
Internal PSI draft

Manual of musrSim

Kamil Sedlák1, Toni Shiroka1, Zaher Salman1, Jose Rodriguez1, Tom Lancaster2, Thomas Prokscha1,
Taofiq Paräıso1, Robert Scheuermann1, James S. Lord3

1 Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
2 Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK

3 ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, U.K.

PSI, August 12th, 2016

“musrSim” is a simulation program based on Geant4, optimised for the µSR instru-
ments. This document describes some of the commands used in the user macros of
the simulation program for the µSR instruments based on the Geant4. The root
output variables are also described.

1 Scope of the musrSim program

The program “musrSim” is a relatively general program that can be used to simulate the response of a
µSR [1] instruments (detectors) to muons and their decay particles (electrons, positrons and gammas),
optionally including “optical photons”. Even though musrSim is tailored to the needs of the µSR tech-
nique [6], it has been used also in the studies of beam-line elements like spin rotators, as well as in the
detector development studies without any muons involved, e.g. to test the response of an APD-based
scintillator counters to the irradiation of Sr radioactive source [9]. It should be straightforward to apply
musrSim also to the low energy particle-physics experiments with muons.

The program is based on the Geant4 [2] and Root [3] libraries. Geant4 is Monte Carlo toolkit used
(not only) in particle physics to simulate the passage of particles through detectors. Root is an analysis
tool that allows one to manipulate and analyse the simulated data, namely to plot histograms and other
graphical output.

The simulation of an instrument consists of two steps – simulation of the instrument response, which
is done by “musrSim” program, and the subsequent analysis of the simulated output by either “musr-
SimAna” program (in case of µSRinstruments) or by Root (if a special analysis is required, e.g. for
non-µSRapparatus). The reason for this spit is purely practical – while it takes a lot of computer time
to simulate large statistics data with musrSim, the subsequent analysis of the simulated data is relatively
quick and allows the user to optimise and test different options of the analysis (e.g. different thresholds in
positron counters, different logic in connecting veto and coincidence detectors, different rate of incoming
muons, ...). The “musrSimAna” program is described in a separate manual.

The aim of the musrSim is to provide an easy-to-use simulation program, which does not require a
deep knowledge of Geant4 in order to simulate a (µSR) detector. In our view, the main advantages of
musrSim are:

• Simple way how to define or modify the instrument geometry, including the sample environment,
collimators and other parts.

• Limited (ideally no) need to modify and/or recompile the source code, because the parameters
defining the instrument geometry, initial muon beam, electromagnetic fields, and other parameters
are defined in a text file (the so called “macro file”).

• Implementation of the µSR-specific classes (muon spin rotation in magnetic fields, muonium forma-
tion and decay, ...).

• Possibility to read in the output files of the TURTLE [5] program for the beam-line simulation.

• Simple way how to define (overlapping) electromagnetic fields.

• Output in the Root tree.

• Possibility to analyse the output with a general “musrSimAna” program.

1

2 PSI

• Possibility to use musrSim easily for calculating muon stopping profile (also in e.g. sample cells) or in
developments of detector components (e.g. light propagation in the scintillator of a positron/muon
counter and the subsequent light collection in a photomultiplier tube or APD).

On the other hand, there are also some drawbacks and limitations:

• The user has to have an installation of Geant4 and Root before installing musrSim.

• It is supposed the user will analyse the data with Root, therefore Root has to be installed.

• At present time the program does not simulate any muon-spin related physics processes happening
in the sample, except for the muon spin rotation.

• The simulation of one event takes much more time than the measurement of a real event. The
simulation time depends on the complexity of the instrument geometry and on the presence of
electromagnetic fields. To simulate one million of muons in the case of the PSI high-field instrument
took about 10 hours of a computer time of a desktop PC.

2 How to install and run musrSim

To install and run musrSim, one has to install Geant4 and Root first. The present version of musrSim has
been tested with Geant version 4.9.4, and with Root version 5.24.00. While the version of Root should
not be critical, the users of musrSim are encouraged to always use the latest version of Geant4 due to
continuous improvements of this package. A novice user of Geant4 may consider reading 30 pages of
chapter 2 of the Geant4 User’s Guide for Application Developers, called “Getting Started with Geant4 -
Running a Simple Example”.

Once Geant4 has been successfully installed and some of the default Geant4 examples
has been run, the musrSim installation package can be downloaded from the web page
http://lmu.web.psi.ch/simulation/index.html. Usually the “env.sh” script has to be run to set-up the
environment variables appropriately before the musrSim (and/or any other Geant4 application) can be
compiled and run. The simulation is started by executing:

> musrSim RUNNUMBER.mac
where RUNNUMBER.mac is a “macro file” containing the information about the instrument setup. The
string RUNNUMBER is an integer representing the run number.

In order to simulate a new instrument, the user has to define the following blocks of information in
the macro file:

• Define the geometry (the so-called “volumes”) of the new instrument. Note that in Geant4 volumes
can be included inside other volumes (a “daughter” volume is positioned inside its “mother” volume),
and it is therefore necessary to distinguish between the global (world) coordinates and the coordinates
of the daughter volumes (local coordinates). It is not allowed to overlap the volumes (with the
exception of the daughter and mother volume, in which case the daughter volume has to be fully
contained within its mother volume).

• Define the electric and magnetic fields.

• Define physics processes relevant for your case.

• Define the initial muon parameters (more generally – initial particle parameters).

• Define some other parameters influencing the execution of the simulation.

• Define which variables should be written out to the output Root tree.

• In case it is required to visualise the geometry, define the visualisation attributes.

By default, the output of the simulation is written out in the subdirectory “data” with the name
“musr RUNNUMBER.root”. The default “data” subdirectory can be changed (see Chapter 11). The
simulated data are stored in a Root tree, which is some kind of a table with many variables for every
simulated event, inside the musr RUNNUMBER.root file.

musrSim 3

3 How to stop musrSim

The execution of musrSim stops as soon as one of the following condition is fulfilled:

• Number of simulated events reaches the number of required events defined by command
“/run/beamOn nrOfEvents” (see Chapter 11).

• Time for which the simulation is running exceeds the maximum allowed time defined by command
“/musr/command maximumRunTimeAllowed timeMax” (see Chapter 11).

• Within a few seconds after a file “RUNNUMBER.stop” is created in the directory, in which the
musrSim program was started. This allows the user to stop the simulation gently at any time.

If the musrSim program is killed in any other way, the output Root file does not close properly, and
subsequently can not be analysed. The simulated data are lost.

4 Conventions

The default units of the musrSim in both the macro file (RUNNUMBER.mac) and in the Root tree are
summarised in table 1.

Quantity Default unit

Length mm

Time µs (sometimes ns)

Energy MeV

Momentum MeV/c

Magnetic field tesla

Electric field keV/mm

Angle degree

Table 1. The default units of musrSim.

5 Tips and tricks

• Visualise your instrument geometry during its construction.

• Check the output file for error messages, especially for volume overlaps.

• Note the the dimensions in volume definitions are often half-lengths, not the lengths (e.g. half-lengths
of the box edges).

• The order of some commands in macro file matters – e.g. one has to define a mother volume before
the daughter volume, etc.

• There are some special volume names, namely World, Target (same as target), M0, M1, M2 and
volumes starting with keywords Shield (same as shield), and volumes containing string save. All
these volume influence the behaviour of the simulation, so understand how they act (see different
chapters of this manual) before you use them.

• When implementing a new magnetic or electric field always check that fields at a few random space
points correspond to the field you expect to observe (use command /musr/command globalfield
printFieldValueAtPoint).

6 Detector construction

The user must first define the instrument geometry in the macro file. It should be relatively easy to
understand how this is done from the example macro files distributed with musrSim program.

An important parameter to note in the following description of “/musr/command construct” command
is the idNumber – an integer number uniquely identifying every volume. The ID volume numbers are

4 PSI

later on used also in the musrSimAna program, when some identification of a volume becomes necessary
(i.e. volumes are described by idNumber rather than by their name command later on).

Another crucial parameter in “/musr/command construct” command is sensitiveClass, which defines
whether the volume is sensitive (i.e. a signal can be detected in the volume) or not (i.e. the volume is just
a dead material influencing the penetrating particles but not detecting them).

There are some special kind of volumes, which are defined by the name (or part of the name). The user
can (but does not have) to use them. The first of them is the volume named “Target” (or “target”). It
is expected, that this is the sample, and the quantities muTargetTime, muTargetPolX, muTargetPolY,

muTargetPolZ, muTargetMomX, muTargetMomY, muTargetMomZ, will be saved when a muon enters this
volumes for the first time in a given event.

The second special kind of volumes are the volumes named “M0”, “M1” and “M3” (or “m0”, “m1”
and “m3”). Typically these volumes can be trigger detectors. The quantities muM0Time, muM0PolX,

muM0PolY, muM0PolZ will be saved when a muon enters the volume called “M0” (or “m0”) for the first
time (similarly for “M1” and “M2”). Note that it is not expected that muM0Time should be used in
the analysis of the simulation – one should use the det time start quantity, which corresponds to the
measured time in the experiment.

The third class of special volumes has names starting with the string “save”. Their purpose in the
simulation is usually to check positions and momenta of particles at some position of the detector, even
if the particle does not deposit any energy in the given “save” volume. Save volumes can therefore be
made of vacuum. See section12 for further details on what is saved in the Root tree.

The last special class of volumes has names starting with the string “kill”, “shield” or “Shield”. If
a particle enters the “kill . . . ” volume, it is removed from further simulation. The same is true for the
“shield . . . ” or “Shield . . . ” volumes for any particle apart for a muon. The motivation for this kind of
volumes was to speed up the simulation by removing tracks that are unlikely to hit any detector. The
“kill”, “shield” and “Shield” volumes should be use with care.

/musr/command construct solid name dimensions ... material x y z motherVolume ma-
trixName sensitiveClass idNumber
This command defines a volume in Geant4 (It comprises three steps of Geant4: defines a solid,
logical volume and physical volume. Details can be found in Geant4 manual).

• solid (string) can be one of the G4VSolid.cc particular types, presently “tubs”, “cons”, “box”,
“trd”, “sphere”, “para”, “polycone” or it can be one of the specifically implemented solids by our
program as “uprofile” (an U-profiled bar), “alcSupportPlate” (shape specific to ALC support
plate), “tubsbox” (a tube with a rectangular hole along its axis), “tubsboxsegm” (a volume that
looks like an intersection of tube and box) and “trd90y” (a trd volume rotated by 90 degrees
around y axis in addition to the rotation requested by matrixName), “cylpart” (cylinder from
which a box has been subtracted) “GPDcollimator” (collimator used at GPD instrument). Not
all G4VSolids defined in Geant4 are presently supported, but it is relatively easy to implement
a new kind of solids in the musrDetectorConstruction.cc class.

The “polycone” in Geant4 can be defined in two ways, which have to be distinguished in the
musrSim macro file: “polyconeA” corresponds to
G4Polycone(solidName, phiStart, phiTotal, numZPlanes, zPlane[], rInner[], rOuter[])
while “polyconeB” corresponds to
G4Polycone(solidName, phiStart, phiTotal, numRZ, r[], z[]),
where zPlane, rInner, rOuter, r, z are arrays, which have to be defined by the command
“/musr/command arrayDef”.

• name (string) stands for the name of the volume. As the command “/musr/command construct”
constructs three kinds of Geant4 classes/volumes (the solid, logical volume and physical volume),
there are three names of the concrete volume used internally inside musrSim: sol name, log name
and phys name. The main volume, inside which all other volumes are positioned, has to be called
“World”.

• dimensions (floats) define the size of the required solid. They are kept equivalent to the dimen-
sions of solids as used in Geant4. For example the “box” is defined by its halflengths along
x, y and z coordinates. Note that the number of dimensions varies for each type of solid. The
units are mm for lengths and degrees for angles.

• material (float) one of the materials defined in Geant4, namely in the file
$G4INSTALL/source/materials/src/G4NistMaterialBuilder.cc (e.g. “G4 Galactic” for vacuum,

musrSim 5

“G4 Cu” for copper, “G4 AIR” for air, “G4 PLASTIC SC VINYLTOLUENE” for a scintil-
lator, ...). One can also define a new material inside the function musrDetectorConstruc-
tion::DefineMaterials(). Presently “Mylar”, “Brass” “Steel”, “Macor”, “MCPglass”, “MgO”,
“SiO2”, “Al2O3”, “K2O” and “B2O3” are defined there.

• x, y, z (floats) – coordinates of the volume, used to position the volume within its mother
volume (as used by the G4PVPlacement). Thus these coordinates are interpreted in the local
coordinate system of the motherVolume.

• motherVolume (string) – name of the mother volume, in which the given volume should be
positioned. Note that the mother volume has to be defined first (before its daughter), and
that the name of mother starts with a string log mothername, following the naming conven-
tion defined above. When the “World” volume is defined, its motherVolume should be set to
“no logical volume”.

• matrixName (string) – name of the rotation matrix that will be used to position the volume
inside its mother volume (as used by the G4PVPlacement). Use string “norot” if no rotation is
required for the given volume. Otherwise the rotation matrix has to be defined by the command
line “/musr/command rotation” before the given volume is defined.

• sensitiveClass (string) – specifies whether the volume is sensitive detector or just a piece of a
“dead” material. Use the string “dead” for the latter, and the string “musr/ScintSD” for a
scintillator (a sensitive volume, i.e. a volume where hits are observed). No other detector type
(other than “dead” and “musr/ScintSD”) is supported at the moment, but the program might
be extended in the future (e.g. to properly include also the semiconductor tracking detectors,
etc.).

• idNumber (int) – serves as a unique identifier of the volume. It is primarily used in the output
Root tree to identify the volume: 1) in which a muon stopped (tree variable “muDecayDetID”),
2) in which hits were deposited in case of sensitive volume (the variable “det ID[det n]”).

/musr/command rotation matrixName α β γ
/musr/command rotation matrixName vx vy vz angle
These commands define a rotation matrix of the name matrixName that can be used during the
definition of the detector geometry (see the command “/musr/command construct”). It can be
defined either by the Euler angles (if there are three float parameters behind the matrixName) or
by the vector (vx,vy,vz) and an angle of rotation around this vector (if the fourth float parameter
behind the matrixName is non-zero). All angles are specified in degrees.

/musr/command arrayDef arrayName N x1 x2 . . . xN
Defines an array with an assigned name arrayName, which has N elements.

/musr/command region define regionName logicalVolume
The “G4Region” can be created using this command, and a logical volume of the name logicalVolume
will be assigned to it. If the G4Region of the name regionName does not exist (i.e. the command
“/musr/command region define” is called for the first time for this particular regionName), the
G4Region will be created first, otherwise the logical volume logicalVolume will be just assigned to
the already existing G4Region.
G4Region can be useful namely for setting some special Geant4 parameters (production cuts) just
in some part of the detector (e.g. where a finer simulation is needed). See Geant4 manual for more
details.

/musr/command region setProductionCut regionName gammaCut electronCut positron-
Cut
Set the so-called “production cuts” in the G4Region called regionName. The variables gammaCut,
electronCut and positronCut are given in mm.

7 Electric and magnetic fields

/musr/command globalfield fieldName half x half y half z uniform X Y Z logicalVolume
Bx By Bz Ex Ey Ez
or

6 PSI

/musr/command globalfield fieldName X Y Z fromfile fieldTableType fieldInputFile-
Name logicalVolume fieldValue [fieldValueFinal] [fieldNrOfSteps]
This command specifies the electric and/or magnetic fields, which are (in some sense) independent
of any logical volume and can overlap with each other. In the case of tabulated field read in from an
external field map file, the field values used internally by the Geant4 are linearly interpolated using
eight (3D) or four (2D) grid points surrounding the point of interest.

• fieldName (string) – name of the field (important mainly for the user and print-out messages
of the musrSim.

• half x, half y, half z (floats) – the (half) dimensions of the box, within which the uniform field
is defined. Used only for the uniform fields.

• uniform / fromfile – specifies whether the field is uniform within some volume or whether it
is read in from an external file as a field-map.

• X, Y, Z (floats) – position of the centre of the field in the global coordinate system. IM-
PORTANT: For some technical internal Geant4 reasons, this POSITION HAS TO LAY
WITHIN THE logicalVolume! Note that the logical volume may be positioned somewhere
deep in a volume structure, not directly within the “World” volume, and therefore the (local)
coordinates in the definition of the logical volume do not have to match the (global) coordinates
X, Y and Z.

• logicalVolume (string) – specifies the logical volume, to which the field is “assigned”. One may
ask, why a logical volume is needed for a field “independent” of any Geant4 volume? The reason
is purely technical - the logical volume is used to allow the field to be rotated the same way as
the assigned logical volume. The field can be smaller or larger than the logical volume, to which
it is assigned. The field extending out of the logical volume will also be used in the Geant4
calculations (will be not truncated). The only limitation is that the centre of the volume has to
lay within the assigned logical volume (see above). Sometimes it might be useful to create a very
small volume (e.g. of the order of 0.01 mm) to position a rotated field into a (differently rotated
or unrotated) larger volume. The volume can also be made of vacuum (i.e. G4 Galactic).

• Bx, By, Bz, Ex, Ey, Ez (float) – the vector of the uniform electromagnetic field. The units are
tesla, for the first three components, and kilovolt/mm for the last three components. Used only
for the uniform fields.

• fieldTableType (string) – specifies the format in which the field map is written in the file. In
general, the field is specified in a grid of three space coordinates x, y and z (3D). Sometimes
it is convenient to use the symmetry of the field and to reduce the field description to R and z
(2D) only. In the following, we use the following terms:
nx, ny, nz – the number of divisions of the grid in x, y, z.
nR, nz – the number of divisions of the grid in R, z.
length unit – the unit in which the grid coordinates are specified, usually cm or m.
field normalisation factor – a multiplicative factor applied to the values of the field map to
normalise the field (usually to 1 tesla or to 1 kV/mm in the centre of the field map).
minimumx, maximumx, minimumy, maximumy, minimumz, maximumz – the minimum and
maximum value in x, y and z coordinates. These values can be usually easily calculated from
the field map itself, however the field can also be specified in a compact format in which case
the x, y and z coordinates are removed from the field map file, and the maxima and minima of
coordinates have to be specified.
The following formats are supported:
3DB, 3DE – magnetic or electric field specified in x, y and z coordinate system. The first line
of the file has to contain the information about nx, ny, nz, length unit and field normalisation
factor. Optionally, a compact form of the field map can be specified, in which case minimumx,
maximumx, minimumy, maximumy, minimumz, maximumz has to be added to the first line of
the file. The next few lines of the field map file beginning with the character “%” are comments.
The following lines specify the x, y, z, Field x, Field y, Field z values (non-compact format) or
Field x, Field y, Field z values (compact format).
3DBOpera, 3DEOpera – 3D magnetic field in the form of OPERA output. It is expected
that the length unit is 1 m, and the field normalisation factor is 1. (Note that this default nor-
malisation is different from 2DBOpera and 2DBOperaXY options). However, a different field
normalisation factor can be specified in the field map file using the keyword “fieldNormalisation

musrSim 7

number” before the line started with 0.
It is expected that the first loop goes over the z coordinate of the field map, then (after z
changed from minimum to maximum) it is looped over the y coordinate, and the highest-level
loop goes over x coordinate. However, if the order of looping is reversed in the field map, it can
be specified using the keyword “variableIncreasingOrder xyz” placed in the field map before the
line started with 0.
The length unit can be changed to 1 cm by specifying “[CENTIMETRE]” after the “0” charac-
ter in the field map file.
It is expected that the field map is defined in the full volume of the field. Sometimes (due to
the symmetry of the field), it is enough to define the field in just one octant of the Cartesian
coordinate system (e.g. for positive x, y and z). In such cases, the user can specify this in the
field map file using the keyword “symmetryType number”, where the number specifies how the
field should be extrapolated to other octants. The “symmetryType 1” case can be used for a
field between two electrodes (e.g. of a spin rotator), where the electrodes are parallel with the
(y, z) plane (i.e. the main component of the field is along the x axis). In this case: if the field
at point (x, y, z) is (Fx, Fy, Fz), the field in different octants will look be:
(x, y, z)→ (Fx, Fy, Fz);
(x, y,−z)→ (Fx, Fy,−Fz);
(x,−y, z)→ (Fx,−Fy, Fz);
(x,−y,−z)→ (Fx,−Fy,−Fz);
(−x, y, z)→ (Fx,−Fy,−Fz);
(−x, y,−z)→ (Fx,−Fy, Fz);
(−x,−y, z)→ (Fx, Fy,−Fz);
(−x,−y,−z)→ (Fx, Fy, Fz).
Similar case is the “symmetryType 2”, where the main field component is along the y axis.
These two symmetry types are realised as electric and magnetic fields in a spin rotator oriented
along the z axis.
Example of the beginning of the 3DBOpera-type field map file:
2 2 55
1 X
2 Y
3 Z
4 BX
5 BY
6 BZ
7 DUMMY
fieldNormalisation -22.5733634
symmetryType 2
0 [METRE]
-0.2 -0.2 -1.35 0. 0. 0. 0.
-0.2 -0.2 -1.30 0. -0.0002 0. 0.
-0.2 -0.2 -1.25 0. -0.0002 0. 0.
-0.2 -0.2 -1.20 0. -0.005 0. 0.
...

2DB, 2DE – magnetic or electric field specified in R and z coordinate system. The first line of
the file has to contain the information about nR, nz, length unit and field normalisation factor.
The compact form of the field map (see 3DB case) is not supported. The next few lines of the
field map file beginning with the character “%” are comments. The following lines specify the
R, z, Field R Field z values.
2DBOpera – 2D magnetic field in the form of OPERA output. It is expected that the length
unit is 1 cm, and the field normalisation factor is 0.00001 (Note that this default normalisa-
tion is different from 3DBOpera option). See example of 3DBOpera for the usage of keyword
“fieldNormalisation number”. The data in the field map OPERA file are ordered as R, dummy,
z, Field R, Field z, dummy
2DBOperaXY – same as 2DBOpera except that the data in the field map OPERA file are
ordered as R, z, dummy, Field R, Field z, dummy

8 PSI

• fieldInputFileName (string) – Name of the field map file.

• fieldValue (float) – the value of the field at some reference point (usually in the centre of the
field). It acts as an multiplicative factor. The units are tesla for the magnetic field and kV/mm
for the electric field.

• [fieldValueFinal] and [fieldNrOfSteps] (floats) – these optional parameters allow the user to
ramp up (down) the field during a single run. The fieldValue serves as the initial field value,
the [fieldValueFinal] is the final value and [fieldNrOfSteps] specifies number of steps, in which
the rump up/down will happen.

/musr/command globalfield fieldName X Y Z quadrupole halfLength fieldRadius fringe-
Factor logicalVolume gradientValue [gradientValueFinal] [gradientNrOfSteps]
Set up the field of a quadrupole magnet including the Enge function approximation of the fringe
fields. The unit of gradientValue is T/m. The description is similar to the uniform field and to the
tabulated fields. See “musrDetectorConstruction.cc” and “BLEngeFunction.hh” for the details.

/musr/command globalfield setparameter parameterName parameterValue
Set up some accuracy parameters used internally by Geant4 when calculating the motion of charged
particles in the magnetic field.
parameterName (string) – one of the following parameters: “SetDeltaIntersection” “SetDeltaOn-
eStep”, “SetMinimumEpsilonStep”, “SetMaximumEpsilonStep”, “SetLargestAcceptableStep” and
“SetMaxLoopCount”. The exact meaning of these parameters can be found in Geant4 manual.

/musr/command globalfield printparameters
Print out the accuracy parameters (see “/musr/command globalfield setparameter”).

/musr/command globalfield printFieldValueAtPoint x y z
Print out the field value at the point (x, y, z) (given in the global coordinate system).

/musr/command globalfield printFieldDerivativeAtPoint x y z
Print out the values of the derivative of the magnetic field at the point (x, y, z) (given in the global
coordinate system).

8 Physics processes

/musr/command process addDiscreteProcess particle process
/musr/command process addProcess particle process ordAtRestDoIt ordAlongStept-
DoIt ordPostStepDoIt
Adds processes for particles.
particle (string) – name of the particle to which a process is applied.
process (string) – name of the process to be assigned.
ordAtRestDoIt, ordAlongSteptDoIt, ordPostStepDoIt (int) – priority switches.
See the file musrPhysicsList.cc for the list of defined processes (e.g. G4eMultipleScattering,
G4eIonisation, ...) and Geant4 manual for the detail description of the processes.

/musr/command process SetLossFluctuations OFF particle process
Switches off the statistical fluctuations in the ionisation losses. Can be usefull for some technical
studies. Presently works only for G4eIonisation and for G4MuIonisation.

For the interaction of keV µ+ with nanometer-thin carbon foils – as they are used in the low-energy µ+

beam line and spectrometer (LEM) at PSI – two special processes have been defined:

/musr/command process addProcess mu+ musrMuFormation -1 -1 2
Mu formation: yield function as well as the parameters are taken from: M. Gonin, R. Kallenbach, P.
Bochsler: ”Charge exchange of hydrogen atoms in carbon foils at 0.4 - 120 keV”, Rev.Sci.Instrum.
65 (3), March 1994.

/musr/command process addProcess mu+ musrMuEnergyLossLandau -1 -1 1

/musr/command SetLandauMPV 0.01

/musr/command SetLandauSigma 0.2
This adds to any enabled G4 energy loss process a Landau distribution with most-probable-value
SetLandauMPV (keV), and width SetLandauSigma (keV).

musrSim 9

9 Initial (muon) beam parameters

In historical versions of musrSim it had been implicitly assumed that the (muon) beam was oriented
along the z-axis. Many variables defined below are therefore related to this z-axis (e.g. beam tilt, vertex
sigma, ...). However, later on we implemented a possibility to change the direction of the initial beam
to a random vector by the command “/gun/direction”. It now works like this: the primary particles are
first generated using all parameters of /gun/* commands as if the beam went along the z-axis, and just
in the last moment before Geant4 starts to track them, they are (optionally) rotated to the direction
defined by the /gun/direction command. This way the smearing of the vertex as well as beam tilt/pitch
are propagated through the rotation.

/gun/primaryparticle primaryParticleName
(default: /gun/primaryparticle mu+)
Set the primary particle type, if it is not positive muon. For example, the negative muons are
specified by “/gun/primaryparticle mu-”.

/gun/meanarrivaltime meanArrivalTime
(default: /gun/meanarrivaltime 33.33333 microsecond)
Set mean arrival time difference between two subsequent muons (at continuous beam). The output
variable “timeToNextEvent” is subsequently randomly generated using the value of meanArrivalTime
and filled into the Root tree.

/gun/starttime t0 unit
By default, muons are generated at time = 0. The time of generation of muons can be set ran-
domly according to the Gaussian or uniform distribution using variables “/gun/starttime” and
“/gun/starttimesigma”. See the description of the “/gun/vertexsigma” to understand how the choice
is done. This command appears useful for the simulation of the laser-induced muon beam at ISIS,
however it might be confusing or misleading when used together with the /gun/meanarrivaltime
command. It is therefore recommended not to use it unless necessary.

/gun/starttimesigma t0 unit
See the description of “/gun/starttime” command.

/gun/vertex x0 y0 z0 unit
(default: /gun/vertex 0 0 -100 mm)
Set mean values of the x, y and z coordinates of the generated particles (muons). The smearing
around these mean values can be set by /gun/vertexsigma and restricted by /gun/vertexboundary
and/or /gun/boxboundary (see below).
(Applicable also to TURTLE input).

/gun/vertexsigma xSigma ySigma zSigma unit
(default: /gun/vertexsigma 0 0 0 mm)
If xSigma > 0 ... set σx, i.e. the standard deviation (RMS), of the x coordinate of the generated
particles (muons) to σx = xSigma. The x coordinate of the initial muon is then generated according
to the Gaussian distribution with the mean value of x0 and the standard deviation of xSigma.
If xSigma < 0 ... the x coordinate of the initial muon is generated uniformly in the interval of (x0−
xSigma, x0+ xSigma).
If xSigma = 0 ... no smearing on the x coordinate is applied.
Similar is true for ySigma and zSigma.
(Ignored by the TURTLE input).

/gun/vertexboundary R max z min z max unit
Set maximum allowed radius, and minimum and maximum z coordinate of the generated particles
(muons). This command might be useful especially if the user wants to restrict the area, in which
initial particles are created, e.g. to force the initial muons to be created inside the beam pipe.

If the particles (muons) are read in from an external TURTLE file, only the restriction on the
maximum radius R max is applied on the initial particles, while z min and z max are ignored.

/gun/vertexrelativer relativeRMaxAllowed unit
Set maximum allowed radius of the beam relative to x0 and y0, i.e. relative to the centre of the
beam. This command might be useful when the beam centre is not created at x0=y0=0, but the

10 PSI

user wishes to restrict the beam within a symmetric cone around x0 and y0.
(Ignored by the TURTLE input).

/gun/boxboundarycentre xMaxSource0 yMaxSource0 xMaxSource0 unit
See below “/gun/boxboundary”.

/gun/boxboundary xMaxSource yMaxSource xMaxSource unit
Define a box, within which the generated particles (muons) are created. The variables xMaxSource0,
yMaxSource0 and xMaxSource0 define the centre of the box, the variables xMaxSource, yMaxSource
and xMaxSource define the halfwidth, halfheight and halflength of the box.
This command can be useful for the laser-induced muon beam at ISIS.
(Ignored by the TURTLE input).

/gun/kenergy kineticEnergy unit
Set the mean kinetic energy of the initial particles (muons).
(Ignored by the TURTLE input).

/gun/momentum momentum unit
Set the mean momentum of the initial particles (muons).
(Ignored by the TURTLE input).

/gun/momentumsmearing momentumSigma unit
Set σ, i.e. the standard deviation (RMS), of the momentum spread, which is applied randomly to
each generated initial particle (muon). It is the magnitude of the momentum, which is smeared.
(Ignored by the TURTLE input. However, a similar command “/gun/turtleMomentumBite” can be
used for the TURTLE input file.)

/gun/momentumboundary p min p max dummy unit
Set a boundary for the minimum and maximum momentum of the initial particles (muons). The
third argument dummy is ignored.
(Presently ignored by the TURTLE input).

/gun/tilt xangle0 yangle0 dummy unit
The “beam tilt” is understood as a constant angle tilt that is applied to all initial particles (muons)
regardless on their distance from the centre of the beam.
(Applicable also to TURTLE input).

/gun/tiltsigma xangleSigma yangleSigma zangleSigma unit
Gaussian smearing of the tilt angle, if zangleSigma >= 0
generation of cos Θ distribution, if zangleSigma < 0.
(Presently ignored by the TURTLE input).

/gun/pitch pitch unit
The “beam pitch” is understood as a variable angle applied to the initial particles (muons), which
is directly proportional to the distance from the beam axis. The particles closer to the beam axis
become smaller pitch than particles further away from the beam axis. The angle given as pitch will
be applied to a particle generated 1 mm away from the beam centre, i.e. the particle generated 7 mm
away from the beam axis will be assigned the angle of 7 · pitch. The pitch allows the user to focus or
defocus the initial particle beam. Particles will be focused for positive pitch and defocused for the
negative pitch.
(Applicable also to TURTLE input).

/gun/muonPolarizVector xpolaris ypolaris zpolaris
Set polarisation of the initial particle (muon) in a form of a vector P = (xpolaris, ypolaris, zpolaris).
The polarisation vector does not have to be normalised, the normalisation will be done internally by
the program. However note that if the magnitude of P is set to less than 1e-8, the user can achieve
an unpolarised muon beam. See the source code of musrPrimaryGeneratorAction.cc if you need to
use unpolarised beam by this parameter, because there is some trick based on the magnitude of P.
(Applicable also to TURTLE input).

/gun/muonPolarizFraction polarisFraction
Set the fraction of the muon polarisation. The variable polarisFraction has to be set in the range of

musrSim 11

-1 to 1.
If polarisFraction is set to 1, all muons are polarised in the direction of polarisation vector defined
by “/gun/muonPolarizVector”.
If polarisFraction is set to 0, half of the muons are polarised in the direction of polarisation vector,
the second half is polarised in the opposite direction, so in the end the muon beam should act as
unpolarised.
If polarisFraction is set to -1, all muons are polarised in the direction opposite to the polarisation
vector.
If polarisFraction is set to 0.9, then 95% of the muons is polarised in in the direction
of polarisation vector, and 5% of them is polarised in the opposite direction!.
This command is ignored if magnitude of polarisation vector defined by
“/gun/muonPolarizVector” is smaller than 1e-8!
(Applicable also to TURTLE input).

/gun/direction xDirection yDirection zDirection
Set initial beam direction as a vector (without units). The vector does not have to be normalised to
1. Both beam direction and beam spot are rotated. See comments at the beginning of this chapter.
(Applicable also to TURTLE input).

/gun/decaytimelimits muDecayTimeMin muDecayTimeMax muMeanLife unit
(default: /gun/decaytimelimits −1 −1 2197.03 ns)
If muDecayTimeMax is less or equal to zero, this command is ignored, and the muon decay time is set
internally by Geant4. Otherwise the muon will be forced to decay within a time interval given by
muDecayTimeMin and muDecayTimeMax, and the mean muon lifetime will be set to muMeanLife.
In such case muDecayTimeMin has to be equal or larger than 0 and muDecayTimeMax has to be
larger or equal to muDecayTimeMin.
(Applicable also to TURTLE input).

/gun/turtlefilename turtleFileName
Set the filename of the TURTLE input file. If this variable is set, TURTLE file will be used to
initiate muons. Otherwise the muons would be generated randomly. If the end of the TURTLE file
is reached (because the user requested to simulate more events than saved in the TURTLE file), the
TURTLE file be be rewind to its beginning. Note that this does not mean that the same events will
be simulated after the rewind, because the random seed will be set differently than at the beginning
of the simulation. The muons initialised at the same position and with the same momentum will have
completely different (random) multiple scattering, penetration depths, decay times, decay positron
energies and angles, ..., and therefore will be (almost completely) different events not affecting the
statistical quality of the simulation.

/gun/turtleZ0position z0 InitialTurtle unit
Set the z-position which has been used to generate the TURTLE file.
If this value differs from the z0 value of the “/gun/vertex” command, than the particle initial position
is linearly extrapolated from z0 InitialTurtle to the point corresponding to z0, using the direction
of its momenta.
MORE DETAILS:
When running TURTLE (e.g. when generating the TURTLE file using the TURTLE program),
the user has to specify the z position, at which the TURTLE particles (muons) would be exported.
Sometimes this z position does not correspond to the point of origin of the musrSim geometry. In
such case, the variable z0 InitialTurtle should be set to the value, that in musrSim coordinate system
corresponds to the point, at which the TURTLE file was exported. For example – if the TURTLE
file was exported just after the last quadrupole of a beam-pipe, and in the simulation the edge of the
last quadrupole corresponds to -100 cm, than the z0 InitialTurtle should be also set to -100 cm.

/gun/turtleInterpretAxes axesWithSign
Normally it is expected that the coordinates in TURTLE are x, xprime, y and yprime. One can
specify whether the x and y axes of the position in TURTLE should be interpreted differently. The
following options are supported for axesWithSign: x-y, -xy, -x-y, yx, y-x, -yx, -y-x .
Example: the option y-x means that first four coordinates in the TURTLE input file are interpreted
as y, yprime, -x, -xprime.

12 PSI

/gun/turtleMomentumBite turtleMomentumP0 turtleSmearingFactor dummy
Modify the smearing of the momentum bite specified in the TURTLE input file. Normally the muon
momentum is defined already in the TURTLE input file. This command allows the user to modify the
momentum smearing (momentum bite) of the muon beam. The variable turtleMomentumP0 will be
taken as the mean momentum (in MeV/c), around which the momentum will be increased/decreased.
It does not have to be the real mean value of the initial muon momentum distribution. The variable
turtleSmearingFactor is the smearing factor in per cent, by which the momentum bite will be in-
creased/decreased around the turtleMomentumP0. The following equation is used to change the muon
momentum: pnew = turtleMomentumP0 - (turtleMomentumP0-pTURTLE)·0.01·turtleSmearingFactor.
This means that:
turtleSmearingFactor = 100 ... the muon beam momentum will not be modified.
turtleSmearingFactor = 0 ... the muon beam momentum will be set to the constant value of turtle-
MomentumP0.
turtleSmearingFactor = 200 ... the muon beam will have two times broader distribution compared
to the original TURTLE file.

/gun/turtleMomentumScalingFactor scalingFactor
Modify the turtle momentum by this scaling factor – e.g. if the user wants to shift the mean mo-
mentum from 28 MeV/c to 14 MeV/c, this scaling factor has to be set to 0.5. Note that also the
momentum bite will be reduced by the same scaling factor. This scaling is done before the command
“/gun/turtleMomentumBite” (if both are requested).

/gun/turtleFirstEventNr lineNumberOfTurtleFile
Set the line number that should be taken as the first event from the TURTLE input file. This
option is needed when the user wants to reproduce the simulation of an event using the same random
number generator and TURTLE initial particle as in some previous run, however he wants to skip
some (uninteresting) events at the beginning of the simulation.

/gps/*
In most cases, musrSim uses the so called “G4ParticleGun” to generate the primary particles (muons).
The commands for G4ParticleGun were summarised previously, they start with /gun/ keyword.
However, there is an alternative particle generator called “GPS (General Particle Source)”, which is
useful when simulating the decays of radioactive atoms and for other purposes. Whenever the /gps/
keyword is used, the “G4ParticleGun” is not initiated (and all /gun/* commands are ignored). The
description of GPS can be found at http://reat.space.qinetiq.com/gps/ , some of the useful com-
mands are:
/gps/particle ion
/gps/ion 38 90 0 0
/gps/position 0 0 0
/gps/energy 0 keV
/gps/ang/maxtheta 2 deg
/gps/ang/maxphi 2 deg

10 Optical photons

Normally the simulation of “detected signal” stops at the level of the deposited energy in a sensitive
volume (e.g. in a scintillator tile). However, in some special cases, one would like to know how the light is
propagated through the scintillators. In such case simulation of optical photons is possible. Note that the
optical photon in Geant are treated as a class of particles distinct from higher energy gamma particles
– and there is no smooth transition between the two. Some additional material properties of an active
detector and of the detector surface have to be defined for optical photons. We strongly recommend
the users willing to simulate optical photons to read the chapter “Optical Photon Processes” in [4] to
understand the rest of this chapter.

The simulation of optical photons will significantly (in some cases dramatically) reduce the speed of
the program. The output of the optical photon simulation is stored in variables starting with the string
“odet ”. The user has to specify several parameters in order to simulate optical photons:

/musr/command G4OpticalPhotons true
Specifies to musrSim whether optical photons should be simulated or not. If this parameter is set to

musrSim 13

false, anything connected with optical photons will be ignored internally in musrSim, and the user
therefore does not have to comment out other parameters connected with optical photons in the
macro file.

/musr/command materialPropertiesTable MPT name property n E(1) ... E(n) val(1) ...
val(n)
Defines some optical property of a given material (e.g. absorption lenght, refractive index, scintillation
yield, ...) to a material property table. MPT name stands for the material property table name. The
table has n different values val(1) ... val(n) for the same number of optical photon energies E(1) ...
E(n) expressed in MeV. If n=0, the property is called “constant property”. Some of the possible prop-
erty keywords are: ABSLENGTH, RINDEX, FASTCOMPONENT, SLOWCOMPONENT, SCIN-
TILLATIONYIELD, and some of the constant properties are SCINTILLATIONYIELD, RESOLU-
TIONSCALE, FASTTIMECONSTANT, SLOWTIMECONSTANT, and YIELDRATIO. See other
property keywords in chapter “Optical Photon Processes” in [4].

SCINTILLATIONYIELD ... no. of photons per 1 MeV of deposited energy.

RESOLUTIONSCALE ... intrinsic resolution – normally 1, larger than 1 for crystals with
impurities, smaller than 1 when Fano factor plays a role.

YIELDRATIO ... relative strength of the fast component as a fraction of total scintillation yield.

/musr/command setMaterialPropertiesTable MPT name material name
Assigns a material property table defined by “/musr/command materialPropertiesTable” to a given
material.

/musr/command opticalSurface surface name phys volName1 phys volName2 surface-
Type surfaceFinish surfaceModel MPT name
Defines “border surface” (G4LogicalBorderSurface, see subsection “Boundary Process” of chapter
“Optical Photon Processes” in [4]).

surface name name of the newly defined surface.

phys volName1, phys volName2 names of the physics volume in question (it is an ordered
pair!).

surfaceType one of the following: dielectric dielectric, dielectric metal, dielectric LUT, firsov,
x ray.

surfaceFinish surface finish properties, such as: polished, ground, etchedair, ...

surfaceModel one of the following: glisur, unified, LUT.

MPT name optional “material properties table name” which should be assigned to the surface.
E.g. REFLECTIVITY or EFFICIENCY for a given surface may be assigned this way.

/musr/command OPSA subcommand parameters ...
Different commands related to Optical Photon Signal Analysis (OPSA):

signalSeparationTime timeSeparation
If two subsequent optical photons arrive to the same active detector in time smaller than time-
Separation, they will form the same “optical photon signal”. Otherwise (i.e. if there is no photon
detected for time larger than timeSeparation) the next arriving photon will start a new “optical
photon signal”. See the similarity to the command “/musr/command signalSeparationTime
timeSeparation” for the deposited energy signals.

OPSAhist nBins min max
Defines “OPSA” histograms – i.e. histograms that contain the time distribution of the arrival
of optical photons.
nBins ... number of bins of the histogram
min ... minimum of the x-axis of the histogram
max... maximum of the x-axis the histogram

In fact three kinds of histograms are created – see command “/musr/command OPSA events-
ForOPSAhistos eventID detID”.

14 PSI

eventsForOPSAhistos eventID detID
Defines event number and detector ID, for which histograms of the OPSA will be stored. If
detID is set to zero, all detectors will be stored for the given event.

The naming convention for the histograms is the following: OPSAhist eventID detID n ,
where n is the number of the “optical photon signal” in the event eventID in the detector detID.
There are other two histograms, namely “OPSAshape eventID detID n”, which shows the signal
from OPSAhist convoluted with the response function of the optical detection device as e.g. G-
APD, and “OPSA CFD eventID detID n”, which shows the signal from OPSAshape after the
constant fraction discriminator.

There are two special cases:
eventID = -1 ... OPSA histograms for all events will be summed into a signle histogram.
eventID = -2 ... OPSA histograms will be created for all events (all histograms saved individ-
ually).

pulseShapeArray pulseShapeFileName
pulseShapeFileName is the name of the file that contains response function (pulse shape) of
a single cell (single photon) detected by the photosensitive detector. The data format is very
strict:
% ... comments
first column ... time in picoseconds (it has to be: 0, 1, 2, ... iPSmax where iPSmax is smaller
than 10000)
second column ... amplitude of the APD response function
Internally in musrSim, the data read from this file are interpolated to the centres
of the bins of the histograms defined by “/musr/command OPSA OPSAhist ”.

CFD a1 delay timeShiftOffset

minNrOfDetectedPhotons

photonFractions

Tips and tricks for optical photons

• One has to assign a non-zero EFFICIENCY and a REFLECTIVITY smaller than 1 to a boundary
surface between the scintillator and sensitive device (e.g. an APD).

• To get a perfectly reflecting surface, one can use REFLECTIVITY=1; EFFICIENCY=0; surface-
Type=dielectric metal, surfaceFinish=polished, surfaceModel=unified.

11 Some other parameters

/run/beamOn nrOfEvents
Specify how many events will be simulated in this run/job.
nrOfEvents (int) – number of events to be simulated.
(This is a default Geant4 command, which has to be specified in any simulation run).

/musr/command rootOutputDirectoryName dirName
(default: /musr/command rootOutputDirectoryName data)
Specify the (sub)directory to which the output file will be written out.

/musr/command logicalVolumeToBeReweighted mu logicalVolume weight
(default: not defined; no reweighting is done unless explicitly requested by this command.)
Events can be reweighted by this command. If muon stops and decays in the volume logicalVolume,
the event will be reweighted using the requested weight. Namely, only each nth event will be stored
in the output Root tree (n =weight) with the Root tree output variable “weight” set to weight, while
other (non-nth) events will be aborted. (The decision which event is to be stored and which to be
aborted is done at random). This reweighting might be useful in the cases when the user wants to
speed-up the simulation (respectively to reduce the number of fully simulated events), while keeping
the high number of events interesting for the analysis. For example, one can set the reweighting

musrSim 15

of events in which muons stop in the collimator. The user should then use the weight stored in
the Root tree when analysing the simulated data (i.e. when filling histograms). Compared to the
simulation with no weighting applied, the histograms with weighted events will have larger errors,
but the distributions should not differ more then within the statistical errors.
Note that the weight parameter is integer, and “mu” stands for “muons” (at the moment reweighting
based on electrons or positrons is not supported).

/musr/command SetUserLimits logicalVolume ustepMax utrakMax utimeMax uekinMin
urangMin
Set the so-called user limits (G4UserLimits) in a volume logicalVolume. The five last parame-
ters correspond to the Geant4 methods “SetMaxAllowedStep”, “SetUserMaxTrackLength”, “Se-
tUserMaxTime”, “SetUserMinEkine” and “SetUserMinRange”. NOTE THAT G4StepLimiter
AND/OR G4UserSpecialCuts HAS TO BE DEFINED FOR THE REQUIRED PAR-
TICLE TYPES BEFORE CALLING THIS COMMAND!
(E.g.: “/musr/command process addProcess mu+ G4StepLimiter -1 -1 5”)
See chapter “5.7. User Limits” (namely “5.7.2. Processes co-working with G4UserLimits”) of the
Geant User Manual for more details about this issue.

The user can set G4UserLimits to logical volume and/or to a region. At the moment,
“/musr/command SetUserLimits” in musrSim supports the G4UserLimits in logical
volumes only, not in the G4Regions. User limits assigned to logical volume do not propagate
to daughter volumes, while User limits assigned to region propagate to daughter volumes unless
daughters belong to another region. If both logical volume and associated region have user limits,
those of logical volume win.

/musr/command storeOnlyEventsWithHits false
By default, only the events in which at least one hit in an active volume (detector) has been recorded
are saved to the output Root tree, because the events with no hit in any detector will anyway not
contribute to the real measurement (even not to the pileup background). However, the user has a
possibility to use this command to store all events for some technical study, e.g. to learn where the
muons stop in collimators, etc.

/musr/command storeOnlyEventsWithHitInDetID volumeID
This command is similar to the previous one. Only the events, in which there was at least one hit
in the volume with the volumeID will be saved into the output Root tree. This command might be
useful in some technical studies, it might introduce some bias in a physics study.

/musr/command storeOnlyTheFirstTimeHit true
This command specifies that only the hit that happens first will be saved, while all the other hits
will be ignored. This command might be useful in some technical studies, it would be harmful in
most physics studies.

/musr/command killAllPositrons true
It might be useful in some technical studies to abandon all positron tracks (to ignore all positrons).
For example if the user wants to study where the muon hit detectors and where do they stop and
decay, this command might help him to get rid of all hits caused by the decay positron. This
command would be harmful in most physics studies.

/musr/command killAllElectrons true
See “/musr/command killAllPositrons true” for the explanation.

/musr/command killAllGammas true
See “/musr/command killAllPositrons true” for the explanation.

/musr/command killAllNeutrinos false
By default the neutrino tracks are “killed” in the musrSim to speed up the simulation, because the
neutrinos anyway do not interact with the detectors. (This “killing” of neutrinos does not affect the
muon decay in any way). However, it might be useful not to kill the neutrinos when the user wants
to display the complete muon decay event. This command allows one not to kill the neutrinos.

/musr/command getDetectorMass logicalVolume
This command prints out the mass of a given volume (detector) including all its daughter volumes
(components).

16 PSI

/musr/command signalSeparationTime timeSeparation
There is some time for each detectors, during which it can not distinguish two subsequent hits.
The command mimics such feature. If there are two energy deposits that happen in the same active
volume (detector) within the time timeSeparation (in ns), then these two energy deposits are summed
up into a single hit. Otherwise they will form two different hits. This is true regardless on whether
the two energy deposits were induced by the same particle or by different particles. Presently the
parameter timeSeparation is common to all scintillator detectors in the system, which means it is not
possible to set different timeSeparation for a slow and fast scintillator detectors of the instrument.

/musr/command maximumNrOfStepsPerTrack n
Maximum number of steps allowed for a single track. If the number of steps per track exceeds n, the
track is killed, and the simulation proceeds with the next track.

/musr/command maximumTimePerEvent time
Maximum time (in seconds) allowed for the simulation of a single event. If this time is exceeded,
the event is killed and the simulation of the next event starts. The default value is 60 seconds. The
variable time is integer!

/musr/command maximumRunTimeAllowed timeMax
If a musrSim job is run on a pc farm with a time limit on the job execution, and the job exceeds
the time limit, the simulation will be killed. The output Root tree will be not closed properly, and
the information stored in the Root vector “geantParametersD” will be not saved. To avoid the hard
abort, the job will be terminated gently if its physical execution time exceeds timeMax. Note that
the units of timeMax are seconds, and the default value is set to 85000 s (23 hours, 37 minutes).
(Note that the simulation can also be terminated gently by creating a file “RUNNUMBER.stop” in
the working directory, where RUNNUMBER matches the run number specified in the name of the
macro file.)

12 Output root tree variables

The value of -999 or -1000 indicates that the given variable could not be filled (was undefined in a given
event). For example if the variable “muTargetTime” is set to -1000 it means that the initial muon missed
the sample, and therefore no time can be assigned to the sample hit.

The user can choose which variables should not be stored in the output file using the command

/musr/command rootOutput variableName off
The variableName is identical with the variable names stored in the Root tree (see below). Presently
the exception is “save” volume, for which all variables will be stored in the Root tree, if such a
“save” volume is requested. Another exception are the Root tree variables “nFieldNomVal” and
“fieldNomVal[nFieldNomVal]”, which are both suppressed using the keyword “fieldNomVal”. The
last exceptions are the variables “fieldIntegralBx”, “fieldIntegralBy”, “fieldIntegralBz”, “fieldInte-
gralBz1”, “fieldIntegralBz2”, “fieldIntegralBz3”, which are usually not required in an analysis pro-
gram, and they are therefore not written out to the Root tree by default. This can be changed using
the command “/musr/command rootOutput variableName on”.

The list of variables that can be stored in the Root tree:

runID (Int t) – run ID number.

eventID (Int t) – event ID number.

timeToNextEvent (Double t) – time difference between two subsequent events (at continuous beam
facility) (in µs). This time difference is generated randomly using the “meanArrivalTime” defined
in “/gun/meanarrivaltime meanArrivalTime”.

weight (Double t) – event weight.

BFieldAtDecay Bx, BFieldAtDecay By, BFieldAtDecay Bz, BFieldAtDecay B3, BField-
AtDecay B4, BFieldAtDecay B5 (Double t) – value of the 6 coordinates of the electromagnetic
field at the position and time where and when the muon decayed. The first three coordinates corre-
spond to the magnetic field (in tesla), the last three to the electric field (in kV/mm).

musrSim 17

muIniTime (Double t) – time when the initial muon was generated (in µs).

muIniPosX, muIniPosY, muIniPosZ (Double t) – initial position where muon was generated (in
mm).

muIniMomX, muIniMomY, muIniMomZ (Double t) – initial momentum of the muon when it was
generated (in MeV/c).

muIniPolX, muIniPolY, muIniPolZ (Double t) – initial polarisation of the muon when it was gen-
erated.

muDecayDetID (Int t) – ID number of the detector in which the muon stopped and decayed.

muDecayTime (Double t) – the time at which the muon decayed (in µs).

muDecayPosX, muDecayPosY, muDecayPosZ (Double t) – the position where the muon stopped
and decayed (in mm).

muDecayPolX, muDecayPolY, muDecayPolZ (Double t) – polarisation of the muon when it
stopped and decayed.

muTargetTime (Double t) – time at which the muon entered the volume whose name starts by “target”
– usually the sample (in µs).

muTargetPolX, muTargetPolY, muTargetPolZ (Double t) – polarisation of the muon when it
entered the volume whose name is “target” – usually the sample.

muTargetMomX, muTargetMomY, muTargetMomZ (Double t) – momentum of the muon when
it entered the volume whose name is “target” – usually the sample.

muM0Time (Double t) – time at which the muon entered the detector called “M0” or “m0” (in µs).

muM0PolX, muM0PolY, muM0PolZ (Double t) – polarisation of the muon when it entered the
detector called “M0” or “m0”.

muM1Time (Double t) – time at which the muon entered the detector called “M1” or “m1” (in µs).

muM1PolX, muM1PolY, muM1PolZ (Double t) – polarisation of the muon when it entered the
detector called “M1” or “m1”.

muM2Time (Double t) – time at which the muon entered the detector called “M2” or “m2” (in µs).

muM2PolX, muM2PolY, muM2PolZ (Double t) – polarisation of the muon when it entered the
detector called “M2” or “m2”.

posIniMomX, posIniMomY, posIniMomZ (Double t) – Initial momentum of the decay positron
(in MeV/c).

nFieldNomVal (Int t) – number of the elementary fields that make together the global field.

fieldNomVal[nFieldNomVal] (array of Double t) – nominal values of all elementary fields. (They are
usually constant, but sometimes they may vary from event to event).

BxIntegral, ByIntegral, BzIntegral, BzIntegral1, BzIntegral2, BzIntegral3 (Double t) – cal-
culates the field integrals along the muon path and path lengths defined as

BxIntegral =

∫
µ path

Bx(s) ds (1)

ByIntegral =

∫
µ path

By(s) ds (2)

BzIntegral =

∫
µ path

Bz(s) ds (3)

BzIntegral1 =

∫ Zdecay

Z0

Bz(z) dz (4)

18 PSI

BzIntegral2 =

∫
µ path

ds (5)

BzIntegral3 =

∫ Zdecay

Z0

dz (6)

The units are tesla·m (for the first four variables) and mm (for the last two variables). To calculate
the integrals properly, the user must force Geant to use very small step size (e.g. by using something
like “/musr/command globalfield setparameter SetLargestAcceptableStep 2”), and probably also to
generate the muons well outside the magnetic field and put target such that muons stop at z = 0.

Note that these variables are by default not calculated (and not stored) and therefore the user has
to switch the calculation on by “/musr/command rootOutput fieldIntegralBx on” in the macro file.

nOptPhot (Int t) – total number of optical photons generated in the current event.

det n (Int t) – number of “detector hits” in this event. Note that more then 1 detector might be hit,
and even the same detector might be hit more than once. The hit might be induced by just one
particle, by more then one particle originating from the same particle initially hitting the detector,
or from more “independent” particles. For example, the decay positron can emit an Bremsstrahlung
photon in the sample and then both the Bremsstrahlung photon and positron hit the same positron
counter at approximately the same time.

det ID[det n] (array of Int t) – ID number of the detector where the given hit occurred.

det edep[det n] (array of Double t) – energy deposited in the given hit (in MeV).

det edep el[det n] (array of Double t) – energy deposited in the given hit due to electron-based inter-
actions (in MeV).

det edep pos[det n] (array of Double t) – energy deposited in the given hit due to positron-based
interactions (in MeV).

det edep gam[det n] (array of Double t) – energy deposited in the given hit due to photon-based
interactions (in MeV).

det edep mup[det n] (array of Double t) – energy deposited in the given hit due to muon-based
interactions (in MeV).

det nsteps[det n] (array of Int t) – number of “steps” (in Geant4 terminology) that were integrated
together in the given hit. (The det edep[] energy is the sum of the energy deposits during all these
steps).

det length[det n] (array of Double t) – the length of the trajectory of the particle (particles) that
contributed to the given hit (in mm).

det time start[det n], det time end[det n] (array of Double t) – the initial and final time belonging
of the hit. It should be the “global time” of the track when the first and last hit occurred (in µs).

det x[det n], det y[det n], det z[det n] (array of Double t) – the coordinates of the first step of the
given hit.

det kine[det n] (array of Double t) – should be kinetic energy of the first particle contributing to the
hit, but it is not clear how to interpret this variable, so check the code for the exact meaning (in
MeV).

det Vrtx*****[det n] – All the variables starting with “det Vrtx” refer to the particle with the first
(in time) energy deposit belonging to the given hit. (Note that the hit might be induced by more
than one particle.) The vertex, at which the particle was created, may or may not be positioned
within the sensitive volume, in which the hit is observed.

det VrtxKine[det n] (array of Double t) – the kinetic energy of the first (in time) particle belonging
to the hit.

det VrtxX[det n], det VrtxY[det n], det VrtxZ[det n] (array of Double t) – the position of the
vertex of the first particle that belongs to the given hit (in mm).

musrSim 19

det VrtxVolID[det n] (array of Int t) – ID of the detector in which the vertex (see above) was created.

det VrtxProcID[det n] (array of Int t) – ID of the physics process in which the vertex (see above)
was created.

det VrtxTrackID[det n] (array of Int t) – track ID of the first particle that belongs to the given hit.
If the track ID is negative, there were more than just one track contributing to this hit. The absolute
value of det VrtxTrackID[det n] corresponds to the first (in time) track.

det VrtxParticleID[det n] (array of Int t) – particle ID of the first particle that belongs to the
given hit. (Some relevant particle IDs: Muon+=-13, Muon-=+13, Electron=11, Positron=-11,
Gamma=22, Proton=2212, Neutron=2112, Pion-=-211, Pion+=211.)

det Vvv*****[det n] – similar to the variables det Vrtx*****[det n] above, but if the first particle
belonging to the hit was created inside of the logical volume where the hit occurs, then it’s track
is followed to its mother track (even several times) until the track (particle) is found that has been
created outside the given volume. This way one can better investigate which (hopefully) single
particle caused the hit. Even though even in this case it is not guaranteed that only a single particle
gave origin to the hit, it is quite likely, though, that it was in fact just a single particle. If the

odet n (Int t) – number of “optical photon signals” in this event. Note that there can be several optical
photon signals per detector. In principle, the optical photons contributing to the same signal may
originate from more than one charged particle. Ideally, there should be the same number of optical
photon signals as there are “detector hits”, i.e. odet n = det n. However, detector hits are treated
independently of the optical photon signals, and they do not have to match perfectly.

odet ID[odet n] (array of Int t) – ID number of the detector where the given optical photon signal
occurred. The detection of optical photons happens at the boundary of surfaces, and it is assigned
to the volume ID to which the photon enters (and not from which it comes). This e.g. allows one to
attach more APDs to one scintillator, in which case odet ID[] will correspond to the volume IDs of
individual APDs.

odet nPhot[odet n] (array of Int t) – number of photons detected in the given optical photon signal.

odet timeFirst[odet n],
odet timeSecond[odet n], odet timeThird[odet n], odet timeLast[odet n] (array of Dou-
ble t) – times, when the the first, second, third and last photons, contributing to the given signal,
were detected.

odet timeA[odet n], odet timeB[odet n] (array of Double t) – time, when the nth photon was
detected, where n for odet timeA[i] is given as OPSA fracA multiplied by odet nPhot[i]. Similarly
for odet timeB[i]. The variables OPSA fracA and OPSA fracB are defined by the “/musr/command
OPSA photonFractions” command (see chapter 10).

odet timeC[odet n] (array of Double t) – time, when the shape of the signal becomes larger than the
threshold “OPSA C threshold” defined by the “/musr/command OPSA photonFractions” command
(see chapter 10).

odet timeD[odet n] (array of Double t) – time, when the shape of the normalised signal becomes
larger than the threshold “OPSA D threshold” defined by the “/musr/command OPSA photonFrac-
tions” command (see chapter 10). The normalisation is done to 1.

odet timeCFD[odet n] (array of Double t) – time as from the “Constant Fraction Discriminator”.

odet timeMean[odet n] (array of Double t) – mean time of the arriving photons (calculated from the
OPSAhist defined by the command “/musr/command OPSA OPSAhist ”.

save n (Int t) – number of special kind of “save” volume that were hit in this event. The “save volume”
is any volume whose name starts with letters “save”. Their purpose in the simulation is usually to
check positions and momenta of particles at some position of the detector, even if the particle does
not deposit any energy in the given “save” volume. Save volumes can therefore be made of vacuum.

save detID[save n] (array of Int t) – ID number of the save volume.

20 PSI

save particleID[save n] (array of Int t) – particle ID of the particle that entered the save volume.
(Some relevant particle IDs: Muon+=-13, Muon-=+13, Electron=11, Positron=-11, Gamma=22,
Proton=2212, Neutron=2112, Pion-=-211, Pion+=211.)

save time[save n] (array of Double t) – time when the particle entered in the volume (in µs).

save x[save n], save y[save n], save z[save n] (array of Double t) – position of the particle where
it entered the save volume (“GetPreStepPoint()”) (in mm).

save px[save n], save py[save n], save pz[save n] (array of Double t) – momentum of the particle
when it entered the save volume (in MeV/c).

save polx[save n], save poly[save n], save polz[save n] (array of Double t) – polarisation of the
particle when it entered the save volume.

save ke[save n] (array of Double t) – kinetic energy of the particle when it entered the save volume
(in MeV).

13 Other outputs of the simulation

The output of the simulation is stored in the file “data/musr RUNNUMBER.root”. There are four kind
of objects stored in this file:

Tree “t1” – tree containing simulated information for all events.

Vector “geantParametersD” – vector containing information valid for the whole run, e.g. the run
number of the given run, number of generated events, ...

Histogram “hGeantParameters” – contains the same information as “geantParametersD”, but in
the form of histogram. The (only) reason for storing the same information in two different ways
(TVector and histogram TH1D) is the feature of the root “hadd” command, used for merging two
or more different simulated results into one file. The command “hadd” will sum-up variables stored
in “hGeantParameters”, while it will do nothing for variables stored in “geantParametersD”. Both
ways are useful for different type of information.

Other histograms – some other histograms can be filled during the simulation for debugging purposes.
These are typically not interesting for the analysis of the results of the simulation.

14 Visualisation

/musr/command visattributes volumeName colour
/musr/command visattributes materialName colour
In case of visualisation, one can set the colour of a logical volume volumeName or of all volumes made
of the material with the name materialName. The distinction between the two options is by the first
four letters of the volumeName – if it contains the string “log ”, it is considered as volumeName,
otherwise it is considered to be a material with materialName.

Presently the following colours are predefined: “invisible”, “white”, “black”, “red”, “darkred”,
“green”, “blue”, “lightblue”, “darkblue”, “blue style”, “fblue style”, “yellow”, “gray”, “cyan”, “ma-
genta”, “oxsteel”, “MCP style”, “MACOR style”, “SCINT style”, “dSCINT style”, “VTBB style”,
“Grid style” and “RA style”.

New colours can be easily added, if needed, in the member function “musrDetectorConstruc-
tion::SetColourOfLogicalVolume”.

15 Upgrading Geant4 version

Geant 4.9.1 and older - copy the file “src/G4DecayWithSpin.cc for Geant4.9.1 and older” to the file
“src/G4DecayWithSpin.cc”. Also copy “src/G4EqEMFieldWithSpin.cc for Geant4.9.1 and older”
to “src/G4EqEMFieldWithSpin.cc”.

Geant 4.9.2.p02 – (only this partic-
ular Geant version!) copy the file “src/G4EqEMFieldWithSpin.cc for Geant4.9.2p02 only” to the
file “src/G4EqEMFieldWithSpin.cc”.

musrSim 21

Geant 4.9.2 and older - copy the file “src/musrPhysicsList.cc Geant4.9.2p02 and older” to the file
“src/musrPhysicsList.cc”.

Geant 4.9.3 From the point of view of musrSim, the largest change in version 4.9.3 with respect to
4.9.2 is the different treatment of the physics processes, therefore the musrPhysicsList.cc had to be
modified, and also the physics processes listed in the *.mac file have to be changed! Note that using
Geant 4.9.3 with old *.mac files will formally run OK, but the results of the simulation (slightly)
differ from the same simulation based on Geant 4.9.2. However after updating the *.mac file, the
simulation done with Geant 4.9.3 more or less reproduces results obtained with Geant 4.9.2.

16 Example 1 – Electrons passing through two scintillator tiles (101.mac)

One of the easiest example to illustrate the basic features of the musrSim (and/or Geant4) is to shoot
electrons into a scintillator block, and to observe the energy deposited inside it. Figure 1 illustrates a

Figure 1. A simple simulation of an electron passing through two scintillator tiles.

simple geometry made of an electron source and two blocks of scintillator tiles with the dimensions of
3× 3× 2 mm, which is defined in the macro file “101.mac”. The primary particles are electrons with the
energy of 2.15 MeV shot into the first scintillator. There the electron can be scattered, and therefore it
may or may not hit the second scintillator. We have used the command

/musr/command storeOnlyEventsWithHitInDetID 11

and therefore only the events, in which there was some energy deposited in the second collimator, will be
saved into the output Root file.

To run this example, do the following:

1. Change to the directory musrSim/run/

2. If the subdirectory data does not exist, create it.

3. Run your Geant4 initialisation script (typically something like
source /home/install/geant4.9.4/env.sh

where the path to the env.sh script depends on the directory where Geant4 is installed on your
computer.

4. Execute the command musrSim 101.mac

5. The example file 101.mac will try to visualise the events using the Dawn graphics program. To
simulate some data (without the visualisation), uncomment the line /vis/disable, comment the
line /control/execute visDawn101.mac and change number of generated events to e.g. 1000 (by
command /run/beamOn 1000).

6. Look at the output using Root, e.g. by commands
$ root

root [0] TFile* f2=new TFile("data/musr 101.root")

root [1] .ls

root [2] t1->Print()

root [3] t1->Draw("det edep","det ID==10") //energy deposited in the first scintillator

root [4] t1->Draw("det edep","det ID==11") //energy deposited in the second scintillator

root [5] t1->Draw("det time start[0]-det time start[1]") //T.O.F. between the two scint.

root [6] .q

22 PSI

Note that the hits in one event are ordered according to the deposited energy, and
therefore the first hit sometimes corresponds to the hit in scintillator counter 10, some-
times to the hit in counter 11. Therefore the histogram created by the command
t1->Draw("det time start[0]-det time start[1]") has two peaks – at a positive and at a nega-
tive time.

17 Example 2 – Sr decay electrons passing through two scintillator tiles (102.mac)

This example is very similar to the previous one. The only difference is that initial particles are decay
electrons from a 90Sr source. Because 90Sr decays to 90Y, which in turn also decays emitting an electron,
we have in fact two decay electrons per event (two emission spectra from the strontium source). The data
for the strontium and yttrium decay are taken from the Geant4 data files, namely
/home/install/data geant4.9.4/RadioactiveDecay3.3/z38.a90 and
/home/install/data geant4.9.4/RadioactiveDecay3.3/z39.a90.
There is, however, one problem in musrSim – it has to handle times with picoseond precision, and the
double precision used in the c++ program is then not enough to deal with the 90Sr decay time of 29 years.
For this reason, one has to modify the decay times in the two data files, i.e. in the file z38.a90, one
should replace the line

P 0.0000 9.0820e+08

by the line
P 0.0000 9.0820e-08

and in the file z39.a90, one should replace the lines
P 0.0000 2.3080e+05

P 682.0300 1.1480e+04

by the lines
P 0.0000 2.3080e-05

P 682.0300 1.1480e-04

This way, the decay times are reasonably short, and musrSim can handle them.
Another complication comes from the fact, that the decay electrons are emitted isotropically from the

Sr source. In principle, it is possible to restrict the emission angles in the GPS (General Particle Source),
but we have not done this intentionally, because we did not want to exclude events in which the decay
electron enters a counter after scattering in the air. In the end only a very small fraction of events hits
the second counter, and is written out to the output file. (In any case – the events in which electron does
not enter any counter are simulated in a much shorter time than the “interesting” events.)

The example 102.mac is based on the results published in [9].

18 Example 3 – Simulation of the light transport (103.mac)

This example is similar to example 1, and extended by the simulation of light (“optical photons”). The
light simulation slows down the execution of musrSim dramatically.

The simulation of light is a new feature in musrSim, and it is being tested. Once this is finished, we
will improve this example. However, it seems to be running fine in its current implementation, so you can
start using it. A lot of useful information about the optical photons is given in chapter “Optical Photon
Processes” in the Geant4 User Manual [4].

19 Example 4 – GPD instrument (201.mac)

The General Purpose Decay-Channel Spectrometer (GPD) instrument [7] at PSI, more or less as imple-
mented in reality in the year 2010, is exemplified in run 201.mac. GPD instrument is optimised for the
measurements of pressured samples in a special pressure cells. The detector system is relatively simple –
it consist of a rectangular muon counter (10x10x2 mm), two backward positron counters, three forward
positron counters, cylindrical sample in a cylindrical sample holder, two lead collimators, one copper
collimator, GPD magnet, and some additional “dead” material. The GPD geometry is illustrated in
Fig. 2-5, where some of the elements present in the simulation (beampipe, magnet, aluminium profiles)
are not displayed for simplicity. The most important parameters of the simulation are summarised in
table 2.

musrSim 23

Figure 2. 3D view at the GPD detector system (run 201). Blue colour indicates the positron counters, magenta stands for
collimators, red is the muon counter. GPD magnet, some Aluminium U-profiles and beampipe are not shown in the plot,
however they are included in the simulation.

Figure 3. Side view of the GPD detector.

A non-standard feature of this simulation is the muon momentum, which is sim100 MeV/c. The
copper collimator used in GPD has a bit complicate shape, which required to use subtraction of logical
volumes in Geant 4. This operation can not be specified through the macro file, and therefore a special
kind of volume called GPDcollimator has been hard-coded into the source code (namely in the routine
musrDetectorConstruction.cc), and it is then activated in the macro file using the command

/musr/command construct GPDcollimator ...

The results of this GPD simulation are described in the musrSimAna manual [8].

20 Example 5 – GPS instrument

For the details about the GPS simulation see the documents “Simulation of the GPS Î¼SR instrument 1–4”
(currently saved as /afs/psi.ch/project/lmu/Facility/musr simulations/documentation/GPS/*.pdf).

24 PSI

Figure 4. Front view of the GPD detector.

Figure 5. Top view of the GPD detector.

• 50121.mac – GPS as installed in reality in 2011.

• 50131.mac – GPS planned upgrade; bottle-shaped forward veto.

• 50161.mac, 50171.mac, 50181.mac – GPS planned upgrade; pyramidal forward veto.

21 Other Examples

During the years a lot of “*.mac” files were created and used. Most of these files are stored in the
file “run many files.tar.gz”. It is not guaranteed that all the “*.mac” files stored there are compatible
with the newest version of musrSim/Geant4. However, they can be still useful, at least as a source of
inspiration. See the file “README.TXT” for a short description of what the purpose of the different
files was.

Sometimes the runs need additional input files (e.g. a field map ,TURTLE file, ...). These files are
too large to be stored in the svn repository, and typically can be found in subdirectories of the high field
project: /afs/psi.ch/project/HighFieldMuSR/.

musrSim 25

Component Dimension Material

positron counter scintillator 26× 90× 5 mm plastic vinyltoluene

middle forw. positron counter scint. 14× 90× 5 mm plastic vinyltoluene

muon counter 10× 10× 2 mm plastic vinyltoluene

sample R=3.5 mm, L=14 mm Cu

sample cell R=12 mm, L=100 mm Cu

Cu collimator 80× 120× (∼ 20− 30) mm Cu

Cu collimator opening 5× 12 mm

Pb collimator 140× 140× 30 Pb

Pb collimator opening 4× 10 mm

Collimator 1 R=100 mm, L=30 mm Pb

Collimator 1 opening Ropening=8 mm

distance sample – Pb collimator 90 mm (centre – centre)

distance sample – collimator1 250 mm (centre – centre)

distance sample – beampipe window 600 mm

muon initial momentum 100± 3 MeV/c

muon initial z-coordinate -1.0 m with respect to sample

muon initial x and y coordinate Gaussian smearing, σx = σy = 25 mm

magnetic field 300 gauss

Table 2. Main parameters of the simulation.

22 Conclusions

Please let us know your comments and suggestions for further improvement/development of the musrSim
program.

References

1. S.J. Blundel, Contemp. Phys. 40 (1999) 175.
2. S. Agostinelli et al., Nucl. Instr. and Meth. A 506 (2003) 250.

J. Allison, et al., IEEE Trans. Nucl. Sci. 53 (2006) 270.
3. R. Brun, F. Rademakers “ROOT - An Object Oriented Data Analysis Framework”, Nucl. Inst. and

Meth. in Phys. Res. A 389 (1997) 81.See also http://root.cern.ch/.
4. Geant4 User Manual
5. K.L. Brown, Ch. Iselin, D.C. Carey, “Decay Turtle”, CERN 74-2 (1974).

U. Rohrer, “Compendium of Decay Turtle Enhancements”, http://pc532.psi.ch/turtcomp.htm
6. T. Shiroka et al. “GEANT4 as a simulation framework in muSR”, Physica B 404, (2009) 966-969
7. http://lmu.web.psi.ch/facilities/gpd/gpd.html
8. K. Sedlak, “Manual of musrSimAna”.
9. A. Stoykov et al. “First experience with G-APD in µSR instrumentation”, Nucl. Inst. and Meth.

in Phys. Res. A 610 (2009), 374-377.

