/*************************************************************************** * musrSim - the program for the simulation of (mainly) muSR instruments. * * More info on http://lmu.web.psi.ch/simulation/index.html . * * musrSim is based od Geant4 (http://geant4.web.cern.ch/geant4/) * * * * Copyright (C) 2009 by Paul Scherrer Institut, 5232 Villigen PSI, * * Switzerland * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * ***************************************************************************/ #ifndef musrTabulatedElementField_h #define musrTabulatedElementField_h 1 #include "globals.hh" #include "F04ElementField.hh" #include "F04GlobalField.hh" #include "G4ios.hh" #include #include #include class musrTabulatedElementField : public F04ElementField { public: musrTabulatedElementField(const char* filename, const char* fldTableType, G4double fieldValue, G4LogicalVolume* logVolume, G4ThreeVector positionOfTheCenter); // "lenUnit" is the unit in which the grid coordinates are specified in the table // "fieldNormalisation" is the normalisation that has to be applied on the field values in the table // such that the values correspond do 1T nominal value // "fieldValue" is the field value (in T) that is required (i.e. values normalised to 1T will be // multiplied by this value). /// Destructor. virtual ~musrTabulatedElementField() {} /// addFieldValue() adds the field for this solenoid into field[]. /// point[] is in global coordinates. void addFieldValue( const G4double Point[4], G4double* field) const; void addFieldValue2D( const G4double Point[4], G4double* field) const; void addFieldValue3D( const G4double Point[4], G4double* field) const; G4double GetNominalFieldValue(); void SetNominalFieldValue(G4double newFieldValue); // getWidth(), getHeight(), getLength(), return the dimensions of the field // (used to define the boundary of the field) virtual G4double getWidth() {return maximumWidth;} // x coordinate virtual G4double getHeight() {return maximumHeight;} // y coordinate virtual G4double getLength() {return maximumLength;} // z coordinate private: // Storage space for the table std::vector< std::vector< std::vector< double > > > xField; std::vector< std::vector< std::vector< double > > > yField; std::vector< std::vector< std::vector< double > > > zField; std::vector< std::vector< double > > xField2D; std::vector< std::vector< double > > zField2D; // The dimensions of the table int nx,ny,nz; // The units of the field char fieldTableType[100]; G4String fUnit; double fieUnit; char fldType; int fldDim; // The physical limits of the defined region double minimumx, maximumx, minimumy, maximumy, minimumz, maximumz; // The physical extent of the defined region double dx, dy, dz; double ffieldValue; double maximumWidth, maximumHeight, maximumLength; int symmetryType; // this variable defines whether (and how) should be the field extended // in the case it is defined just in one octant of the Cartesian coordinates. char variableIncreasingOrder[100]; int jx, jy, jz; void Invert(const char* indexToInvert); }; #endif