//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$//* // LOW ENERGY MUON SPIN RELAXATION, ROTATION, RADIATION Geant4 SIMULATION // ID : LEMuSRMuonDecayChannel.hh , v 1.0 // AUTHOR: Taofiq PARAISO based on G4MuonDecayChannel $Id$ // DATE : 2004-07-13 11:15 // //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$// // // & &&&&&&&&&& &&&&&&& &&&&&&&& // & & && && & && // & & & & & & && // & &&&&&&& & & &&&&&& &&&&&&&& // & & & && & & && // & & && & & && && & & // &&&&&&&&&& &&&&&&&&&& & &&&&& && &&&&&&& & && // & // & // & // & // MUON DECAY CHANNEL.HH //$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$// /** * The LEMuSRMuonDecayChannel class contains the implementation of the asymmetric muon decay. The process is applicable to muon (positive or negative) and muonium. * * It was inspired from the G4MuonDecayChannel method, which did not take into account the spin polarization of the muon. * * One should notice that recent versions of Geant4 feature a G4MuonDecayChannelWithSpin class, whose role is identical to the class we are describing. * * The two caracteristics of this process are * - The Michel spectrum for e+ energy distribution * \image html michel.gif Michel's Spectrum. * - The cardioidal angular distribution as a function of the positron energy * \image html kardio.gif Cardioid. * . * The angular direction of the positron emission is in relation with the energy of * the positron. * The more energy the positron has, the smaller the angle of emission with respect * to the muon spin is. The V-A theory predicts the positron rate to be * \f[ \mbox{d}\Gamma^2(w,\theta)= \frac{1}{\tau n(w)\left[1+ D(w)cos\theta \right]}\mbox{d}w \mbox{d}(\cos \theta),\f] * \f$w\f$ being the ratio between the energy of the emitted positron and the * maximal energy, and \f$\theta\f$ the angle between the muon spin and the * positron momentum. * * The distribution \f$n(w)\f$ along energy is given by the Michel's spectrum * \f[ n(w)= w^2(3-2w)\f] and the asymmetric factor is given by * \f[D(w) = \frac{2w-1}{3-2w}.\f] We assume, here, that the muons are fully * polarized. * * The distribution along energies becomes, for \f$\Theta=0\f$, * \f[n(w)+n(w)D(w)= 2w^2\f] * and for \f$\Theta = \pi\f$, * \f[n(w)-n(w)D(w)= 4(w^2-w^3)\f] * * The asymmetry can be derived integrating the rate \f$d\Gamma^2\f$, * and one should get * \f[A(w_{min}, \Theta_0) = \frac{1+\cos\Theta_0}{6}\frac{1+2w_{min}^3-3w_{min}^4}{1-2w_{min}^3+w_{min}^4}\f] * where \f$\Theta_0\f$ is the opening angle of the solid angle. * This means that if one select all positron energies, \f$w_{min}\simeq 0\f$ * - \f$A \simeq\frac{1}{3}\f$ for small solid angles * - \f$A \simeq\frac{1}{6}\f$ for large solid angles */ #ifndef LEMuSRMuonDecayChannel_h #define LEMuSRMuonDecayChannel_h 1 #include "G4ios.hh" #include "globals.hh" #include "G4VDecayChannel.hh" #include "G4DynamicParticle.hh" #include "Randomize.hh" #include "G4ThreeVector.hh" #include "G4Transform3D.hh" class LEMuSRMuonDecayChannel : public G4VDecayChannel { // Class Decription public: //!Constructor. LEMuSRMuonDecayChannel(const G4String& theParentName, G4double theBR); //! Destructor. ~LEMuSRMuonDecayChannel(); static LEMuSRMuonDecayChannel* pointer; static LEMuSRMuonDecayChannel* GetInstance(); void finalize(); public: // With Description //! \mm virtual G4DecayProducts *DecayIt(G4double); HepRandomEngine* theEngine; G4ThreeVector emomdir; //! Angles. G4double alpha,sinalpha, cosalpha, delta, sindelta, cosdelta; //! Sines and cosines. G4double costheta, sintheta, phi, sinphi, cosphi, theta; inline G4double GetTheta(){return theta;}; inline G4double GetPhi(){return phi;}; //! Polarized decay /*! * Gets the muon polarization and launch the Decay it method. */ G4DecayProducts *DecayItPolarized(G4double,G4ThreeVector polar); private: }; #endif