
Internal PSI draft

Manual of musrSim

Kamil Sedlák1, Toni Shiroka1, Zaher Salman1, Tom Lancaster2, Thomas Prokscha1, Taofiq Paraiso1

1 Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
2 Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU, UK

“musrSim” is a simulation program based on Geant4, optimised for the µSR instru-

ments. This document describes some of the commands used in the user macros of

the simulation program for the µSR instruments based on the Geant4. The root

output variables are also described.

1 Scope of the musrSim program

The program “musrSim” is a relatively general program that can be used to simulate the response of a
µSR [1] instruments (detectors) to muons and their decay particles (electrons, positrons and gammas).
Even though musrSim is tailored to the needs of the µSR technique [6], it has been used also in the
detector development studies without any muons involved, e.g. to test the response of an APD-based
scintillator counters to the irradiation of Sr radioactive source [2].

The program is based on the Geant4 [3] and Root [4] libraries. Geant4 is Monte Carlo toolkit used
(not only) in particle physics to simulate the passage of particles through the detectors. Root is an
analysis tool that allows to manipulate and analyse the simulated data, namely to plot histograms and
other graphical output.

The aim of the musrSim is to provide an easy-to-use simulation program, which does not require a
deep knowledge of Geant4 in order to simulate a (µSR) detector. In our view, the main advantages of
musrSim are:

• Simple way how to define or modify the instrument geometry.

• Limited (ideally no) need to modify and/or recompile the source code.

• Implementation of the µSR-specific classes (muon spin rotation in magnetic fields, muonium forma-
tion and decay, ...).

• Possibility to read in the output files of the TURTLE [5] program for the beam-line simulation.

• Simple way how to define (overlapping) electromagnetic fields.

• Output in the Root tree.

On the other hand, there are also some drawbacks and limitations:

• The user has to have an installation of Geant4 and Root before installing musrSim.

• It is supposed the user will analyse the data with Root, therefore Root has to be installed and some
knowledge of it is needed. Even though is relatively easy to simulate a µSR instrument, and to create
the output Root file without even knowing the c++ programming language, some c++ programming
is needed to analyse the simulation output and to plot graphs.

• At present time the program does not simulate any muon-spin related physics processes happening
in the sample, except for the muon spin rotation.

• The simulation of one event takes much more time than the measurement of a real event. The
simulation time depends on the complexity of the instrument geometry and on the presence of
electromagnetic fields. To simulate one million of muons in the case of the PSI high-field instrument
took about 10 hours of a computer time of a desktop PC.

1

2 PSI

2 How to install and run musrSim

To install and run musrSim, one has to install Geant4 and Root first. The present version of musrSim
has been tested with Geant version 4.9.1, patch no. 3 and Root version 5.20.00.

Once Geant4 has been successfully installed and some of the default Geant4 exmples
has been run, the musrSim installation package can be downloaded from the web page
http://lmu.web.psi.ch/simulation/index.html. Usually the “env.sh” script has to be run to set-up the en-
vironment variables appropriatelly before the musrSim or any other Geant4 application can be compiled
or run. The simulation can be executed by “musrSim RUNNUMBER.mac”, where RUNNUMBER.mac
is a “macro file” containing the information about the instrument setup. The string “RUNNUMBER”
represents the integer run number.

In order to simulate a new instrument, the user has to define the following blocks of information in
the macro file:

• Define the geometry (the so-called “volumes”) of the new instrument. Note that in Geant4 volumes
can be included inside other volumes (a “daughter” volume is positioned inside the “mother” volume),
and it is therefore necessary to distinguish between the global (world) coordinates and the coordinates
of the daughter volumes (local coordinates). It is not allowed to overlap any two different volumes
partially.

• Define the electric and magnetic fields.

• Define physics processes relevant for your case.

• Define the initial muon parameters (more generally – initial particle parameters).

• Define some other parameters influencing the execution of the simulation.

• Define which variables should be written out to the output Root tree.

• In case it is required to visualise the geometry, define the visualisation attributes.

By default, the output of the simulation is written out in the subdirectory “data” with the name
“musr RUNNUMBER.root”. (Note that the execution of the simulation can be terminated gently by
creating a file “RUNNUMBER.stop” in the working directory.)

3 Conventions

The default units of the musrSim in both the macro file (RUNNUMBER.mac) and in the Root tree are
summarised in table 1.

Quantity Default unit

Length mm

Time µs

Energy MeV

Momentum MeV/c

Magnetic field tesla

Electric field keV/mm

Table 1. The default units in musrSim.

4 Detector construction

/musr/command rotation matrixName α β γ

/musr/command rotation matrixName vx vy vz angle
These commands define a rotation matrix of the name matrixName that can be used later on during
the definition of the detector geometry (see command “/musr/command construct”). It can be
defined either by the Euler angles (if there are three float parameters behind the matrixName) or
by the vector (vx,vy,vz) and an angle of rotation around this vector (if the fourth float parameter
behind the matrixName is non-zero). All angles are specified in degrees.

musrSim 3

/musr/command construct solid name dimensions ... material x y z motherVolume ma-
trixName sensitiveClass idNumber
This command defines a volume in Geant4 (It comprises three steps of Geant4: defines a solid,
logical volume and physical volume. Details can to be found in Geant4 manual).

• solid (string) can be one of the G4VSolid.cc particular types, presently “tubs”, “cons”, “box”,
“trd”, “sphere”, “para”, or it can be one of the specifically implemented solids by our program as
“uprofile” (an U-profiled bar), “alcSupportPlate” (shape specific to ALC support plate), “tubs-
box” (a tube with a rectangular hole along its axis), ”tubsboxsegm” (a volume that looks like an
intersection of tube and box) and “trd90y” (a trd volume rotated by 90 degrees around y axis in
addition to the rotation requested by matrixName). Not all G4VSolids are presently supported,
but it is relatively easy to implement a new kind of solids in the musrDetectorConstruction.cc
class.

• name (string) stands for the name of the volume. As the command “/musr/command construct”
constructs three kinds of classes/volumes (the solid, logical volume and physical volume), there
are three names of the concrete volume used internally inside musrSim: sol name, log name and
phys name. The main volume, inside which all other volumes are positioned, has to be called
“World”.

• dimensions (floats) define the size of the required solid. They are kept equivalent to the dimen-
sions of solids as used in Geant4. For example the “box” is defined by its halflengths along
x, y and z coordinates. Note that the number of dimensions varies for each type of solid. The
units are mm for lengths and degrees for angles.

• material (float) one of the materials defined in Geant4, namely in the file
$G4INSTALL/source/materials/src/G4NistMaterialBuilder.cc (e.g. “G4 Galactic” for vacuum,
“G4 Cu” for copper, “G4 AIR” for air, “G4 PLASTIC SC VINYLTOLUENE” for a scintil-
lator, ...). One can also define a new material inside the function musrDetectorConstruc-
tion::DefineMaterials(). Presently “Mylar”, “Brass” “Steel”, “Macor”, “MCPglass”, “MgO”,
“SiO2”, “K2O” and “B2O3” are defined there.

• x, y, z (floats) – coordinates of the volume, used to position the volume within its mother
volume (as used by the G4PVPlacement). Thus these coordinates are interpreted in the local
coordinate system of the motherVolume.

• motherVolume (string) – name of the mother volume, in which the given volume should be posi-
tioned. Note that the mother volume has to be defined first (before its daughter), and that the
name of mother starts with a string log name, following the naming convention defined above.
When the “World” volume is defined, its motherVolume should be set to “no logical volume”.

• matrixName (string) – name of the rotation matrix that will be used to position the volume
inside its mother volume (as used in member function G4PVPlacement). Use string “norot” if
no rotation is required for the given volume. Otherwise the rotation matrix has to be defined
by the command line “/musr/command rotation” before the given volume is defined.

• sensitiveClass (string) – specifies whether the volume is sensitive detector or just a piece of a
“dead” material. Use the string “dead” for the latter, and the string “musr/ScintSD” for a
scintillator (a sensitive volume, i.e. a volume where hits are observed). No other detector type
(other than “dead” and “musr/ScintSD”) is supported at the moment, but the program might
be extended in the future (e.g. to properly include also the semiconductor tracking detectors,
etc.).

• idNumber (int) – serves as a unique identifier of the volume. It is primarily used in the output
Root tree to identify the volume: 1) in which a muon stopped (tree variable “muDecayDetID”),
2) in which hits were deposited in case of sensitive volume (the variable “det ID[det n]”).

/musr/command region define regionName logicalVolume
The “G4Region” can be created using this command, and a logical volume of the name logicalVolume
will be assigned to it. If the G4Region of the name regionName does not exist (i.e. the command
“/musr/command region define” is called for the first time for this particular regionName), the
G4Region will be created first, otherwise the logical volume logicalVolume will be just assigned to
the already existing G4Region.

4 PSI

G4Region can be useful namely for setting some special Geant4 parameters (production cuts) just
in some part of the detector (e.g. where a finer simulation is needed). See Geant4 manual for more
details.

/musr/command region setProductionCut regionName gammaCut electronCut positron-
Cut
Set the so-called “production cuts” in the G4Region called regionName. The variables gammaCut,
electronCut and positronCut are given in mm.

Three special volumes “Target, M0, M1 and M2”.

5 Electric and magnetic fields

/musr/command globalfield fieldName half x half y half z uniform X Y Z logicalVolume
Bx By Bz Ex Ey Ez
or
/musr/command globalfield fieldName X Y Z fromfile fieldTableType fieldInputFile-
Name logicalVolume fieldValue [fieldValueFinal] [fieldNrOfSteps]
This command specifies the electric and/or magnetic fields, which are (in some sense) independent
of any logical volume and can overlap with each other. In the case of tabulated field read in from
and external field map file the field values used internally by the Geant4 are linearly interpolated
using eight (3D) or four (2D) grid points surrounding the point of interest.

• fieldName (string) – name of the field (important mainly for the user and print-out messages
of the musrSim.

• half x, half y, half z (floats) – the (half) dimensions of the box, within which the uniform field
is defined.

• uniform / fromfile – specifies whether the field is uniform within some volume or whether it
is read in from an external file as a field-map.

• X, Y, Z (floats) – position of the centre of the field in the global coordinate system. IMPOR-
TANT: For some technical internal Geant4 reasons, this POSITION HAS TO LAY WITHIN
THE logicalVolume! (Note that the logical volume may be positioned somewhere deep in a
volume structure, not directly within the “World” volume, and therefore the (local) coordinates
in the definition of the the logical volume do not have to match the (global) coordinates X, Y
and Z.

• logicalVolume (string) – specifies the logical volume, to which the field is “assigned”. One may
ask, why a logical volume is needed for a field “independent” of any Geant4 volume? The reason
is purely technical - the logical volume is used to allow the field to be rotated the same way as
the assigned logical volume. The field can be smaller or larger than the logical volume, to which
it is assigned. The field extending out of the logical volume will also be used in the Geant4
calculations (will be not truncated). The only limitation is that the centre of the volume has to
lay within the assigned logical volume (see above). Sometimes it might be useful to create a very
small volume (e.g. of the order of 0.01mm) to position a rotated field into a (differently rotated
or unrotated) larger volume. The volume can also be made of vacuum (i.e. G4 Galactic).

• Bx, By, Bz, Ex, Ey, Ez (float) – the vector of the uniform electromagnetic field. The units are
tesla, for the first three components, and kilovolt/mm for the last three components.

• fieldTableType (string) – specifies the format in which the field map is written in the file. In
general, the field is specified in a grid of three space coordinates x, y and z (3D). Sometimes
it is convenient to use the symmetry of the field and to reduce the field description to R and z

(2D) only. In the following, we use this terms:
nx, ny, nz or nR, nz – the number of divisions of the grid in x, y, z or R, z. length unit – the
unit in which the grid coordinates are specified, usually cm or m.
field normalisation factor – a multiplicative factor applied to the values of the field map to
normalise the field (usually to 1 tesla or to 1 kV/mm in the centre of the field map).
minimumx, maximumx, minimumy, maximumy, minimumz, maximumz – the minimum and
maximum value in x, y and z coordinates. These values can be usually easily calculated from
the field map itself, however the field can also be specified in a compact format in which case

musrSim 5

the x, y and z coordinates are removed from the field map file, and the maxima and minima of
coordinates have to be specified.
The following formats are supported:
3DB, 3DE – magnetic or electric field specified in x, y and z coordinate system. The first line
of the file has to contain the information about nx, ny, nz, length unit and field normalisation
factor. Optionally, a compact form of the field map can be specified, in which case minimumx,
maximumx, minimumy, maximumy, minimumz, maximumz has to be added to the first line of
the file. The next few lines of the field map file beginning with the character “%” are comments.
The following lines specify the x, y, z, Field x, Field y, Field z values (non-compact format) or
Field x, Field y, Field z values (compact format).
3DBOpera, 3DEOpera – 3D magnetic field in the form of OPERA output. It is expected
that the length unit is 1 m, and the field normalisation factor is 1. (Note that this default nor-
malisation is different from 2DBOpera and 2DBOperaXY options). However, a different field
normalisation factor can be specified in the field map file using the keyword “fieldNormalisation
number” before the line started with 0.
It is expected that the we first loop over the z coordinate of the field map, then (when z changed
from minimum to maximum) it is looped over y coordinate, and the highest-lever loop goes over
x coordinate. Hoever, if the order of looping is reversed in the field map, it can be specified
using the keyword “variableIncreasingOrder xyz” placed in the field map before the line started
with 0.
The length unit can be changed to 1 cm by specifying “[CENTIMETRE]” after the “0” charac-
ter in the field map file.
It is expected that the field map is defined in the full volume of the field. Sometimes (due to
the symmetry of the field), it is enough to define the field in just one octant of the Kartesian
coorinate system (e.g. for positive x, y and z). In such cases, the user can specify this in the
field map file using the keyword “symmetryType number”, where the number specifies how the
field should be extrapolated to other octants. The “symmetryType 1” case means that the
planes of symmetry are (x,y) and (x,z), i.e. if the field at point (x, y, z) is (Fx, Fy, Fz), the field
in different octants will look like this: (−x, y, z) → (Fx, Fy, Fz); (x,−y, z) → (Fx,−Fy, Fz);
(−x,−y, z) → (Fx,−Fy, Fz); (x, y,−z) → (Fx, Fy,−Fz); (−x, y,−z) → (Fx, Fy,−Fz);
(x,−y,−z) → (Fx,−Fy,−Fz); (−x,−y,−z) → (Fx,−Fy,−Fz).
Similar case is the “symmetryType 2”, where the planes of symmetry are (x,y) and (y,z). These
two symmetry types are realised in a the spin rotator oriented along the z axis.
Example of the beginning of the field map file:
2 2 55
1 X
2 Y
3 Z
4 BX
5 BY
6 BZ
7 DUMMY
fieldNormalisation -22.5733634
symmetryType 2
0 [METRE]
-0.2 -0.2 -1.35 0. 0. 0. 0.
-0.2 -0.2 -1.30 0. -0.0002 0. 0.
-0.2 -0.2 -1.25 0. -0.0002 0. 0.
-0.2 -0.2 -1.20 0. -0.005 0. 0.
...

2DB, 2DE – magnetic or electric field specified in R and z coordinate system. The first line of
the file has to contain the information about nR, nz, length unit and field normalisation factor.
The compact form of the field map (see 3DB case) is not supported. The next few lines of the
field map file beginning with the character “%” are comments. The following lines specify the
R, z, Field R Field z values.
2DBOpera – 2D magnetic field in the form of OPERA output. It is expected that the length
unit is 1 cm, and the field normalisation factor is 0.00001 (Note that this default normalisa-

6 PSI

tion is different from 3DBOpera option). See example of 3DBOpera for the usage of keyword
“fieldNormalisation number”. The data in the field map OPERA file are ordered as R, dummy,
z, Field R, Field z, dummy
2DBOperaXY – same as 2DBOpera except that the data in the field map OPERA file are
ordered as R, z, dummy, Field R, Field z, dummy

• fieldInputFileName (string) – Name of the field map file.

• fieldValue (float) – the value of the field at some reference point (usually in the centre of the
field). It serves as some multiplicative factor. The units are tesla for the magnetic field and
kV/mm for the electric field.

• [fieldValueFinal] and [fieldNrOfSteps] (floats) – these optional parameters allow the user to
ramp up (down) the field during a single run. The fieldValue serves as the initial field value,
the [fieldValueFinal] is the final value and [fieldNrOfSteps] specifies number of steps, in which
the rump up/down will happen.

/musr/command globalfield fieldName X Y Z quadrupole halfLength fieldRadius fringe-
Factor logicalVolume gradientValue [gradientValueFinal] [gradientNrOfSteps]
Set up the field of a quadrupole magnet including the Enge function approximation of the fringe
fields. The unit of gradientValue is T/m. The description is similar to the uniform field and to the
tabulated fields. See “musrDetectorConstruction.cc” and “BLEngeFunction.hh” for the details.

/musr/command globalfield setparameter parameterName parameterValue
Set up some parameters used internally by Geant4 when calculating the motion of charged particles
in the magnetic field.
parameterName (string) – one of the following parameters: “SetDeltaIntersection” “SetDeltaOn-
eStep”, “SetMinimumEpsilonStep”, “SetMaximumEpsilonStep”, “SetLargestAcceptableStep” and
“SetMaxLoopCount”. The exact meaning of these parameters can be found in Geant4 manual.

/musr/command globalfield printparameters
Print out the accuracy parameters (see “/musr/command globalfield setparameter”).

/musr/command globalfield printFieldValueAtPoint x y z
Print out the field value at the point (x, y, z) (given in the global coordinate system.

6 Physics processes

/musr/command process addDiscreteProcess particle process
/musr/command process addProcess particle process ordAtRestDoIt ordAlongStept-
DoIt ordPostStepDoIt
Adds processes for particles.
particle (string) – name of the particle to which a process is applied.
process (string) – name of the process to be assigned.
ordAtRestDoIt, ordAlongSteptDoIt, ordPostStepDoIt (int) – priority switches.
See the file musrPhysicsList.cc for the list of defined processes (e.g. G4MultipleScattering,
G4eIonisation, ...) and Geant4 manual for the detail description of the processes.

There is one special process, combined from G4MultipleScattering and G4CoulombScattering, de-
fined by the following command:
/musr/command process addProcess particle MultipleAndCoulombScattering ordA-
tRestDoIt ordAlongSteptDoIt ordPostStepDoIt G4Region1 [G4Region2] [G4Region3]
The G4MultipleScattering (rough but very fast approximation of scattering) will be applied elsewhere
in the detector, except for the G4Region1 (and eventually G4Region2 and G4Region3), where more
precise but very slow process G4CoulombScattering will be applied instead of G4MultipleScattering.
Note that up to three G4Regions are supported at the moment, but this limitation is not intrinsic to
Geant4 and it can be therefore changed in musrPhysicsList.cc, if needed. The G4Regions have to
be defined in the detector construction phase by the command “/musr/command region define ...”.

musrSim 7

7 Initial (muon) beam parameters

/gun/primaryparticle primaryParticleName
(default: /gun/primaryparticle mu+)
Set the primary particle type, if it is not positive muon. For example, the negative muons are
specified by “/gun/primaryparticle mu-”.

/gun/vertex x0 y0 z0 unit
(default: /gun/vertex 0 0 -100 mm)
Set mean values of the x, y and z coordinates of the generated particles (muons). The smearing
around these mean values instead is set by /gun/vertexsigma and restricted by /gun/vertexboundary
(see below).
(Applicable also to TURTLE input).

/gun/vertexsigma xSigma ySigma zSigma unit
(default: /gun/vertexsigma 0 0 0 mm)
If xSigma > 0 ... set σ, i.e. the standard deviation (RMS), of the x coordinate of the generated
particles (muons) to σ = xSigma. The x coordinate of the initial muon is then generated according
to the Gaussian distribution with the mean value of x0 and the standard deviation of xSigma.
If xSigma < 0 ... the x coordinate of the initial muon is generated uniformly in the interval of (x0−
xSigma, x0+ xSigma).
If xSigma = 0 ... no smearing on the x coordinate is applied.
Similar is true for ySigma and zSigma.
(Ignored by the TURTLE input).

/gun/starttime t0 unit
By default, muons are generated at time = 0. The time of generation of muons can be set ran-
domly according to the Gaussian or uniform distribution using variables “/gun/starttime” and
“/gun/starttimesigma”. See the description of the “/gun/vertexsigma” to understand how the choice
is done.

/gun/starttimesigma t0 unit
See the description of “/gun/starttime” command.

/gun/vertexboundary R max z min z max unit
Set maximum allowed radius, and minimum and maximum z coordinate of the generated particles
(muons). This command might be useful especially if the user wants to restrict the area, in which
initial particles are created, e.g. to force the initial muons to be created inside the beam pipe.

If the particles (muons) are read in from an external TURTLE file, only the restriction on the
maximum radius R max is applied on the initial particles, while z min and z max are ignored.

/gun/kenergy kineticEnergy unit
Set the mean kinetic energy of the initial particles (muons).
(Ignored by the TURTLE input).

/gun/momentum momentum unit
Set the mean momentum of the initial particles (muons).
(Ignored by the TURTLE input).

/gun/momentumsmearing momentumSigma unit
Set σ, i.e. the standard deviation (RMS), of the momentum spread, which is applied randomly to
each generated initial particle (muon). It is the magnitude of the momentum, which is smeared.
(Ignored by the TURTLE input. However, a similar command “/gun/turtleMomentumBite” can be
used for the TURTLE input file.)

/gun/momentumboundary p min p max dummy unit
Set a boundary for the minimum and maximum momentum of the initial particles (muons). The
third argument dummy is ignored.
(Presently ignored by the TURTLE input).

8 PSI

/gun/tilt xangle0 yangle0 dummy unit
The “beam tilt” is understood as a constant angle tilt that is applied to all initial particles (muons)
regardless on their distance from the centre of the beam.
(Applicable also to TURTLE input).

/gun/tiltsigma xangleSigma yangleSigma dummy unit
Gaussian smearing of the tilt angle.
(Presently ignored by the TURTLE input).

/gun/pitch pitch unit
The “beam pitch” is understood as a variable angle applied to the initial particles (muons), which
is directly proportional to the distance from the beam axis. The particles closer to the beam axis
become smaller pitch than particles further away from the beam axis. The angle given as pitch will
be applied to a particle generated 1 mm away from the beam centre, i.e. the particle generated 7mm
away from the beam axis will be assigned the angle of 7 · pitch. The pitch allows the user to focus or
defocus the initial particle beam. Particles will be focused for positive pitch and defocused for the
negative pitch.
(Applicable also to TURTLE input).

/gun/muonPolarizVector xpolaris ypolaris zpolaris
Set polarisation of the initial particle (muon) in a form of a vector P = (xpolaris, ypolaris, zpolaris).
The polarisation vector does not have to be normalised, the normalisation will be done internally by
the program. However note that if the magnitude of P is set to less than 1e-8, the user can achieve
an unpolarised muon beam. See the source code of musrPrimaryGeneratorAction.cc if you need to
use unpolarised beam by this parameter, because there is some trick based on the magnitude of P.
(Applicable also to TURTLE input).

/gun/muonPolarizFraction polarisFraction
Set the fraction of the muon polarisation. The variable polarisFraction has to be set in the range of
-1 to 1.
If polarisFraction is set to 1, all muons are polarised in the direction of polarisation vector defined
by “/gun/muonPolarizVector”.
If polarisFraction is set to 0, half of the muons are polarised in the direction of polarisation vector,
the second half is polarised in the opposite direction, so in the end the muon beam should act as
unpolarised.
If polarisFraction is set to -1, all muons are polarised in the direction opposite to the polarisation
vector.
If polarisFraction is set to 0.9, then 95% of the muons is polarised in in the direction
of polarisation vector, and 5% of them is polarised in the opposite direction!.
This command is ignored if magnitude of polarisation vector defined by
“/gun/muonPolarizVector” is smaller than 1e-8!
(Applicable also to TURTLE input).

/gun/decaytimelimits muDecayTimeMin muDecayTimeMax muMeanLife unit
(default: /gun/decaytimelimits −1 −1 2197.03ns)
If muDecayTimeMax is less or equal to zero, this command is ignored, and the muon decay time is set
internally by Geant4. Otherwise the muon will be forced to decay within a time interval given by
muDecayTimeMin and muDecayTimeMax, and the mean muon lifetime will be set to muMeanLife.
In such case muDecayTimeMin has to be equal or larger than 0 and muDecayTimeMax has to be
larger or equal to muDecayTimeMin.
(Applicable also to TURTLE input).

/gun/turtlefilename turtleFileName
Set the filename of the TURTLE input file. If this variable is set, TURTLE file will be used to
initiate muons. Otherwise the muons would be generated randomly. If the end of the TURTLE
file is reached (because the user requested to simulate more events than saved in the TURTLE
file), the TURTLE file be be rewind to its beginning. Note that this does not mean that the same
events will be simulated after the rewind, because the random seed will be set differently than at the
beginning of the simulation. Note that the muons initialised at the same position and with the same
momentum will have completely different (random) multiple scattering, penetration depths, decay

musrSim 9

times, decay positron energies and angles, ..., and therefore will be (almost completely) different
events not affecting the statistical quality of the sample.

/gun/turtleZ0position z0 InitialTurtle unit
Set the z-position which has been used to generate the TURTLE file.
If this value differs from the z0 value of the “/gun/vertex” command, than the particle initial posi-
tion is extrapolated from z0 InitialTurtle to the point corresponding to z0, using the direction of
its momenta.
MORE DETAILS:
When running TURTLE (e.g. when generating the TURTLE file using the TURTLE program),
the user has to specify the z position, at which the TURTLE particles (muons) would be exported.
Sometimes this z position does not correspond to the point of origin of the musrSim geometry. In
such case, the variable z0 InitialTurtle should be set to the value, that in musrSim coordinate system
corresponds to the point, at which the TURTLE file was exported. For example – if the TURTLE
file was exported just after the last quadrupole of a beam-pipe, and in the simulation the edge of the
last quadrupole corresponds to -100 cm, than the z0 InitialTurtle should be also set to -100 cm.

/gun/turtleInterpretAxes axesWithSign
Normally it is expected that the coordinates in TURTLE are x, xprime, y and yprime. One can
specify whether the x and y axes of the position in TURTLE should be interpretted differently. The
following options are supported for axesWithSign: x-y, -xy, -x-y, yx, y-x, -yx, -y-x .
Example: the option y-x means that first four coordinates in the TURTLE input file are interpreded
as y, yprime, -x, -xprime.

/gun/turtleMomentumBite turtleMomentumP0 turtleSmearingFactor dummy
Modify the smearing of the momentum bite specified in the TURTLE input file. Normally the muon
momentum is defined already in the TURTLE input file. This command allows the user to modify the
momentum smearing (momentum bite) of the muon beam. The variable turtleMomentumP0 will be
taken as the mean momentum (in MeV/c), around which the momentum will be increased/decreased.
It does not have to be the real mean value of the initial muon momentum distribution. The variable
turtleSmearingFactor is the smearing factor in per cent, by which the momentum bite will be in-
creased/decreased around the turtleMomentumP0. The following equation is used to change the muon
momentum: pnew = turtleMomentumP0 - (turtleMomentumP0-pTURTLE)·0.01·turtleSmearingFactor.
This means that:
turtleSmearingFactor = 100 ... the muon beam momentum will not be modified.
turtleSmearingFactor = 0 ... the muon beam momentum will be set to the constant value of turtle-
MomentumP0.
turtleSmearingFactor = 200 ... the muon beam will have two times broader distribution compared
to the original TURTLE file.

/gun/turtleFirstEventNr lineNumberOfTurtleFile
Set the line number that should be taken as the first event from the TURTLE input file. This
option is needed when the user wants to reproduce the simulation of an event using the same random
number generator and TURTLE initial particle as in some previous run, however he wants to skip
some (uninteresting) events at the beginning of the simulation.

/gps/*
In most cases, musrSim uses the so called “G4ParticleGun” to generate the primary particles (muons).
The commands for G4ParticleGun were summarised previously, they start with /gun/ keyword.
However, there is an alternative particle generator called “GPS (General Particle Source)”, which is
useful when simulating the decays of radioactive atoms and for other purposes. Whenever the /gps/
keyword is used, the “G4ParticleGun” is not initiated (and all /gun/* commands are ignored). The
description of GPS can be found on the web, some of the useful commands are:
/gps/particle ion
/gps/ion 38 90 0 0
/gps/position 0 0 0
/gps/energy 0 keV
/gps/ang/maxtheta 2 deg

10 PSI

/gps/ang/maxphi 2 deg

8 Some other parameters

/run/beamOn nrOfEvents
Specify how many events will be simulated in this run/job.
nrOfEvents (int) – number of events to be simulated.
(This is a default Geant4 command, which has to be specified in any simulation run).

/musr/command logicalVolumeToBeReweighted mu logicalVolume weight
(default: not defined; no reweighting is done unless explicitly requested by this command.)
Events can be reweighted by this command. If muon stops and decays in the volume logicalVolume,
the event will be reweighted using the requested weight. Namely, only each nth event will be stored
in the output Root tree (n =weight) with the Root tree output variable “weight” set to weight, while
other (non-nth) events will be aborted. (The decision which event is to be stored and which to be
aborted is done at random). This reweighting might be useful in the cases when the user wants to
speed-up the simulation (respectively to reduce the number of fully simulated events), while keeping
the high number of events interesting for the analysis. For example, one can set the reweighting
of events in which muons stop in the collimator. The user should then use the weight stored in
the Root tree when analysing the simulated data (i.e. when filling histograms). Compared to the
simulation with no weighting applied, the histograms with weighted events will have larger errors,
but the distributions should not differ more then within the statistical errors.
Note that the weight parameter is integer, and “mu” stands for “muons” (at the moment reweighting
based on electrons or positrons is not supported).

/musr/command SetUserLimits logicalVolume ustepMax utrakMax utimeMax uekinMin
urangMin
Set the so-called user limits (G4UserLimits) in a volume logicalVolume. The five last parame-
ters correspond to the Geant4 methods “SetMaxAllowedStep”, “SetUserMaxTrackLength”, “Se-
tUserMaxTime”, “SetUserMinEkine” and “SetUserMinRange”. NOTE THAT G4StepLimiter
AND/OR G4UserSpecialCuts HAS TO BE DEFINED FOR THE REQUIRED PAR-
TICLE TYPES BEFORE CALLING THIS COMMAND!
(E.g.: “/musr/command process addProcess mu+ G4StepLimiter -1 -1 5”)
See chapter “5.7. User Limits” (namely “5.7.2. Processes co-working with G4UserLimits”) of the
Geant User Manual for more details about this issue.

The user can set G4UserLimits to logical volume and/or to a region. At the moment,
“/musr/command SetUserLimits” in musrSim supports the G4UserLimits in logical
volumes only, not in the G4Regions. User limits assigned to logical volume do not propagate
to daughter volumes, while User limits assigned to region propagate to daughter volumes unless
daughters belong to another region. If both logical volume and associated region have user limits,
those of logical volume win.

/musr/command storeOnlyEventsWithHits false
By default, only the events in which at least one hit in an active volume (detector) has been recorded
are saved to the output Root tree, because the events with no hit in any detector will anyway not
contribute to the real measurement (even not to the pileup background). However, the user has a
possibility to use this command to store all events for some technical study, e.g. to learn where the
muons stop in collimators, etc.

/musr/command storeOnlyEventsWithHitInDetID volumeID
This command is similar to the previous one. Only the events, in which there was at least one hit
in the volume with the volumeID will be saved into the output Root tree. This command might be
useful in some technical studies, it might introduce some bias in a physics study.

/musr/command storeOnlyTheFirstTimeHit true
This command specifies that only the hit that happens first will be saved, while all the other hits
will be ignored. This command might be useful in some technical studies, it would be harmful in
most physics studies.

musrSim 11

/musr/command killAllPositrons true
It might be useful in some technical studies to abandon all positron tracks (to ignore all positrons).
For example if the user wants to study where the muon hit detectors and where do they stop and
decay, this command might help him to get rid of all hits caused by the decay positron. This
command would be harmful in most physics studies.

/musr/command killAllGammas true
See “/musr/command killAllPositrons true” for the explanation.

/musr/command killAllNeutrinos false
By default the neutrino tracks are “killed” in the musrSim to speed up the simulation, because the
neutrinos anyway do not interact with the detectors. (This “killing” of neutrinos does not affect the
muon decay in any way). However, it might be useful not to kill the neutrinos when the user wants
to display the complete muon decay event. This command allows one not to kill the neutrinos.

/musr/command getDetectorMass logicalVolume
This command prints out the mass of a given volume (detector) including all its daughter volumes
(components).

/musr/command signalSeparationTime timeSeparation
There is some time for each detectors, during which it can not distinguish two subsequent hits.
The command mimics such feature. If there are two energy deposits that happen in the same active
volume (detector) within the time timeSeparation (in ns), then these two energy deposits are summed
up into a single hit. Otherwise they will form two different hits. This is true regardless on whether
the two energy deposits were induced by the same particle or by different particles. Presently the
parameter timeSeparation is common to all scintillator detectors in the system, which means it is not
possible to set different timeSeparation for a slow and fast scintillator detectors of the instrument.

/musr/command maximumRunTimeAllowed timeMax
If a musrSim job is run on a pc farm with a time limit on the job execution, and the job exceeds
the time limit, the simulation will be killed. The output Root tree will be not closed properly, and
the information stored in the Root vector “geantParametersD” will be not saved. To avoid the hard
abort, the job will be terminated gently if its physical execution time exceeds timeMax. Note that
the units of timeMax are seconds, and the default value is set to 85000 s (23 hours, 37minutes).
(Note that the simulation can also be terminated gently by creating a file “RUNNUMBER.stop” in
the working directory, where RUNNUMBER matches the run number specified in the name of the
macro file.)

9 Output root tree variables

The value of -999 or -1000 indicates that the given variable could not be filled (was undefined in a given
event). For example if the variable “muTargetTime” is set to -1000 it means that the initial muon missed
the sample, and therefore no time can be assigned to the sample hit.

The user can choose which variables should not be stored in the output file using the command

/musr/command rootOutput variableName off
The variableName is identical with the variable names stored in the Root tree (see below). Presently
the exception is “save” volume, for which all variables will be stored in the Root tree, if such a
“save” volume is requested. Another exception are the Root tree variables “nFieldNomVal” and
“fieldNomVal[nFieldNomVal]”, which are both suppressed using the keyword “fieldNomVal”. The
last exceptions are the variables “fieldIntegralBx”, “fieldIntegralBy”, “fieldIntegralBz”, “fieldInte-
gralBz1”, “fieldIntegralBz2”, “fieldIntegralBz3”, which are usually not required in an analysis pro-
gram, and they are therefore not written out to the Root tree by default. This can be changed using
the command “/musr/command rootOutput variableName on”.

The list of variables that can be stored in the Root tree:

runID (Int t) – run ID number.

eventID (Int t) – event ID number.

weight (Double t) – event weight.

12 PSI

BFieldAtDecay Bx, BFieldAtDecay By, BFieldAtDecay Bz, BFieldAtDecay B3, BField-
AtDecay B4, BFieldAtDecay B5 (Double t) – value of the 6 coordinates of the electromagnetic
field at the position and time where and when the muon decayed. The first three coordinates corre-
spond to the magnetic field (in tesla), the last three to the electric field (in kV/mm).

muIniTime (Double t) – time when the initial muon was generated (in µs).

muIniPosX, muIniPosY, muIniPosZ (Double t) – initial position where muon was generated (in
mm).

muIniMomX, muIniMomY, muIniMomZ (Double t) – initial momentum of the muon when it was
generated (in MeV/c).

muIniPolX, muIniPolY, muIniPolZ (Double t) – initial polarisation of the muon when it was gen-
erated.

muDecayDetID (Int t) – ID number of the detector in which the muon stopped and decayed.

muDecayTime (Double t) – the time at which the muon stopped and decayed (in µs).

muDecayPosX, muDecayPosY, muDecayPosZ (Double t) – the position where the muon stopped
and decayed (in mm).

muDecayPolX, muDecayPolY, muDecayPolZ (Double t) – polarisation of the muon when it
stopped and decayed.

muTargetTime (Double t) – time at which the muon entered the volume whose name starts by “target”
– usually the sample (in µs).

muTargetPolX, muTargetPolY, muTargetPolZ (Double t) – polarisation of the muon when it
entered the volume whose name starts with “target” – usually the sample.

muM0Time (Double t) – time at which the muon entered the detector called “M0” or “m0” (in µs).

muM0PolX, muM0PolY, muM0PolZ (Double t) – polarisation of the muon when it entered the
detector called “M0” or “m0”.

muM1Time (Double t) – time at which the muon entered the detector called “M1” or “m1” (in µs).

muM1PolX, muM1PolY, muM1PolZ (Double t) – polarisation of the muon when it entered the
detector called “M1” or “m1”.

muM2Time (Double t) – time at which the muon entered the detector called “M2” or “m2” (in µs).

muM2PolX, muM2PolY, muM2PolZ (Double t) – polarisation of the muon when it entered the
detector called “M2” or “m2”.

posIniMomX, posIniMomY, posIniMomZ (Double t) – Initial momentum of the decay positron
(in MeV/c).

nFieldNomVal (Int t) – number of the elementary fields that make together the global field.

fieldNomVal[nFieldNomVal] (array of Double t) – nominal values of all elementary fields. (They are
usually constant, but sometimes they may vary from event to event).

BxIntegral, ByIntegral, BzIntegral, BzIntegral1, BzIntegral2, BzIntegral3 (Double t) – cal-
culates the field integrals along the muon path and path lengths defined as

BxIntegral =

∫
µ path

Bx(s) ds (1)

ByIntegral =

∫
µ path

By(s) ds (2)

BzIntegral =

∫
µ path

Bz(s) ds (3)

musrSim 13

BzIntegral1 =

∫ Zdecay

Z0

Bz(z) dz (4)

BzIntegral2 =

∫
µ path

ds (5)

BzIntegral3 =

∫ Zdecay

Z0

dz (6)

The units are tesla·m (for the first four variables) and mm (for the last two variables). To calculate
the integrals properly, the user must force Geant to use very small step size (e.g. by using something
like “/musr/command globalfield setparameter SetLargestAcceptableStep 2”), and probably also to
generate the muons well outside the magnetic field and put target such that muons stop at z = 0.

Note that these variables are by default not calculated (and not stored) and therefore the user has
to switch the calculation on by “/musr/command rootOutput fieldIntegralBx on” in the macro file.

det n (Int t) – number of “detector hits” in this event. Note that more then 1 detector might be hit,
and even the same detector might be hit more than once. The hit might be induced by just one
particle, by more then one particle originating from the same particle initially hitting the detector,
or from more “independent” particles. For example, the decay positron can emit an Bremsstrahlung
photon in the sample and then both the Bremsstrahlung photon and positron hit the same positron
counter at approximately the same time.

det ID[det n] (array of Int t) – ID number of the detector where the given hit occurred.

det edep[det n] (array of Double t) – energy deposited in the given hit (in MeV).

det edep el[det n] (array of Double t) – energy deposited in the given hit due to electron-based inter-
actions (in MeV).

det edep pos[det n] (array of Double t) – energy deposited in the given hit due to positron-based
interactions (in MeV).

det edep gam[det n] (array of Double t) – energy deposited in the given hit due to photon-based
interactions (in MeV).

det edep mup[det n] (array of Double t) – energy deposited in the given hit due to muon-based
interactions (in MeV).

det nsteps[det n] (array of Int t) – number of “steps” (in Geant4 terminology) that were integrated
together in the given hit. (The det edep[] energy is the sum of the energy deposits during all these
steps).

det length[det n] (array of Double t) – the length of the trajectory of the particle (particles) that
contributed to the given hit (in mm).

det time start[det n], det time end[det n] (array of Double t) – the initial and final time belonging
of the hit. It should be the “global time” of the track when the first and last hit occurred (in µs).

det x[det n], det y[det n], det z[det n] (array of Double t) – the coordinates of the first step of the
given hit.

det kine[det n] (array of Double t) – should be kinetic energy of the first particle contributing to the
hit, but it is not clear how to interpret this variable, so check the code for the exact meaning (in
MeV).

det Vrtx*****[det n] – All the variables starting with “det Vrtx” refer to the particle with the first
(in time) energy deposit belonging to the given hit. (Note that the hit might be induced by more
than one particle.) The vertex, at which the particle was created, may or may not be positioned
within the sensitive volume, in which the hit is observed.

det VrtxKine[det n] (array of Double t) – the kinetic energy of the first (in time) particle belonging
to the hit.

14 PSI

det VrtxX[det n], det VrtxY[det n], det VrtxZ[det n] (array of Double t) – the position of the
vertex of the first particle that belongs to the given hit (in mm).

det VrtxVolID[det n] (array of Int t) – ID of the detector in which the vertex (see above) was created.

det VrtxProcID[det n] (array of Int t) – ID of the physics process in which the vertex (see above)
was created.

det VrtxTrackID[det n] (array of Int t) – track ID of the first particle that belongs to the given hit.
If the track ID is negative, there were more than just one track contributing to this hit. The absolute
value of det VrtxTrackID[det n] corresponds to the first (in time) track.

det VrtxParticleID[det n] (array of Int t) – particle ID of the first particle that belongs to the given
hit.

det Vvv*****[det n] – similar to the variables det Vrtx*****[det n] above, but if the first particle
belonging to the hit was created inside of the logical volume where the hit occurs, then it’s track
is followed to its mother track (even several times) until the track (particle) is found that has been
created outside the given volume. This way one can better investigate which (hopefully) single
particle caused the hit. Even though even in this case it is not guaranteed that only a single particle
gave origin to the hit, it is quite likely, though, that it was in fact just a single particle. If the

save n (Int t) – number of special kind of “save” volume that were hit in this event. The “save volume”
is any volume whose name starts with letters “save”. Their purpose in the simulation is usually to
check positions and momenta of particles at some position of the detector, even if the particle does
not deposit any energy in the given “save” volume. Save volumes can therefore be made of vacuum.

save detID[save n] (array of Int t) – ID number of the save volume.

save particleID[save n] (array of Int t) – particle ID of the particle that entered the save volume.

save time[save n] (array of Double t) – time when the particle enetered in the volume (in µs).

save x[save n], save y[save n], save z[save n] (array of Double t) – position of the particle where
it entered the save volume (“GetPreStepPoint()”) (in mm).

save px[save n], save py[save n], save pz[save n] (array of Double t) – momentum of the particle
when it entered the save volume (in MeV/c).

save polx[save n], save poly[save n], save polz[save n] (array of Double t) – polarisation of the
particle when it entered the save volume.

save ke[save n] (array of Double t) – kinetic energy of the particle when it entered the save volume
(in MeV).

10 Other outputs of the simulation

The output of the simulation is stored in the file “data/musr RUNNUMBER.root”. There are four kind
of objects stored in this file:

Tree “t1” – tree containing simulated information for all events.

Vector “geantParametersD” – vector containing information valid for the whole run, e.g. the run
number of the given run, number of generated events, ...

Histogram “hGeantParameters” – contains the same information as “geantParametersD”, but in
the form of histogram. The (only) reason for storing the same information in two different ways
(TVector and histogram TH1D) is the feature of the root “hadd” command, used for merging two
or more different simulated results into one file. The command “hadd” will sum-up variables stored
in “hGeantParameters”, while it will do nothing for variables stored in “geantParametersD”. Both
ways are useful for different type of information.

Other histograms – some other histograms can be filled during the simulation for debugging purposes.
These are typically not interesting for the analysis of the results of the simulation.

musrSim 15

e

C1 C2

Figure 1. A simple simulation of an electron passing through two scintillator tiles.

11 Visualisation

/musr/command visattributes volumeName colour
/musr/command visattributes materialName colour
In case of visualisation, one can set the colour of a logical volume volumeName or of all volumes made
of the material with the name materialName. The distinction between the two options is by the first
four letters of the volumeName – if it contains the string “log ”, it is considered as volumeName,
otherwise it is considered to be a material with materialName.

Presently the following colours are predefined: “invisible”, “white”, “black”, “red”, “darkred”,
“green”, “blue”, “lightblue”, “darkblue”, “blue style”, “fblue style”, “yellow”, “gray”, “cyan”, “ma-
genta”, “oxsteel”, “MCP style”, “MACOR style”, “SCINT style”, “dSCINT style”, “VTBB style”,
“Grid style” and “RA style”.

New colours can be easily added, if needed, in the member function “musrDetectorConstruc-
tion::SetColourOfLogicalVolume”.

12 Example 1 – Electrons passing through two scintillator tiles (101.mac)

One of the easiest example to illustrate the basic features of the musrSim (and/or Geant4) is to shoot
electrons into a scintillator block, and to observe the energy deposited inside it. Figure 1 illustrates a
simple geometry made of an electron source and two blocks of scintilator tiles with the dimensions of
3 × 3 × 2 mm, which is defined in the macro file “101.mac”.

16 PSI

13 Conclusions

The ... in [7].

14 Appendix A: Steering file for the simulation

Macro file for seg06.cc

set detector parameters

This line fills some space

This line fills some space

/run/beamOn 2

References

1. S.J. Blundel, Contemp. Phys. 40 (1999) 175.
2. A. Stoykov et al., “First experience with G-APDs in µSR instrumentation”, NDIP08, to be published

in Nucl. Instrum. Meth. A.
3. S. Agostinelli, et al., Nucl. Instr. and Meth. A 506 (2003) 250.

J. Allison, et al., IEEE Trans. Nucl. Sci. 53 (2006) 270.
4. R. Brun, F. Rademakers “ROOT - An Object Oriented Data Analysis Framework”, Nucl. Inst. and

Meth. in Phys. Res. A 389 (1997) 81.See also http://root.cern.ch/.
5. K.L. Brown, Ch. Iselin, D.C. Carey, “Decay Turtle”, CERN 74-2 (1974).

U. Rohrer, “Compendium of Decay Turtle Enhancements”, http://pc532.psi.ch/turtcomp.htm
6. T. Shiroka et al. “GEANT4 as a simulation framework in muSR”, Physica B 404, (2009) 966-969
7. A. Aktas et al. [H1 Collaboration], Submitted to Eur.Phys. J.C, [hep-ex/0401010].

