// // ******************************************************************** // * DISCLAIMER * // * * // * The following disclaimer summarizes all the specific disclaimers * // * of contributors to this software. The specific disclaimers,which * // * govern, are listed with their locations in: * // * http://cern.ch/geant4/license * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. * // * * // * This code implementation is the intellectual property of the * // * GEANT4 collaboration. * // * By copying, distributing or modifying the Program (or any work * // * based on the Program) you indicate your acceptance of this * // * statement, and all its terms. * // ******************************************************************** // // // $Id: G4MultipleScattering52.cc,v 1.2 2004/12/01 19:37:14 vnivanch Exp $ // GEANT4 tag $Name: geant4-07-00-cand-03 $ // // ----------------------------------------------------------------------------- // 16/05/01 value of cparm changed , L.Urban // 18/05/01 V.Ivanchenko Clean up against Linux ANSI compilation // 07/08/01 new methods Store/Retrieve PhysicsTable (mma) // 23-08-01 new angle and z distribution,energy dependence reduced, // Store,Retrieve methods commented out temporarily, L.Urban // 27-08-01 in BuildPhysicsTable:aParticleType.GetParticleName()=="mu+" (mma) // 28-08-01 GetContinuousStepLimit and AlongStepDoIt moved from .icc file (mma) // 03-09-01 value of data member factlim changed, L.Urban // 10-09-01 small change in GetContinuousStepLimit, L.Urban // 11-09-01 G4MultipleScatteringx put as default G4MultipleScattering // store/retrieve physics table reactivated (mma) // 13-09-01 corr. in ComputeTransportCrossSection, L.Urban // 14-09-01 protection in GetContinuousStepLimit, L.Urban // 17-09-01 migration of Materials to pure STL (mma) // 27-09-01 value of data member factlim changed, L.Urban // 31-10-01 big fixed in PostStepDoIt,L.Urban // 24-04-02 some minor changes in boundary algorithm, L.Urban // 06-05-02 bug fixed in GetContinuousStepLimit, L.Urban // 24-05-02 changes in angle distribution and boundary algorithm, L.Urban // 11-06-02 bug fixed in ComputeTransportCrossSection, L.Urban // 12-08-02 bug fixed in PostStepDoIt (lateral displacement), L.Urban // 15-08-02 new angle distribution, L.Urban // 26-09-02 angle distribution + boundary algorithm modified, L.Urban // 15-10-02 temporary fix for proton scattering // 30-10-02 modified angle distribution,mods in boundary algorithm, // changes in data members, L.Urban // 30-10-02 rename variable cm - Ecm, V.Ivanchenko // 11-12-02 precision problem in ComputeTransportCrossSection // for small Tkin/for heavy particles cured, L.Urban // 05-02-03 changes in data members, new sampling for geom. // path length, step dependence reduced with new // method // 17-03-03 cut per region, V.Ivanchenko // 13-04-03 add initialisation in GetContinuesStepLimit // + change table size (V.Ivanchenko) // 26-04-03 fix problems of retrieve tables (M.Asai) // 23-05-03 important change in angle distribution for muons/hadrons // the central part now is similar to the Highland parametrization + // minor correction in angle sampling algorithm (for all particles) // (L.Urban) // 24-05-03 bug in nuclear size corr.computation fixed thanks to Vladimir(L.Urban) // 30-05-03 misprint in PostStepDoIt corrected(L.Urban) // 08-08-03 This class is frozen at the release 5.2 (V.Ivanchenko) // 08-11-04 Remove Store/Retrieve tables (V.Ivantchenko) // ----------------------------------------------------------------------------- // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "G4MultipleScattering52.hh" #include "G4StepStatus.hh" #include "G4Navigator.hh" #include "G4TransportationManager.hh" #include "Randomize.hh" #include "G4ProductionCutsTable.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... using namespace std; G4MultipleScattering52::G4MultipleScattering52(const G4String& processName) : G4VContinuousDiscreteProcess(processName), theTransportMeanFreePathTable(0), taubig(8.0),tausmall(1.e-14),taulim(1.e-5), LowestKineticEnergy(0.1*keV), HighestKineticEnergy(100.*TeV), TotBin(100), materialIndex(0), tLast (0.0), zLast (0.0), boundary(true), facrange(0.199),tlimit(1.e10*mm),tlimitmin(1.e-7*mm), cf(1.001), stepno(0),stepnolastmsc(-1000000),nsmallstep(5), laststep(0.), valueGPILSelectionMSC(NotCandidateForSelection), zmean(0.),samplez(true), range(1.),T0(1.),T1(1.),lambda0(1.),lambda1(-1.), Tlow(0.),alam(1.),blam(1.),dtrl(0.15), lambdam(-1.),clam(1.),zm(1.),cthm(1.), fLatDisplFlag(true), NuclCorrPar (0.0615), FactPar(0.40), facxsi(1.) { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4MultipleScattering52::~G4MultipleScattering52() { if(theTransportMeanFreePathTable) { theTransportMeanFreePathTable->clearAndDestroy(); delete theTransportMeanFreePathTable; } } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void G4MultipleScattering52::BuildPhysicsTable( const G4ParticleDefinition& aParticleType) { // set values of some data members if((aParticleType.GetParticleName() == "e-") || (aParticleType.GetParticleName() == "e+")) { // parameters for e+/e- alfa1 = 1.45 ; alfa2 = 0.60 ; alfa3 = 0.30 ; b = 1. ; xsi = facxsi*2.22 ; c0 = 2.30 ; } else { // parameters for heavy particles alfa1 = 1.10 ; alfa2 = 0.14 ; alfa3 = 0.07 ; b = 1. ; xsi = facxsi*2.70 ; c0 = 1.40 ; } // .............................. Tlow = aParticleType.GetPDGMass(); // tables are built for MATERIALS const G4double sigmafactor = twopi*classic_electr_radius* classic_electr_radius; G4double KineticEnergy,AtomicNumber,AtomicWeight,sigma,lambda; G4double density; // destroy old tables if any if (theTransportMeanFreePathTable) { theTransportMeanFreePathTable->clearAndDestroy(); delete theTransportMeanFreePathTable; } // create table const G4ProductionCutsTable* theCoupleTable= G4ProductionCutsTable::GetProductionCutsTable(); size_t numOfCouples = theCoupleTable->GetTableSize(); theTransportMeanFreePathTable = new G4PhysicsTable(numOfCouples); // loop for materials for (size_t i=0; i GetMaterialCutsCouple(i); const G4Material* material = couple->GetMaterial(); const G4ElementVector* theElementVector = material->GetElementVector(); const G4double* NbOfAtomsPerVolume = material->GetVecNbOfAtomsPerVolume(); const G4int NumberOfElements = material->GetNumberOfElements(); density = material->GetDensity(); // loop for kinetic energy values for (G4int i=0; iGetLowEdgeEnergy(i); sigma = 0.; // loop for element in the material for (G4int iel=0; ielGetZ(); AtomicWeight = (*theElementVector)[iel]->GetA(); sigma += NbOfAtomsPerVolume[iel]* ComputeTransportCrossSection(aParticleType,KineticEnergy, AtomicNumber,AtomicWeight); } sigma *= sigmafactor; lambda = 1./sigma; aVector->PutValue(i,lambda); } theTransportMeanFreePathTable->insert(aVector); } if((aParticleType.GetParticleName() == "e-" ) || (aParticleType.GetParticleName() == "mu+" ) || (aParticleType.GetParticleName() == "Mu" ) || (aParticleType.GetParticleName() == "proton") ) PrintInfoDefinition(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MultipleScattering52::ComputeTransportCrossSection( const G4ParticleDefinition& aParticleType, G4double KineticEnergy, G4double AtomicNumber,G4double AtomicWeight) { const G4double epsfactor = 2.*electron_mass_c2*electron_mass_c2* Bohr_radius*Bohr_radius/(hbarc*hbarc); const G4double epsmin = 1.e-4 , epsmax = 1.e10; const G4double Zdat[15] = { 4., 6.,13.,20.,26.,29.,32.,38.,47., 50.,56.,64.,74.,79.,82. }; const G4double Tdat[23] = {0.0001*MeV,0.0002*MeV,0.0004*MeV,0.0007*MeV, 0.001*MeV,0.002*MeV,0.004*MeV,0.007*MeV, 0.01*MeV,0.02*MeV,0.04*MeV,0.07*MeV, 0.1*MeV,0.2*MeV,0.4*MeV,0.7*MeV, 1.*MeV,2.*MeV,4.*MeV,7.*MeV,10.*MeV,20.*MeV, 10000.0*MeV}; // corr. factors for e-/e+ lambda G4double celectron[15][23] = {{1.125,1.072,1.051,1.047,1.047,1.050,1.052,1.054, 1.054,1.057,1.062,1.069,1.075,1.090,1.105,1.111, 1.112,1.108,1.100,1.093,1.089,1.087,0.7235 }, {1.408,1.246,1.143,1.096,1.077,1.059,1.053,1.051, 1.052,1.053,1.058,1.065,1.072,1.087,1.101,1.108, 1.109,1.105,1.097,1.090,1.086,1.082,0.7925 }, {2.833,2.268,1.861,1.612,1.486,1.309,1.204,1.156, 1.136,1.114,1.106,1.106,1.109,1.119,1.129,1.132, 1.131,1.124,1.113,1.104,1.099,1.098,0.9147 }, {3.879,3.016,2.380,2.007,1.818,1.535,1.340,1.236, 1.190,1.133,1.107,1.099,1.098,1.103,1.110,1.113, 1.112,1.105,1.096,1.089,1.085,1.098,0.9700 }, {6.937,4.330,2.886,2.256,1.987,1.628,1.395,1.265, 1.203,1.122,1.080,1.065,1.061,1.063,1.070,1.073, 1.073,1.070,1.064,1.059,1.056,1.056,1.0022 }, {9.616,5.708,3.424,2.551,2.204,1.762,1.485,1.330, 1.256,1.155,1.099,1.077,1.070,1.068,1.072,1.074, 1.074,1.070,1.063,1.059,1.056,1.052,1.0158 }, {11.72,6.364,3.811,2.806,2.401,1.884,1.564,1.386, 1.300,1.180,1.112,1.082,1.073,1.066,1.068,1.069, 1.068,1.064,1.059,1.054,1.051,1.050,1.0284 }, {18.08,8.601,4.569,3.183,2.662,2.025,1.646,1.439, 1.339,1.195,1.108,1.068,1.053,1.040,1.039,1.039, 1.039,1.037,1.034,1.031,1.030,1.036,1.0515 }, {18.22,10.48,5.333,3.713,3.115,2.367,1.898,1.631, 1.498,1.301,1.171,1.105,1.077,1.048,1.036,1.033, 1.031,1.028,1.024,1.022,1.021,1.024,1.0834 }, {14.14,10.65,5.710,3.929,3.266,2.453,1.951,1.669, 1.528,1.319,1.178,1.106,1.075,1.040,1.027,1.022, 1.020,1.017,1.015,1.013,1.013,1.020,1.0937 }, {14.11,11.73,6.312,4.240,3.478,2.566,2.022,1.720, 1.569,1.342,1.186,1.102,1.065,1.022,1.003,0.997, 0.995,0.993,0.993,0.993,0.993,1.011,1.1140 }, {22.76,20.01,8.835,5.287,4.144,2.901,2.219,1.855, 1.677,1.410,1.224,1.121,1.073,1.014,0.986,0.976, 0.974,0.972,0.973,0.974,0.975,0.987,1.1410 }, {50.77,40.85,14.13,7.184,5.284,3.435,2.520,2.059, 1.837,1.512,1.283,1.153,1.091,1.010,0.969,0.954, 0.950,0.947,0.949,0.952,0.954,0.963,1.1750 }, {65.87,59.06,15.87,7.570,5.567,3.650,2.682,2.182, 1.939,1.579,1.325,1.178,1.108,1.014,0.965,0.947, 0.941,0.938,0.940,0.944,0.946,0.954,1.1922 }, // {45.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239, // paper..... {55.60,47.34,15.92,7.810,5.755,3.767,2.760,2.239, 1.985,1.609,1.343,1.188,1.113,1.013,0.960,0.939, 0.933,0.930,0.933,0.936,0.939,0.949,1.2026 }}; G4double cpositron[15][23] = { {2.589,2.044,1.658,1.446,1.347,1.217,1.144,1.110, 1.097,1.083,1.080,1.086,1.092,1.108,1.123,1.131, 1.131,1.126,1.117,1.108,1.103,1.100,0.7235 }, {3.904,2.794,2.079,1.710,1.543,1.325,1.202,1.145, 1.122,1.096,1.089,1.092,1.098,1.114,1.130,1.137, 1.138,1.132,1.122,1.113,1.108,1.102,0.7925 }, {7.970,6.080,4.442,3.398,2.872,2.127,1.672,1.451, 1.357,1.246,1.194,1.179,1.178,1.188,1.201,1.205, 1.203,1.190,1.173,1.159,1.151,1.145,0.9147 }, {9.714,7.607,5.747,4.493,3.815,2.777,2.079,1.715, 1.553,1.353,1.253,1.219,1.211,1.214,1.225,1.228, 1.225,1.210,1.191,1.175,1.166,1.174,0.9700 }, {17.97,12.95,8.628,6.065,4.849,3.222,2.275,1.820, 1.624,1.382,1.259,1.214,1.202,1.202,1.214,1.219, 1.217,1.203,1.184,1.169,1.160,1.151,1.0022 }, {24.83,17.06,10.84,7.355,5.767,3.707,2.546,1.996, 1.759,1.465,1.311,1.252,1.234,1.228,1.238,1.241, 1.237,1.222,1.201,1.184,1.174,1.159,1.0158 }, {23.26,17.15,11.52,8.049,6.375,4.114,2.792,2.155, 1.880,1.535,1.353,1.281,1.258,1.247,1.254,1.256, 1.252,1.234,1.212,1.194,1.183,1.170,1.0284 }, {22.33,18.01,12.86,9.212,7.336,4.702,3.117,2.348, 2.015,1.602,1.385,1.297,1.268,1.251,1.256,1.258, 1.254,1.237,1.214,1.195,1.185,1.179,1.0515 }, {33.91,24.13,15.71,10.80,8.507,5.467,3.692,2.808, 2.407,1.873,1.564,1.425,1.374,1.330,1.324,1.320, 1.312,1.288,1.258,1.235,1.221,1.205,1.0834 }, {32.14,24.11,16.30,11.40,9.015,5.782,3.868,2.917, 2.490,1.925,1.596,1.447,1.391,1.342,1.332,1.327, 1.320,1.294,1.264,1.240,1.226,1.214,1.0937 }, {29.51,24.07,17.19,12.28,9.766,6.238,4.112,3.066, 2.602,1.995,1.641,1.477,1.414,1.356,1.342,1.336, 1.328,1.302,1.270,1.245,1.231,1.233,1.1140 }, {38.19,30.85,21.76,15.35,12.07,7.521,4.812,3.498, 2.926,2.188,1.763,1.563,1.484,1.405,1.382,1.371, 1.361,1.330,1.294,1.267,1.251,1.239,1.1410 }, {49.71,39.80,27.96,19.63,15.36,9.407,5.863,4.155, 3.417,2.478,1.944,1.692,1.589,1.480,1.441,1.423, 1.409,1.372,1.330,1.298,1.280,1.258,1.1750 }, {59.25,45.08,30.36,20.83,16.15,9.834,6.166,4.407, 3.641,2.648,2.064,1.779,1.661,1.531,1.482,1.459, 1.442,1.400,1.354,1.319,1.299,1.272,1.1922 }, {56.38,44.29,30.50,21.18,16.51,10.11,6.354,4.542, 3.752,2.724,2.116,1.817,1.692,1.554,1.499,1.474, 1.456,1.412,1.364,1.328,1.307,1.282,1.2026 }}; G4double sigma; G4double Z23 = 2.*log(AtomicNumber)/3.; Z23 = exp(Z23); G4double ParticleMass = aParticleType.GetPDGMass(); G4double ParticleKineticEnergy = KineticEnergy ; // correction if particle .ne. e-/e+ // compute equivalent kinetic energy // lambda depends on p*beta .... G4double Mass = ParticleMass ; if((aParticleType.GetParticleName() != "e-") && (aParticleType.GetParticleName() != "e+") ) { G4double TAU = KineticEnergy/Mass ; G4double c = Mass*TAU*(TAU+2.)/(electron_mass_c2*(TAU+1.)) ; G4double w = c-2. ; G4double tau = 0.5*(w+sqrt(w*w+4.*c)) ; KineticEnergy = electron_mass_c2*tau ; Mass = electron_mass_c2 ; } G4double Charge = aParticleType.GetPDGCharge(); G4double ChargeSquare = Charge*Charge/(eplus*eplus); G4double TotalEnergy = KineticEnergy + Mass ; G4double beta2 = KineticEnergy*(TotalEnergy+Mass) /(TotalEnergy*TotalEnergy); G4double bg2 = KineticEnergy*(TotalEnergy+Mass) /(Mass*Mass); G4double eps = epsfactor*bg2/Z23; if (eps epsmax) w1=log(2.*eps)+1./eps-3./(8.*eps*eps); else w1=log((a+1.)/(a-1.))-2./(a+1.); w = 1./((1.-x0)*eps); if (w < epsmin) w2=-log(w)-1.+2.*w-1.5*w*w; else w2 = log((a-x0)/(a-1.))-(1.-x0)/(a-x0); corrnuclsize = w1/w2; corrnuclsize = exp(-FactPar*ParticleMass/ParticleKineticEnergy)* (corrnuclsize-1.)+1.; } // interpolate in AtomicNumber and beta2 // get bin number in Z G4int iZ = 14; while ((iZ>=0)&&(Zdat[iZ]>=AtomicNumber)) iZ -= 1; if (iZ==14) iZ = 13; if (iZ==-1) iZ = 0 ; G4double Z1 = Zdat[iZ]; G4double Z2 = Zdat[iZ+1]; G4double ratZ = (AtomicNumber-Z1)/(Z2-Z1); // get bin number in T (beta2) G4int iT = 22; while ((iT>=0)&&(Tdat[iT]>=KineticEnergy)) iT -= 1; if(iT==22) iT = 21; if(iT==-1) iT = 0 ; // calculate betasquare values G4double T = Tdat[iT], E = T + electron_mass_c2; G4double b2small = T*(E+electron_mass_c2)/(E*E); T = Tdat[iT+1]; E = T + electron_mass_c2; G4double b2big = T*(E+electron_mass_c2)/(E*E); G4double ratb2 = (beta2-b2small)/(b2big-b2small); G4double c1,c2,cc1,cc2,corr; if (Charge < 0.) { c1 = celectron[iZ][iT]; c2 = celectron[iZ+1][iT]; cc1 = c1+ratZ*(c2-c1); c1 = celectron[iZ][iT+1]; c2 = celectron[iZ+1][iT+1]; cc2 = c1+ratZ*(c2-c1); corr = cc1+ratb2*(cc2-cc1); sigma /= corr; } if (Charge > 0.) { c1 = cpositron[iZ][iT]; c2 = cpositron[iZ+1][iT]; cc1 = c1+ratZ*(c2-c1); c1 = cpositron[iZ][iT+1]; c2 = cpositron[iZ+1][iT+1]; cc2 = c1+ratZ*(c2-c1); corr = cc1+ratb2*(cc2-cc1); sigma /= corr; } // nucl. size correction for particles other than e+/e- only at present !!!! if((aParticleType.GetParticleName() != "e-") && (aParticleType.GetParticleName() != "e+") ) sigma /= corrnuclsize; return sigma; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double G4MultipleScattering52::GetContinuousStepLimit( const G4Track& track, G4double, G4double currentMinimumStep, G4double&) { G4double zPathLength,tPathLength; const G4DynamicParticle* aParticle; G4double tau,zt,cz,cz1,grej,grej0; const G4double expmax = 100., ztmax = (2.*expmax+1.)/(2.*expmax+3.) ; const G4double tmax = 1.e20*mm ; G4bool isOut; // this process is not a candidate for selection by default valueGPILSelectionMSC = NotCandidateForSelection; tPathLength = currentMinimumStep; const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple(); materialIndex = couple->GetIndex(); aParticle = track.GetDynamicParticle(); T0 = aParticle->GetKineticEnergy(); lambda0 = (*theTransportMeanFreePathTable) (materialIndex)->GetValue(T0,isOut); range = G4EnergyLossTables::GetRange(aParticle->GetDefinition(), T0,couple); //VI Initialisation at the beginning of the step cthm = 1.; lambda1 = -1.; lambdam = -1.; alam = range; blam = 1.+alam/lambda0 ; zm = 1.; // special treatment near boundaries ? if (boundary && range >= currentMinimumStep) { // step limitation at boundary ? stepno = track.GetCurrentStepNumber() ; if(stepno == 1) { stepnolastmsc = -1000000 ; tlimit = 1.e10 ; } if(stepno > 1) { if(track.GetStep()->GetPreStepPoint()->GetStepStatus() == fGeomBoundary) { stepnolastmsc = stepno ; // if : diff.treatment for small/not small Z if(range > lambda0) tlimit = facrange*range ; else tlimit = facrange*lambda0 ; if(tlimit < tlimitmin) tlimit = tlimitmin ; laststep = tlimit ; if(tPathLength > tlimit) { tPathLength = tlimit ; valueGPILSelectionMSC = CandidateForSelection; } } else if(stepno > stepnolastmsc) { if((stepno - stepnolastmsc) < nsmallstep) { if(tPathLength > tlimit) { laststep *= cf ; tPathLength = laststep ; valueGPILSelectionMSC = CandidateForSelection; } } } } } // do the true -> geom transformation zmean = tPathLength; tau = tPathLength/lambda0 ; if (tau < tausmall || range < currentMinimumStep) zPathLength = tPathLength; else { if(tPathLength/range < dtrl) zmean = lambda0*(1.-exp(-tau)); else { T1 = G4EnergyLossTables::GetPreciseEnergyFromRange( aParticle->GetDefinition(),range-tPathLength,couple); lambda1 = (*theTransportMeanFreePathTable) (materialIndex)->GetValue(T1,isOut); if(T0 < Tlow) alam = range ; else alam = lambda0*tPathLength/(lambda0-lambda1) ; blam = 1.+alam/lambda0 ; if(tPathLength/range < 2.*dtrl) { zmean = alam*(1.-exp(blam*log(1.-tPathLength/alam)))/blam ; lambdam = -1. ; } else { G4double w = 1.-0.5*tPathLength/alam ; lambdam = lambda0*w ; clam = 1.+alam/lambdam ; cthm = exp(alam*log(w)/lambda0) ; zm = alam*(1.-exp(blam*log(w)))/blam ; zmean = zm + alam*(1.-exp(clam*log(w)))*cthm/clam ; } } // sample z zt = zmean/tPathLength ; if (samplez && (zt < ztmax) && (zt > 0.5)) { cz = 0.5*(3.*zt-1.)/(1.-zt) ; if(tPathLength < exp(log(tmax)/(2.*cz))) { cz1 = 1.+cz ; grej0 = exp(cz1*log(cz*tPathLength/cz1))/cz ; do { zPathLength = tPathLength*exp(log(G4UniformRand())/cz1) ; grej = exp(cz*log(zPathLength))*(tPathLength-zPathLength)/grej0 ; } while (grej < G4UniformRand()) ; } else zPathLength = zmean; } else zPathLength = zmean; } // protection against z > lambda if(zPathLength > lambda0) zPathLength = lambda0 ; tLast = tPathLength; zLast = zPathLength; return zPathLength; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4VParticleChange* G4MultipleScattering52::AlongStepDoIt( const G4Track& track,const G4Step& step) { // only a geom path->true path transformation is performed fParticleChange.Initialize(track); G4double geomPathLength = step.GetStepLength(); G4double truePathLength = 0. ; //VI change order of if operators if(geomPathLength == zLast) truePathLength = tLast; else if(geomPathLength/lambda0 < tausmall) truePathLength = geomPathLength; else { if(lambda1 < 0.) truePathLength = -lambda0*log(1.-geomPathLength/lambda0) ; else if(lambdam < 0.) { if(blam*geomPathLength/alam < 1.) truePathLength = alam*(1.-exp(log(1.-blam*geomPathLength/alam)/ blam)) ; else truePathLength = tLast; } else { if(geomPathLength <= zm) { if(blam*geomPathLength/alam < 1.) truePathLength = alam*(1.-exp(log(1.-blam*geomPathLength/alam)/ blam)) ; else truePathLength = 0.5*tLast; lambdam = -1. ; } else { if(clam*(geomPathLength-zm)/(alam*cthm) < 1.) truePathLength = 0.5*tLast + alam*(1.- exp(log(1.-clam*(geomPathLength-zm)/(alam*cthm)))/clam) ; else truePathLength = tLast ; } } // protection .... if(truePathLength > tLast) truePathLength = tLast ; } //VI truePath length cannot be smaller than geomPathLength if (truePathLength < geomPathLength) truePathLength = geomPathLength; fParticleChange.ProposeTrueStepLength(truePathLength); return &fParticleChange; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4VParticleChange* G4MultipleScattering52::PostStepDoIt( const G4Track& trackData, const G4Step& stepData) { // angle distribution parameters const G4double kappa = 2.5, kappapl1 = kappa+1., kappami1 = kappa-1. ; fParticleChange.Initialize(trackData); G4double truestep = stepData.GetStepLength(); const G4DynamicParticle* aParticle = trackData.GetDynamicParticle(); G4double KineticEnergy = aParticle->GetKineticEnergy(); G4double Mass = aParticle->GetDefinition()->GetPDGMass() ; // do nothing for stopped particles ! if(KineticEnergy > 0.) { // change direction first ( scattering ) G4double cth = 1.0 ; G4double tau = truestep/lambda0 ; if (tau < tausmall) cth = 1.; else if(tau > taubig) cth = -1.+2.*G4UniformRand(); else { if(lambda1 > 0.) { if(lambdam < 0.) tau = -alam*log(1.-truestep/alam)/lambda0 ; else tau = -log(cthm)-alam*log(1.-(truestep-0.5*tLast)/alam)/lambdam ; } if(tau > taubig) cth = -1.+2.*G4UniformRand(); else { const G4double amax=25. ; const G4double tau0 = 0.02 ; const G4double c_highland = 13.6*MeV, corr_highland=0.038 ; const G4double x1fac1 = exp(-xsi) ; const G4double x1fac2 = (1.-(1.+xsi)*x1fac1)/(1.-x1fac1) ; const G4double x1fac3 = 1.3 ; // x1fac3 >= 1. !!!!!!!!! G4double a,x0,c,xmean1,xmean2, xmeanth,prob,qprob ; G4double ea,eaa,b1,bx,eb1,ebx,cnorm1,cnorm2,f1x0,f2x0,w ; // for heavy particles take the width of the cetral part // from the Highland formula // (Particle Physics Booklet, July 2002, eq. 26.10) if(Mass > electron_mass_c2) // + other conditions (beta, x/X0,...?) { G4double Q = fabs(aParticle->GetDefinition()->GetPDGCharge()) ; G4double X0 = trackData.GetMaterialCutsCouple()-> GetMaterial()->GetRadlen() ; G4double xx0 = truestep/X0 ; G4double betacp = KineticEnergy*(KineticEnergy+2.*Mass)/ (KineticEnergy+Mass) ; G4double theta0=c_highland*Q*sqrt(xx0)* (1.+corr_highland*log(xx0))/betacp ; if(theta0 > tausmall) a = 0.5/(1.-cos(theta0)) ; else a = 1./(theta0*theta0) ; } else { w = log(tau/tau0) ; if(tau < tau0) a = (alfa1-alfa2*w)/tau ; else a = (alfa1+alfa3*w)/tau ; } xmeanth = exp(-tau) ; x0 = 1.-xsi/a ; if(x0 < -1.) x0 = -1. ; if(x0 == -1.) { // 1 model fuction only // in order to have xmean1 > xmeanth -> qprob < 1 if((1.-1./a) < xmeanth) a = 1./(1.-xmeanth) ; if(a*(1.-x0) < amax) ea = exp(-a*(1.-x0)) ; else ea = 0. ; eaa = 1.-ea ; xmean1 = 1.-1./a+(1.-x0)*ea/eaa ; c = 2. ; b1 = b+1. ; bx = b1 ; eb1 = b1 ; ebx = b1 ; xmean2 = 0. ; prob = 1. ; qprob = xmeanth/xmean1 ; } else { // 2 model fuctions // in order to have xmean1 > xmeanth if((1.-x1fac2/a) < xmeanth) { a = x1fac3*x1fac2/(1.-xmeanth) ; if(a*(1.-x0) < amax) ea = exp(-a*(1.-x0)) ; else ea = 0. ; eaa = 1.-ea ; xmean1 = 1.-1./a+(1.-x0)*ea/eaa ; } else { ea = x1fac1 ; eaa = 1.-x1fac1 ; xmean1 = 1.-x1fac2/a ; } // from continuity of the 1st derivatives c = a*(b-x0) ; if(a*tau < c0) c = c0*(b-x0)/tau ; if(c == 1.) c=1.000001 ; if(c == 2.) c=2.000001 ; if(c == 3.) c=3.000001 ; b1 = b+1. ; bx=b-x0 ; eb1=exp((c-1.)*log(b1)) ; ebx=exp((c-1.)*log(bx)) ; xmean2 = (x0*eb1+ebx+(eb1*bx-b1*ebx)/(2.-c))/(eb1-ebx) ; cnorm1 = a/eaa ; f1x0 = cnorm1*exp(-a*(1.-x0)) ; cnorm2 = (c-1.)*eb1*ebx/(eb1-ebx) ; f2x0 = cnorm2/exp(c*log(b-x0)) ; // from continuity at x=x0 prob = f2x0/(f1x0+f2x0) ; // from xmean = xmeanth qprob = (f1x0+f2x0)*xmeanth/(f2x0*xmean1+f1x0*xmean2) ; } // protection against prob or qprob > 1 and // prob or qprob < 0 // *************************************************************** if((qprob > 1.) || (qprob < 0.) || (prob > 1.) || (prob < 0.)) { // this print possibility has been left intentionally // for debugging purposes .......................... G4bool pr = false ; // pr = true ; if(pr) { const G4double prlim = 0.10 ; if((fabs((xmeanth-xmean2)/(xmean1-xmean2)-prob)/prob > prlim) || ((xmeanth-xmean2)/(xmean1-xmean2) > 1.) || ((xmeanth-xmean2)/(xmean1-xmean2) < 0.) ) { G4cout.precision(5) ; G4cout << "\nparticle=" << aParticle->GetDefinition()-> GetParticleName() << " in material " << trackData.GetMaterialCutsCouple()-> GetMaterial()->GetName() << " with kinetic energy " << KineticEnergy << " MeV," << G4endl ; G4cout << " step length=" << truestep << " mm" << G4endl ; G4cout << "p=" << prob << " q=" << qprob << " -----> " << "p=" << (xmeanth-xmean2)/(xmean1-xmean2) << " q=" << 1. << G4endl ; } } qprob = 1. ; prob = (xmeanth-xmean2)/(xmean1-xmean2) ; } // ************************************************************** // sampling of costheta if(G4UniformRand() < qprob) { if(G4UniformRand() < prob) cth = 1.+log(ea+G4UniformRand()*eaa)/a ; else cth = b-b1*bx/exp(log(ebx-G4UniformRand()*(ebx-eb1))/(c-1.)) ; } else cth = -1.+2.*G4UniformRand() ; } } G4double sth = sqrt(1.-cth*cth); G4double phi = twopi*G4UniformRand(); G4double dirx = sth*cos(phi), diry = sth*sin(phi), dirz = cth; G4ParticleMomentum ParticleDirection = aParticle->GetMomentumDirection(); G4ThreeVector newDirection(dirx,diry,dirz); newDirection.rotateUz(ParticleDirection); fParticleChange.ProposeMomentumDirection(newDirection.x(), newDirection.y(), newDirection.z()); if (fLatDisplFlag) { // compute mean lateral displacement, only for safety > tolerance ! G4double safetyminustolerance = stepData.GetPostStepPoint()->GetSafety(); G4double rmean, etau; if (safetyminustolerance > 0.) { if (tau < tausmall) rmean = 0.; else if(tau < taulim) rmean = kappa*tau*tau*tau*(1.-kappapl1*tau/4.)/6.; else { if(tau0.) rmean = 2.*lambda0*sqrt(rmean/3.); else rmean = 0.; // for rmean > 0) only if (rmean > 0.) { if (rmean>safetyminustolerance) rmean = safetyminustolerance; // sample direction of lateral displacement phi = twopi*G4UniformRand(); dirx = cos(phi); diry = sin(phi); dirz = 0.; G4ThreeVector latDirection(dirx,diry,dirz); latDirection.rotateUz(ParticleDirection); // compute new endpoint of the Step G4ThreeVector newPosition = stepData.GetPostStepPoint()->GetPosition() + rmean*latDirection; G4Navigator* navigator = G4TransportationManager::GetTransportationManager() ->GetNavigatorForTracking(); navigator->LocateGlobalPointWithinVolume(newPosition); fParticleChange.ProposePosition(newPosition); } } } } return &fParticleChange; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void G4MultipleScattering52::PrintInfoDefinition() { G4String comments = " Tables of transport mean free paths."; comments += "\n New model of MSC , computes the lateral \n"; comments += " displacement of the particle , too."; G4cout << G4endl << GetProcessName() << ": " << comments << "\n PhysicsTables from " << G4BestUnit(LowestKineticEnergy ,"Energy") << " to " << G4BestUnit(HighestKineticEnergy,"Energy") << " in " << TotBin << " bins. \n"; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......