c Stand Juli 2000 c c fuer Version TrimSp7L c die entsprechenden Arrays wurden von 3 Layern auf 7 Layern erweitert c fuer Version TrimSp7L-test c es werden 1000 Stuetzstellen verwendet c c program trvmc cc c static trim.sp for reflection and sputtering of a c multi-component target c c w.eckstein ipp/op d-85748 garching frg c c vectorized version to run on a cray or vp-200 c (established at ipp garching and ipp nagoya) c c the compilation on workstations must be done with double c precision (IBM : xlf -qautodbl=dblpad) c c calculated data on disc c c c c program description november 1995 c see w.eckstein , computer simulation of ion-solid interactions, c springer series in material science, vol.10, c springer, heidelberg, berlin 1991 c c c input data (see table 6.1 in book above) c c 1. record [100 format(2F7.2,1F12.2,7F9.2)] c z1 atomic number of projectile c m1 mass (in amu) of projectile c e0 energy of projectile (in ev) c if e0.gt.0. the projectile has the fixed c energy e0 c if e0.lt.0. a maxwellian velocity distribution for c the projectile is assumed with an ion c temperature ti=-e0 c if e0.lt.0.and alpha.lt.0. a maxwellian energy c distribution for the projectile is assumed with an ion c temperature ti=-e0 c esig sigma of a gaussian energy distribution (in eV) c if esig.eq.0. then the particle energy is e0 c if not then a gaussian energy distribution is used c alpha angle of incidence (in degree) with respect to the c surface normal c if alpha.ge.0. the projectile impinges at the fixed c angle of incidence alpha c if alpha.gt.90. the projectile starts inside the solid c with an angle alpha (x0 should be larger than 0.) c if alpha.eq.-1. a random distribution of the projectile c is assumed c if alpha.lt.-2. a cosine distribution for the projectile c is assumed c alphasig sigma of a gaussian distribution for alpha. If alpha >= 0. and c alphasig > 0. then a gaussian distribution for the angle of c incidence is used. c ef cutoff energy of projectiles (in ev) c ef must be larger than zero c esb surface binding energies for projectiles (in ev) c sheath sheath potential (in ev) c typically 3kT : sheath = 3 |e0| c erc recoil cutoff energy; it is usually equal to the c surface binding energy (sbe); it can be applied to c cases, where erc.gt.sbe c c 2. record [101 format(I9,3F8.0,1F7.2,1F7.0,2F7.2,6I4,I3)] c nh number of projectiles c ri initial random number c necessary for an exact repetition of a calculation c ri2 initial random number for a gaussion energy distribution c ri3 initial random number for a gaussion distribution of alpha c x0 starting depth of projectile (in a) c if x0 is zero or negative the projectile starts at c x=-su=-2.*pmax. the uppermost target atoms are at c x=0. they do not form a complete layer, they are c distributed randomly c rd depth to which recoils are followed c rd = 50 usually sufficient for sputtering if the c projectile energy is not too high c rd = 100 cw for following the full cascade c cw depth interval for calculated depth distributions (in A) c ca correction factor to the firsov screening length c for collisions between projectile and target atom c (only for application of moliere-potential) c usually ca = 1.00 c kk0 maximum order of weak (simultaneous) collisions c between projectiles and target atoms. kk0 must be c between 0 and 4 (0 means no weak collisions included) c kk0r maximum order of weak (simultaneous) collisions bet- c ween target atoms. kk0r must be between 0 and 4 c kdee1 inelastic energy loss model for projectiles c =1 nonlocal, lindhard-scharff c =2 local, oen-robinson c =3 equipartition of 1 and 2 c =4 nonlocal, andersen-ziegler tables for hydrogen c =5 nonlocal, ziegler tables for helium c kdee2 inelastic energy loss for target atoms c =1 nonlocal, lindhard-scharff c =2 local, oen-robinson c =3 equipartition of 1 and 2 c ipot interaction potential between projectile and target atom c =1 krypton-carbon potential c =2 moliere potential c =3 ziegler-biersack-littmark potential c ipotr interaction potential between target atoms c =1 krypton-carbon potential c =2 moliere potential c =3 ziegler-biersack-littmark potential c irl =0 no recoils are generated (no sputtering); to speed c up the calculation if only ranges are of interest c c 3. record(for each of three layers) [102 format(3F9.2,6F7.2)] c dx(i) layer thickness (in A) c rho(i) layer density (in g cm{-3}) c ck(i) correction factor to the lindhard-scharff nonlocal c inelastic energy loss of the projectile c c records 4 - 14 appear three times for each of the three c possible layers c c 4. record [103 format(5F9.4)] c z(i,j) atomic number of target atoms (j<=5) in layer i c c 5. record [103 format(5F9.4)] c m(i,j) mass (in amu) of target atoms (j<=5) in layer i c c 6. record [103 format(5F9.4)] c c(i,j) concentration of target atoms (j<=5) in layer i c c 7. record [103 format(5F9.4)] c sbe(i,j) surface binding energy of target atoms (j<=5) c in layer i c c 8. record [103 format(5F9.4)] c ed(i,j) displacement energy of target atoms (j<=5) in layer i c c 9. record [103 format(5F9.4)] c be(i,j) bulk binding energy of target atoms (j<=5) in layer i c usually always zero c c 10.-14.record constants for the nonlocal inelastic energy c loss given by the andersen ziegler tables for c hydrogen or by the ziegler tables for helium c 10. record [107 format(5F12.6)] c ch1(i,j) value A-1 of the ziegler tables c 11. record [107 format(5F12.6)] c ch2(i,j) value A-2 of the ziegler tables c 12. record [107 format(5F12.6)] c ch3(i,j) value A-3 of the ziegler tables c 13. record [107 format(5F12.6)] c ch4(i,j) value A-4 of the ziegler tables c 14. record [107 format(5F12.6)] c ch5(i,j) value A-5 of the ziegler tables c c c c additional remarks c c tt target thickness should be chosen larger than the c range of projectiles if transmission is not of c interest c c ed for sputtering and backscattering calculations ed is c not of importance, only in determination of damage c profiles. ed is of the order of 30 ev c c sheath a sheath potential is only used for a maxwellian c distribution of projectiles (e0.lt.0.) c c ef for low projectile energies (lt 1000 ev) and esb=0. c ef should be of the order of 0.2 ev. with increasing c energy ef can be increased to save computing time, c but not above sbe (for sputtering data) c c ca the use of ca.ne.1 is only reasonable for the c application of the moliere potential c c ri with the same initial random number ri the calculation c will be exactly reproduced if nothing has been changed c c esb this value is zero for the noble gases but esb should c be larger than zero if the projectile is an active c chemically species. esb=sbe for selfsputtering cal- c culations c c be this value should be taken as zero (see j.p.biersack, c w.eckstein appl.phys.34(1984)73) c c sbe the heat of sublimation should be used c c kk0 usually kk0=2 is used. only for very heavy particles c kk0 may be increased to 3 or even 4 but on the ex- c pense of increasing computing time c c kk0r the same applies as for kk0 c c kdee1 usually kdee1=3 is used. kdee1=1,2,or 3 can only be c used at energies below the stopping power maximum. c for hydrogen kdee1=4 must be used for projectile c energies above 10 kev, for helium kdee1=5 must be c used for energies above 50 kev c c kdee2 usually kdee2=3 is used. the stopping power maximum c for heavy atoms is well above 100 kev, so that only c kdee2=1,2,and 3 is available c c c c output data c c calculated constants c in the case of a maxwellian distribution three values c are given c ti ion temperature c zarg adjustment factor for the projectile mass c velc adjustment factor for the sheath potential c c hlm distance above the surface (x=0.) , where an inelastic c energy loss can be taken into account. usually c hlm=0., but if inel.ne.0 then hlm=-.5*lm c hlmt distance above the surface (x=tt) , where an inelastic c energy loss can be taken into account. usually c hlmt=tt, but if inel.ne.0 then hlmt=tt+0.5*lm c su1 su=2.*pmax(1) c su2 su=pmax(1)*(1.kk0) c sur su=pmax(1)*(1.kk0r) c su su=max(su1,su2,sur) , distance above the front surface, where c collisions are taken into account c sut sut=tt+su , su calculated with pmax(l) c distance outside the backsurface, where c collisions are taken into account c xc xc=-su , starting point above the surface c rt rt=tt-rd , see rd c inel inel=0 : no electronic energy loss outside the bulk c inel=1 : electronic energy loss outside the bulk for a c distance 0.5*lm , see hlm and hlmt c l number of layers c lj number of target species c c values for each layer c eps0(i) reduced projectile energy c z2(i) mean atomic number of layer i c m2(i) mean atomic mass of layer i c arho(i) density (atoms/A**3}) c lm(i) mean distance between collisions (A) c pmax(i) maximum impact parameter (A) c asig(i) constant for inelastic energy loss (atoms/A**2) c sb(i) mean surface binding energy of layer i c xx(i)target thickness (A) of layer i c n(i) number of target species in layer i c a1(i) screening length for projectiles c kor1(i) constant in the local oen-robinson inelastic energy c loss for projectiles c a(i) screening length for target atoms c kor(i) constant in the local oen-robinson inelastic energy c loss for target atoms c cc f1 constant to transfer the energy of a projectile into cc a reduced energy (eps) cc f(i,j) constant to transfer the energy of a target atom into cc a reduced energy (epsr) cc ec maximum transferable energy between projectile and cc target atom c sfe minimum of the mean surface binding energies of c first and last layer (l=3); for one layer (l=1) c sfe=sb(1). sb(l) is the mean binding energy of layer (l) c c values giving information about some loops in the calculation c nproj number how often the projectile loop is entered c kib number of backscattered projectiles which cannot overcome c the surface barrier (esb) c kit number of transmitted projectiles which cannot overcome c the surface barrier (esb) c maxa maximum number of simultaneously processed target atoms c in the vectorized target collision loop c nall number of times the target atom collision loop has to c be passed c npa number of primary knockon atoms c nsa number of secondary knockon atoms c kis number of sputtered target atoms which cannot overcome c the surface barrier (sbe) c kist number of transmission sputtered target atoms which c cannot overcome the surface barrier (sbe) c c c calculated results c c iim number of transmitted projectiles c eim energy of all transmitted projectiles c ib number of reflected projectiles c eb energy of all reflected projectiles c it number of transmitted projectiles c et energy of all transmitted projectiles c ibsp number of backsputtered target atoms c ebsp energy of all backsputtered target atoms c itsp number of transmission sputtered target atoms c etsp energy of all transmission sputtered target atoms c c projectiles c avcsum mean number of collisions c avcdis mean number of collisions c (transferred energy > displacement energy) c avcsms mean number of collisions c (transferred energy > mean surface binding energy) c c penetration of projectiles c c fix0 mean penetration depth , 1. moment c sex variance of the depth distribution c thx skewness of the depth distribution c fox kurtosis of the depth distribution c sigmax square root of the variance c dfix0 error of mean depth c dsex error of the variance c dthx error of the skewness c c fir0 mean lateral spread of the penetration c ser variance of the spread distribution c thr skewness of the spread distribution c for kurtosis of the spread distribution c sigmar square root of the variance c dfir0 error of mean spread c dser error of the variance c dthr error of the skewness c c fip0 mean pathlength c sep variance of the pathlength distribution c thp skewness of the pathlength distribution c fop kurtosis of the pathlength distribution c sigmap square root of the variance c dfip0 error of mean pathlength c dsep error of the variance c dthp error of the skewness c c avnli mean elastic loss c vanli variance of the elastic loss distribution c signli square root of the variance c dfinli error in the mean elastic loss c c avili mean electronic loss c vaili variance of the electronic loss distribution c sigili square root of the variance c dfiili error in the mean electronic loss c c fie0 mean nuclear energy loss c see variance of the nuclear energy loss distribution c the skewness of the nuclear energy loss distribution c foe kurtosis of the nuclear energy loss distribution c sigmae square root of the variance c dfie0 error of mean nuclear energy loss c dsee error of the variance c dthe error of the skewness c c fiw0 mean nuclear energy loss in weak collisions c sew variance c thw skewness c fow kurtosis c sigmaw square root of the variance c dfiw0 error of mean c dsew error of the variance c dthw error of the skewness c c fii0 mean electronic energy loss c sei variance c thi skewness c foi kurtosis c sigmai square root of the variance c dfii0 error of mean c dsei error of the variance c dthi error of the skewness c c fis0 mean nuclear energy loss in subthreshold collisions c ses variance c ths skewness c fos kurtosis c sigmas square root of the variance c dfis0 error of mean c dses error of the variance c dths error of the skewness c c x1sd 1.moment of the penetration depth distribution c x2sd 2.moment of the penetration depth distribution c x3sd 3.moment of the penetration depth distribution c x4sd 4.moment of the penetration depth distribution c x5sd 5.moment of the penetration depth distribution c x6sd 6.moment of the penetration depth distribution c c recoiles created by recoils normalized to the number of c projectiles (hn) c acsumr mean number of collisions c acdisr mean number of collisions c (transferred energy > displacement energy) c acsber mean number of collisions c (transferred energy > mean surface binding energy) c c recoiles created by recoils normalized to the number of c knockons (npa+nsa) c acsur mean number of collisions c acdir mean number of collisions c (transferred energy > displacement energy) c acsbr mean number of collisions c (transferred energy > mean surface binding energy) c acdr11 mean number of collisions between species 1 and 1 in c layer 1 (transferred energy > displacement energy) c acdr12 mean number of collisions between species 1 and 2 in c layer 1 (transferred energy > displacement energy) c acdr21 mean number of collisions between species 2 and 1 in c layer 1 (transferred energy > displacement energy) c acdr22 mean number of collisions between species 2 and 2 in c layer 1 (transferred energy > displacement energy) c c depth distributions (projectiles) c d1,d2 lower and upper limit of depth interval c 100 intervals, in steps of cw (in A) c irp(i) number of implanted projectiles in interval i c , 'particles' c rirp(i) implantation profile normalized to all implanted c projectiles (norm.distr) , 'norm.depth' c ipl(i) number of projectiles with pathlength in interval i c , 'pathlength' c ion(i) electronic energy loss (ev) , 'inloss' c dent(i) total nuclear energy loss (ev), (central collision + c weak collisions) , 'teloss' c dmgn(i) nuclear energy loss (ev), (central collision only) c , 'elloss' c elgd(i) nuclear energy loss (ev) larger than the displacement c energy ed (central collision only) , 'damage' c phon(i) nuclear energy loss smaller than the displacement c energy (ev), energy into phonons , 'phonon' c casmot(i) defect producing energy (ev) (see biersack and c haggmark nim 174 (1980) 257) , 'cascad' c icdt(i) number of displacements (collisions gt ed) , 'dpa' c ele(i,j) nuclear energy loss of projectile to species j c (central collision only) c eli(i,j) electronic energy loss of species j c eld(i,j) nuclear energy loss larger than the displacement c energy for projectiles to species j c (central collision only) c elp(i,j) nuclear energy loss lower than the displacement c energy for species j (central collision only) c icd(i,j) number of displacements of species j c c depth distributions (recoils) c ionr(i) inelastic energy loss (ev) by target atoms , 'inloss' c dentr(i) total nuclear energy loss (ev) , (central collision + c weak collisions) , 'teloss' c dmgnr(i) elastic energy loss (ev) by target atoms (central c collisions only) , 'elloss' c eler(i,j) nuclear energy loss of recoils to species j c (central collision only) c elir(i,j) electronic energy loss of species j c eldr(i,j) nuclear energy loss larger than the displacement c energy for species j (central collision only) c elpr(i,j) nuclear energy loss lower than the displacement c energy for species j (central collision only) c icdr(i,j) number of displacements of species j c icdiri(i,j,k) number of displacements of species k by species j c c the last line gives the sum over the distributions c c c backscattered projectiles c c rn particle reflection coefficient c emean mean energy of backscattered projectiles c emeanr relative mean energy of backscattered projectiles c re energy reflection coefficient c c fib0 mean energy of backscattered projectiles c seb variance c thb skewness c fob kurtosis c sigmab square root of the variance c dfib0 error of mean c dseb error of the variance c dthb error of the skewness c c fipb0 mean pathlength of backscattered projectiles c sepb variance c tphb skewness c fpob kurtosis c sigmpb square root of the variance c dfipb0 error of mean c dsepb error of the variance c dthpb error of the skewness c c avnlb mean elastic loss c vanlb variance of the elastic loss distribution c signlb square root of the variance c dfinlb error in the mean elastic loss c c avilb mean electronic loss c vailb variance of the electronic loss distribution c sigilb square root of the variance c dfiilb error in the mean electronic loss c c eb1b 1.moment of the energy distr. of backsc. proj. c eb2b 2.moment of the energy distr. of backsc. proj. c eb3b 3.moment of the energy distr. of backsc. proj. c eb4b 4.moment of the energy distr. of backsc. proj. c eb5b 5.moment of the energy distr. of backsc. proj. c eb6b 6.moment of the energy distr. of backsc. proj. c c eb1bl 1.logarithmic moment of the energy distr. c eb2bl 2.logarithmic moment of the energy distr. c eb3bl 3.logarithmic moment of the energy distr. c eb4bl 4.logarithmic moment of the energy distr. c eb5bl 5.logarithmic moment of the energy distr. c eb6bl 6.logarithmic moment of the energy distr. c c pl1s 1.moment of the pathlength distribution c pl2s 2.moment of the pathlength distribution c pl3s 3.moment of the pathlength distribution c pl4s 4.moment of the pathlength distribution c pl5s 5.moment of the pathlength distribution c pl6s 6.moment of the pathlength distribution c c c transmitted projectiles c c tn particle transmission coefficient c emeant mean energy of transmitted projectiles c tmeanr relative mean energy of transmitted projectiles c te energy transmission coefficient c c fit0 mean energy of transmitted projectiles c set variance c tht skewness c fot kurtosis c sigmat square root of the variance c dfit0 error of mean c dset error of the variance c dtht error of the skewness c c fipt0 mean pathlength of transmitted projectiles c sept variance c tpht skewness c fpot kurtosis c sigmpt square root of the variance c dfipt0 error of mean c dsept error of the variance c dthpt error of the skewness c c avnlt mean elastic loss c vanlt variance of the elastic loss distribution c signlt square root of the variance c dfinlt error in the mean elastic loss c c avilt mean electronic loss c vailt variance of the electronic loss distribution c sigilt square root of the variance c dfiilt error in the mean electronic loss c c c backsputtered target atoms (for each species j) c c ispa total sputtering yield c espa total sputtered energy c ispal(i) sputtering yield of layer i c espal(i) sputtered energy of layer i c spy(j) sputtering yield of species j c spe(j) sputtered energy of species j c rey(j) relative mean energy of sputtered target atoms c emsp(j) mean energy of sputtered target atoms c c 4 different processes for sputtering c ispip(j) number of primary knock-on atoms, ion in c rip(j) fraction of primary knock-on atoms, ion in c normalized to all sputtered atoms c ripj(j) fraction of primary knock-on c normalized to sputtered atoms of species j c espip(j) energy of primary knock-on atoms, ion in c reip(j) fraction of energy of primary knock-on atoms, ion in c normalized to energy of all sputtered atoms c reipj(j) fraction of energy of primary knock-on atoms, ion in c normalized to energy of sputtered atom species j c espmip(j) mean energy of process (pka, ion in) c ispis(j) number of secondary knock-on atoms, ion in c ris(j) fraction of secondary knock-on atoms, ion in c normalized to all sputtered atoms c risj(j) fraction of secondary knock-on atoms, ion in c normalized to sputtered atoms of species j c espis(j) energy of secondary knock-on atoms,ion in c reis(j) fraction of energy of secondary knock-on atoms, ion in c normalized to energy of all sputtered atoms c reisj(j) fraction of energy of secondary knock-on atoms, ion in c normalized to energy of sputtered atom species j c espmis(j) mean energy of process (ska, ion in) c ispop(j) number of primary knock-on atoms, ion out c rop(j) fraction of primary knock-on atoms, ion out c normalized to all sputtered atoms c ropj(j) fraction of primary knock-on atoms, ion out c normalized to sputtered atoms of species j c espop(i) energy of primary knock-on atoms, ion out c reop(j) fraction of energy of primary knock-on atoms, ion out c normalized to energy of all sputtered atoms c reopj(j) fraction of energy of primary knock-on atoms, ion out c normalized to energy of sputtered atom species j c espmop(j) mean energy of process (pka, ion out) c ispos(j) number of secondary knock-on atoms, ion out c ros(j) fraction of secondary knock-on atoms, ion out c normalized to all sputtered atoms c rosj(j) fraction of secondary knock-on atoms, ion out c normalized to sputtered atoms of species j c espos(j) energy of secondary knock-on atoms, ion out c reos(j) fraction of energy of secondary knock-on atoms, ion out c normalized to energy of all sputtered atoms c reosj(j) fraction of energy of secondary knock-on atoms, ion out c normalized to energy of sputtered atom species j c espmos(j) mean energy of process (ska, ion out) c c fies0 mean energy of backsputtered target atoms c sees variance c thes skewness c foes kurtosis c sigmes square root of the variance c dfies0 error of mean c dsees error of the variance c dthes error of the skewness c c ebsp1 1.moment of the energy distribution c ebsp2 2.moment of the energy distribution c ebsp3 3.moment of the energy distribution c ebsp4 4.moment of the energy distribution c ebsp5 5.moment of the energy distribution c ebsp6 6.moment of the energy distribution c c ebsp1l 1.logarithmic moment of the energy distribution c ebsp2l 2.logarithmic moment of the energy distribution c ebsp3l 3.logarithmic moment of the energy distribution c ebsp4l 4.logarithmic moment of the energy distribution c ebsp5l 5.logarithmic moment of the energy distribution c ebsp6l 6.logarithmic moment of the energy distribution c c c transmission sputtered target atoms (for each species j) c c ispat total sputtering yield c espat total sputtered energy c ispalt(i) sputtering yield of layer i c espalt(i) sputtered energy of layer i c spyt(j) sputtering yield of species j c spet(j) sputtered energy of species j c reyt(j) relative mean energy of sputtered target atoms c emspt(j) mean energy of sputtered target atoms c c 4 different processes for sputtering c ispipt(j) number of primary knock-on atoms, ion in c ript(j) fraction of primary knock-on atoms, ion in c normalized to all sputtered atoms c espipt(j) energy of primary knock-on atoms, ion in c reipt(j) fraction of energy of primary knock-on atoms, ion in c normalized to energy of all sputtered atoms c espmipt(j) mean energy of process (pka, ion in) c ispist(j) number of secondary knock-on atoms, ion in c rist(j) fraction of secondary knock-on atoms, ion in c normalized to all sputtered atoms c espist(j) energy of secondary knock-on atoms,ion in c reist(j) fraction of energy of secondary knock-on atoms, ion in c normalized to energy of all sputtered atoms c espmist(j) mean energy of process (ska, ion in) c ispopt(j) number of primary knock-on atoms, ion out c ropt(j) fraction of primary knock-on atoms, ion out c normalized to all sputtered atoms c espopt(i) energy of primary knock-on atoms, ion out c reopt(j) fraction of energy of primary knock-on atoms, ion out c normalized to energy of all sputtered atoms c espmopt(j) mean energy of process (pka, ion out) c ispost(j) number of secondary knock-on atoms, ion out c rost(j) fraction of secondary knock-on atoms, ion out c normalized to all sputtered atoms c espost(j) energy of secondary knock-on atoms, ion out c reost(j) fraction of energy of secondary knock-on atoms, ion out c normalized to energy of all sputtered atoms c espmost(j) mean energy of process (ska, ion out) c c c angular distributions c c a(i) 20 equal cosine intervals of the polar exit angle c kadb(i) number of reflected projectiles in interval i c rkadb(i) fraction of reflected projectiles in interval i c kadt(i) number of transmitted projectiles in interval i c rkadt(i) fraction of transmitted projectiles in interval i c kads(i) number of all sputtered target atoms in interval i c rkads(i) fraction of all sputtered target atoms in interval i c kadsl(i,j) number of sputtered atoms from layer j in interval i c rkadsl(i,j) fraction of sputtered atoms from layer j in interval i c kadsj(i,j) number of sputtered species j in interval i c rkadsj(i,j) fraction of sputtered species j in interval i c kadst(i) number of all transmission sputtered atoms in interval i c rkadst(i) fraction of all transm. sputtered atoms in interval i c kdstl(i,j) number of transm. sputtered atoms from layer j in interval i c rkdslt(i,j) fraction of transm. sputtered atoms from layer j in interval i c kdstj(i,j) number of transm. sputtered species j in interval i c rkdstj(i,j) fraction of transm. sputtered species j in interval i cc kadrip(i) number of sputtered primary knock-on atoms, ion in cc rkdrip(i) fraction of sputtered primary knock-on atoms, ion in cc kadris(i) number of sputtered secondary knock-on atoms, ion in cc rkdris(i) fraction of sputtered secondary knock-on atoms, ion in cc kadrop(i) number of sputtered primary knock-on atoms, ion out cc rkdrop(i) fraction of sputtered primary knock-on atoms, ion out cc kadros(i) number of sputtered secondary knock-on atoms, ion out cc rkdros(i) fraction of sputtered secondary knock-on atoms, ion out c c c 2- and 3-dimensional distributions c c the first row and the first column give the upper limit of c the interval c the last row gives the sum over the columns and c the last column gives the sum over the rows c the matrix-output is only given , if more than 10000 particles c are sputtered, reflected or transmitted c c backsputtered target atoms c c meas(i,j,k) number of sputtered target atoms versus energy c (column) and polar emission angle (row) c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval j: cosine interval of 0.05, c 20 intervals c 10 target species k (2 layers) c in the last interval (99-100 ev) all sputtered c target atoms with energies above 100 ev are c included c dimension : meas(102,22,10) c c mease(i,j,k) number of sputtered target atoms versus energy c (column) and polar emission angle (row) c energy interval i: 1 ev , 100 intervals c polar angle interval j: cosine interval of 0.05, c 20 intervals c 10 target species k (2 layers) c in the last interval (99-100 ev) all sputtered c target atoms with energies above 100 ev are c included c dimension : meas(102,22,10) c c magsa(i,j,k) number of sputtered target atoms versus azimuthal c (column) and polar (row) emission angles c azimuthal angle interval i: 3 deg, 60 intervals c polar angle interval j: 3 deg, 30 intervals c 10 target species k (2 layers) c dimension : magsa(62,32,10) c c measl(i,j,k) number of sputtered target atoms versus energy c (column) and polar emission angle (row) c energy interval i: a decade is divided into 12 c equal logarithmic intervals from 0.1 to 10**5 ev c polar angle interval j: cosine intervals of 0.05, c 20 intervals c 10 target species k (2 layers) c the last column gives the number of sputtered c atoms per ev, solid angle, and projectile c dimension : measl(75,21,10) c c easl(i,j) logarithmic energy distribution (intensity per c logarithmic energy interval) c energy interval i: a decade is divided into 12 c equal logarithmic intervals from 0.1 to 10**5 ev c 10 target species j (2 layers) c dimension : easl(75,10) c c meags(i,j,k,l) number of sputtered target atoms versus energy c (column), polar (row) and azimuthal (matrix) c emission angles c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval k: cosine interval of 0.05, c 20 intervals c azimuthal angle interval j: 15 deg, 12 matrices c 10 target species l (2 layers) c these matrices are not calculated, if the angle c of incidence, alpha, is smaller than 1 deg c dimension : meags(102,12,22,10) c c mags(i,j,k) number of sputtered target atoms versus azimu- c thal (column) and polar (row) emission angles c dimension : mags(62,22,10) c c transmission sputtered target atoms c c meast(i,j,k) number of sputtered target atoms versus energy c (column) and polar emission angle (row) c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval j: cosine interval of 0.05, c 20 intervals c 10 target species k (2 layers) c in the last interval (99-100 ev) all sputtered c target atoms with energies above 100 ev are c included c dimension : meast(102,22,10) c c meastl(i,j,k) number of sputtered target atoms versus energy c (column) and polar emission angle (row) c energy interval i: a decade is divided into 12 c equal logarithmic intervals from 0.1 to 10**5 ev c polar angle interval j: cosine intervals of 0.05, c 20 intervals c 10 target species k (2 layers) c the last column gives the number of sputtered c atoms per ev, solid angle, and projectile c dimension : meastl(75,21,10) c c eastl(i,j) logarithmic energy distribution (intensity per c logarithmic energy interval) c energy interval i: a decade is divided into 12 c equal logarithmic intervals from 0.1 to 10**5 ev c 10 target species j (2 layers) c dimension : eastl(75,10) c c magst(i,j,k) number of sputtered target atoms versus azimu- c thal (column) and polar (row) emission angles c dimension : magst(62,22,10) c c backscattered projectiles c c meab(i,j) number of backscattered projectiles versus c energy (column) and polar emission angle (row) c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval j: cosine interval of 0.05, c 20 intervals c dimension : meab(102,22) c c meabl(i,k) number of backscattered projectiles versus c energy (column) and polar emission angle (row) c energy interval i: a decade is divided into 12 c equal logarithmic intervals from 0.1 to 10**5 ev c polar angle interval j: cosine intervals of 0.05, c 20 intervals c dimension : meabl(75,21) c c meagb(i,j,k) number of backscattered projectiles versus c energy (column), polar (row) and azimuthal c (matrix) emission angles c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval k: cosine interval of 0.05, c 20 intervals c azimuthal angle interval j: 15 deg, 12 matrices c 10 target species l (2 layers) c these matrices are not calculated, if the angle c of incidence, alpha, is smaller than 1 deg c dimension : meagb(102,12,22) c c magb(i,j) number of backscattered projectiles versus c azimuthal (column) and polar (row) emission c angles c azimuthal angle interval i: 3 deg, 60 intervals c polar angle interval j: cosine intervals of 0.05, c 20 intervals c dimension : magb(62,22) c c ema(i,j) backscattered energy versus azimuthal (column) c and polar (row) emission angles c azimuthal angle interval i: 3 deg, 60 intervals c polar angle interval j: cosine intervals of 0.05, c 20 intervals c dimension : ema(62,22) c c mepb(i,j) number of backscattered projectiles versus c energy (column) and pathlength (row) c energy interval i: 1% of the projectile energy e0, c 100 intervals c pathlength interval j: cw , 100 intervals c dimension : mepb(102,102) c c transmitted projectiles c c meat(i,j) number of transmitted projectiles versus c energy (column) and polar emission angle (row) c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval j: cosine interval of 0.05, c 20 intervals c dimension : meat(102,22) c c meatl(i,k) number of transmitted projectiles versus c energy (column) and polar emission angle (row) c energy interval i: a decade is divided into 12 c equal logarithmic intervals from 0.1 to 10**5 ev c polar angle interval j: cosine intervals of 0.05, c 20 intervals c dimension : meatl(75,21) c c meatb(i,j,k) number of transmitted projectiles versus c energy (column), polar (row) and azimuthal c (matrix) emission angles c energy interval i: 1% of the projectile energy e0, c 100 intervals c polar angle interval k: cosine interval of 0.05, c 20 intervals c azimuthal angle interval j: 15 deg, 12 matrices c 10 target species l (2 layers) c these matrices are not calculated, if the angle c of incidence, alpha, is smaller than 1 deg c dimension : meatb(102,12,22) c c magt(i,j) number of transmitted projectiles versus c azimuthal (column) and polar (row) emission c angles c azimuthal angle interval i: 3 deg, 60 intervals c polar angle interval j: cosine intervals of 0.05, c 20 intervals c dimension : magt(62,22) c c emat(i,j) transmitted energy versus azimuthal (column) c and polar (row) emission angles c azimuthal angle interval i: 3 deg, 60 intervals c polar angle interval j: cosine intervals of 0.05, c 20 intervals c dimension : emat(62,22) c c mept(i,j) number of transmitted projectiles versus c energy (column) and pathlength (row) c energy interval i: 1% of the projectile energy e0, c 100 intervals c pathlength interval j: cw , 100 intervals c dimension : mept(102,102) c c c remarks c the matrix output is in most cases only reasonable for a large c number of histories (nh.gt.10**5) c c c data on disc (fort.17) , unformatted c c z1,m1,e0,alpha,ef,esb,sheath c ,nh,ri,x0,rd,cw,ca,kk0,kk0r,kdee1,kdee2 c (dx(i),i=1,3),(rho(i),i=1,3),(ck(i),i=1,3) c ,((zt(i,j),j=1,5),i=1,3),((mt(i,j),j=1,5),i=1,3) c ,((co(i,j),j=1,5),i=1,3),((sbe(i,j),j=1,5),i=1,3) c ,((ed(i,j),j=1,5),i=1,3),((be(i,j),j=1,5),i=1,3) c ti,zarg,velc c ,hlm,hlmt,su,sut,xc,rt,inel,l,lj c ,nproj,kib,kit,maxa,nall,npa,nsa,kis,kist c ,iim,eim,ib,eb,it,et,ispa,espa,ispat,espat c ,fix0,sex,thx,fox,sigmax,dfix0,dsex,dthx c ,fir0,ser,thr,for,sigmar,dfir0,dser,dthr c ,fip0,sep,thp,fop,sigmap,dfip0,dsep,dthp c ,avnli,vanli,signli,dfinli c ,avili,vaili,sigili,dfiili c avcsum,avcdis c ,fie0,see,the,foe,sigmae,dfie0,dsee,dthe c ,fiw0,sew,thw,fow,sigmaw,dfiw0,dsew,dthw c ,fii0,sei,thi,foi,sigmai,dfii0,dsei,dthi c ,fis0,ses,ths,fos,sigmas,dfis0,dses,dths c ,iirp,trirp,iipl,tion,tdmgn,tcasmo,tphon,tdent c rn,re,emeanr,emean,tn,te,tmeanr,emeant c ,fib0,seb,thb,fob,sigmab,dfib0,dseb,dthb c ,fipb0,sepb,thpb,fopb,sigmpb,dfipb0,dsepb,dthpb c ,avnlb,vanlb,signlb,dfinlb c ,avilb,vailb,sigilb,dfiilb c fit0,set,tht,fot,sigmat,dfit0,dset,dtht c ,fipt0,sept,thpt,fopt,sigmpt,dfipt0,dsept,dthpt c ,avnlt,vanlt,signlt,dfinlt c ,avilt,vailt,sigilt,dfiilt c (irp(i),i=0,100),(rirp(i),i=0,100) c ,(ipl(i),i=1,100),(ion(i),i=1,100),(dmgn(i),i=1,100) c ,(casmot(i),i=1,100),(phon(i),i=1,100),(dent(i),i=1,100) c (fiesb(j),j=1,10),(seesb(j),j=1,10),(thesb(j),j=1,10) c ,(foesb(j),j=1,10),(sgmesb(j),j=1,10) c ,(dfiesb(j),j=1,10),(dseesb(j),j=1,10) c ,(dthesb(j),j=1,10) c ((ele(i,j),j=1,15),i=1,100),((eli(i,j),j=1,15),i=1,100) c ,((elp(i,j),j=1,15),i=1,100) c ,(elet(j),j=1,15),(elit(j),j=1,15),(elpt(j),j=1,15) c (ai(i),i=1,20),(kadb(i),i=1,20),(kadt(i),i=1,20) c ,(rkadb(i),i=1,20),(rkadt(i),i=1,20) c (kads(i),i=1,20),(kadst(i),i=1,20) c ,(rkads(i),i=1,20),(rkadst(i),i=1,20) c ((kadrip(i,j),j=1,10),i=1,20) c ,((kadris(i,j),j=1,10),i=1,20) c ,((kadrop(i,j),j=1,10),i=1,20) c ,((kadros(i,j),j=1,10),i=1,20) c ((KAdsj(i,j),j=1,10),i=1,20) c ,((rkadsj(i,j),j=1,10),i=1,20) c ,((kadsl(i,j),j=1,2),i=1,20) c ,((kkadsl(i,j),j=1,2),i=1,20) c ((kdstj(i,j),j=1,10),i=1,20) c ,((rkdstj(i,j),j=1,10),i=1,20) c ,((kdstl(i,j),j=1,2),i=1,20) c ,((rkdstl(i,j),j=1,2),i=1,20) c (ibsp(i),i=1,15),(ebsp(i),i=1,15) c ,(spy(i),i=1,15),(spe(i),i=1,15) c ,(rey(i),i=1,15),(emsp(i),i=1,15) c ,(ispal(i),i=1,3),(espal(i),i=1,3) c (ispip(i),i=1,15),(ispis(i),i=1,15) c ,(ispop(i),i=1,15),(ispos(i),i=1,15) c ,(espip(i),i=1,15),(espis(i),i=1,15) c ,(espop(i),i=1,15),(espos(i),i=1,15) c ,(rip(i),i=1,15),(ris(i),i=1,15) c ,(rop(i),i=1,15),(ros(i),i=1,15) c ,(reip(i),i=1,15),(reis(i),i=1,15) c ,(reop(i),i=1,15),(reos(i),i=1,15) c (itsp(i),i=1,15),(etsp(i),i=1,15) c ,(spyt(i),i=1,15),(spet(i),i=1,15) c ,(reyt(i),i=1,15),(emspt(i),i=1,15) c ,(ispalt(i),i=1,3),(espalt(i),i=1,3) c (ispipt(i),i=1,15),(ispist(i),i=1,15) c ,(ispopt(i),i=1,15),(ispost(i),i=1,15) c ,(espipt(i),i=1,15),(espist(i),i=1,15) c ,(espopt(i),i=1,15),(espost(i),i=1,15) c ,(ript(i),i=1,15),(rist(i),i=1,15) c ,(ropt(i),i=1,15),(rost(i),i=1,15) c ,(reipt(i),i=1,15),(reist(i),i=1,15) c ,(reopt(i),i=1,15),(reost(i),i=1,15) c ((meab(i,j),j=1,22),i=1,102) c ,((magb(i,j),j=1,22),i=1,62) c ,(((meagb(i,j,k),k=1,22),j=1,36),i=1,102) c ,((ema(i,j),j=1,22),i=1,62),(elog(i),i=1,75) c ,(eabl(i),i=1,75),((meabl(i,j),j=1,21),i=1,75) c ,((mepb(i,j),j=1,102),i=1,102) c ((meat(i,j),j=1,22),i=1,102) c ,((magt(i,j),j=1,22),i=1,62) c ,(((meagt(i,j,k),k=1,22),j=1,36),i=1,102) c ,((emat(i,j),j=1,22),i=1,62) c ,(eatl(i),i=1,75),((meatl(i,j),j=1,21),i=1,75) c ,((mept(i,j),j=1,102),i=1,102) c (((meas(i,j,k),k=1,10),j=1,22),i=1,102) c ,(((mags(i,j,k),k=1,10),j=1,22),i=1,62) c ,((easl(i,j),j=1,10),i=1,75) c ,(((measl(i,j,k),k=1,10),j=1,21),i=1,75) c (((meast(i,j,k),k=1,10),j=1,22),i=1,102) c ,(((magst(i,j,k),k=1,10),j=1,22),i=1,62) c ,((eastl(i,j),j=1,10),i=1,75) c ,(((meastl(i,j,k),k=1,10),j=1,21),i=1,75) c ((((meags(i,j,k,mn),mn=1,10),k=1,22),j=1,12),i=1,102) c ,(((magsa(i,j,k),k=1,10),j=1,32),i=1,62) CC ,((((MEAGST(I,J,K,L),L=1,10),K=1,22),J=1,36),I=1,102) c ((eld(i,j),i=1,100),j=1,15) c xsum,x2sum,x3sum,x4sum,x5sum,x6sum c eb,eb2sum,eb3sum,eb4sum,eb5sum,eb6sum c ,eb1sul,eb2sul,eb3sul,eb4sul,eb5sul,eb6sul c (ebsp(j),j=1,15),(spe2s(j),j=1,15),(spe3s(j),j=1,15) c ,(spe4s(j),j=1,15),(spe5s(j),j=1,15),(spe6s(j),j=1,15) c (spe1sl(j),j=1,15),(spe2sl(j),j=1,15),(spe3sl(j),j=1,15) c ,(spe4sl(j),j=1,15),(spe5sl(j),j=1,15) c ,(spe6sl(j),j=1,15) c ((icd(i,j),j=1,15),i=1,100),((icdr(i,j),j=1,15),i=1,100) c (((icdiri(i,j,k),k=1,15),j=1,15),i=1,100) c ,((icdirn(i,j),j=1,15),i=1,100) c exi1s,exi2s,exi3s,exi4s,exi5s,exi6s c ,coss1s,coss2s,coss3s,coss4s,coss5s,coss6s c ibl,(ibsp(i),i=1,15)