last three to the electric field.

muIniPosX, muIniPosY, muIniPosZ (Double t) – initial position where muon was generated (in
mm).

muIniMomX, muIniMomY, muIniMomZ (Double t) – initial momentum of the muon when it was
generated (in MeV/c).

muIniPolX, muIniPolY, muIniPolZ (Double t) – initial polarisation of the muon when it was gen-
erated.

muDecayDetID (Int t) – ID number of the detector in which the muon stopped and decayed.

muDecayPosX, muDecayPosY, muDecayPosZ (Double t) – the position where the muon stopped
and decayed (in mm).

muDecayTime (Double t) – the time at which the muon stopped and decayed (in µs).

muDecayPolX, muDecayPolY, muDecayPolZ (Double t) – polarisation of the muon when it
stopped and decayed.

muTargetTime (Double t) – time at which the muon entered the volume whose name starts by “target”
– usually the sample (in µs).

muTargetPolX, muTargetPolY, muTargetPolZ (Double t) – polarisation of the muon when it
entered the volume whose name starts with “target” – usually the sample.

muM0Time (Double t) – time at which the muon entered the detector called “M0” or “m0” (in µs).

muM0PolX, muM0PolY, muM0PolZ (Double t) – polarisation of the muon when it entered the
detector called “M0” or “m0”.

muM1Time (Double t) – time at which the muon entered the detector called “M1” or “m1” (in µs).

muM1PolX, muM1PolY, muM1PolZ (Double t) – polarisation of the muon when it entered the
detector called “M1” or “m1”.

muM2Time (Double t) – time at which the muon entered the detector called “M2” or “m2” (in µs).

muM2PolX, muM2PolY, muM2PolZ (Double t) – polarisation of the muon when it entered the
detector called “M2” or “m2”.

posIniMomX, posIniMomY, posIniMomY (Double t) – Initial momentum of the decay positron
(in MeV/c).

nFieldNomVal (Int t) – number of the elementary fields that make together the global field.

fieldNomVal[nFieldNomVal] (array of Double t) – nominal values of all elementary fields. (They are
usually constant, but sometimes they may vary from event to event).

musrSim 7

BxIntegral, ByIntegral, BzIntegral, BzIntegral1, BzIntegral2, BzIntegral3 (Double t) – cal-
culates the field integrals along the muon path and path lengths defined as

BxIntegral =

∫
µ path

Bx(s) ds (1)

ByIntegral =

∫
µ path

By(s) ds (2)

BzIntegral =

∫
µ path

Bz(s) ds (3)

BzIntegral1 =

∫ Zdecay

Z0

Bz(z) dz (4)

BzIntegral2 =

∫
µ path

ds (5)

BzIntegral3 =

∫ Zdecay

Z0

dz (6)

The units are tesla·m (for the first four variables) and mm (for the last two variables). To calculate
the integrals properly, the user must force Geant to use very small step size (e.g. by using something
like “/musr/command globalfield setparameter SetLargestAcceptableStep 2”), and probably also to
generate the muons well outside the magnetic field and put target such that muons stop at z = 0.

Note that these variables are by default not calculated (and not stored) and therefore the user has
to switch the calculation on by “/musr/command rootOutput fieldIntegralBx on” in the macro file.

det n (Int t) – number of “detector hits” in this event. Note that more then 1 detector might be hit,
and even the same detector might be hit more than once. The hit might be induced by just one
particle, by more then one particle originating from the same particle initially hitting the detector,
or from more “independent” particles. For example, the decay positron can emit an Bremsstrahlung
photon in the sample and then both the Bremsstrahlung photon and positron hit the same positron
counter at approximately the same time.

det ID[det n] (array of Int t) – ID number of the detector where the given hit occurred.

det edep[det n] (array of Double t) – energy deposited in the given hit (in MeV).

det edep el[det n] (array of Double t) – energy deposited in the given hit due to electron-based inter-
actions (in MeV).

det edep pos[det n] (array of Double t) – energy deposited in the given hit due to positron-based
interactions (in MeV).

det edep gam[det n] (array of Double t) – energy deposited in the given hit due to photon-based
interactions (in MeV).

det edep mup[det n] (array of Double t) – energy deposited in the given hit due to muon-based
interactions (in MeV).

det nsteps[det n] (array of Int t) – number of “steps” (in Geant4 terminology) that were integrated
together in the given hit. (The det edep[] energy is the sum of the energy deposits during all these
steps).

det length[det n] (array of Double t) – the length of the trajectory of the particle (particles) that
contributed to the given hit (in mm).

det time start[det n], det time end[det n] (array of Double t) – the initial and final time belonging
of the hit. It should be the “global time” of the track when the first and last hit occurred (in µs).

det x[det n], det y[det n], det z[det n] (array of Double t) – the coordinates of the first step of the
given hit.

8 PSI

det Vrtx*****[det n] – All the variables starting with “det Vrtx” refer to the particle with the first
(in time) energy deposit belonging to the given hit. (Note that the hit might be induceed by more
than one particle.) The vertex, at which the particle was created, may or may not be positioned
within the sensitive volume, in which the hit is observed.

det VrtxKine[det n] (array of Double t) – the kinetic energy of the first (in time) particle belonging
to the hit.

det VrtxX[det n], det VrtxY[det n], det VrtxZ[det n] (array of Double t) – the position of the
vertex of the first particle that belongs to the given hit (in mm).

det VrtxVolID[det n] (array of Int t) – ID of the detector in which the vertex (see above) was created.

det VrtxProcID[det n] (array of Int t) – ID of the physics process in which the vertex (see above)
was created.

det VrtxTrackID[det n] (array of Int t) – track ID of the first particle that belongs to the given hit.
If the track ID is negative, there were more than just one track contributing to this hit. The absolute
value of det VrtxTrackID[det n] corresponds to the first (in time) track.

det VrtxParticleID[det n] (array of Int t) – particle ID of the first particle that belongs to the given
hit.

det Vvv*****[det n] – similar to the variables det Vrtx*****[det n] above, but if the first particle
belonging to the hit was created inside of the logical volume where the hit occurs, then it’s track
is followed to its mother track (even several times) until the track (particle) is found that has been
created outside the given volume. This way one can better investigate which (hopefully) single
particle coused the hit. Even though even in this case it is not guarranteed that only a single particle
gave origin to the hit, it is quite likely, though, that it was in fact just a single particle. If the

save n (Int t) – number of special kind of “save” volume that were hit in this event. The “save volume”
is any volume whose name starts with letters “save”. Their purpose in the simulation is usually to
check positions and momenta of particles at some position of the detector, even if the particle does
not deposit any energy in the given “save” volume. Save volumes can therefore be made of vacuum.

save detID[save n] (array of Int t) – ID number of the save volume.

save particleID[save n] (array of Int t) – particle ID of the particle that entered the save volume.

save x[save n], save y[save n], save z[save n] (array of Double t) – position of the particle where
it entered the save volume (“GetPreStepPoint()”) (in mm).

save px[save n], save py[save n], save pz[save n] (array of Double t) – momentum of the particle
when it entered the save volume (in GeV).

musrSim 9

6 Conclusions

The ... in [1].

7 Appendix A: Steering file for the simulation

Macro file for seg06.cc

set detector parameters

This line fills some space

This line fills some space

/run/beamOn 2

References

1. A. Aktas et al. [H1 Collaboration], Submitted to Eur.Phys. J.C, [hep-ex/0401010].

