musrfit/src/classes/PRunNonMusr.cpp

452 lines
16 KiB
C++

/***************************************************************************
PRunNonMusr.cpp
Author: Andreas Suter
e-mail: andreas.suter@psi.ch
$Id$
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007 by Andreas Suter *
* andreas.suter@psi.c *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include <iostream>
#include "PRunNonMusr.h"
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>
*
*/
PRunNonMusr::PRunNonMusr() : PRunBase()
{
fFitStartTime = 0.0;
fFitStopTime = 0.0;
fNoOfFitBins = 0;
fHandleTag = kEmpty;
fRawRunData = 0;
}
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>
*
* \param msrInfo pointer to the msr info structure
* \param runNo number of the run of the msr-file
*/
PRunNonMusr::PRunNonMusr(PMsrHandler *msrInfo, PRunDataHandler *rawData, unsigned int runNo, EPMusrHandleTag tag) : PRunBase(msrInfo, rawData, runNo, tag)
{
// get the proper run
fRawRunData = fRawData->GetRunData(fRunInfo->fRunName[0]);
if (!fRawRunData) { // couldn't get run
cout << endl << "PRunNonMusr::PRunNonMusr(): **ERROR** Couldn't get raw run data!";
fValid = false;
}
// calculate fData
if (!PrepareData())
fValid = false;
}
//--------------------------------------------------------------------------
// Destructor
//--------------------------------------------------------------------------
/**
* <p>
*
*/
PRunNonMusr::~PRunNonMusr()
{
}
//--------------------------------------------------------------------------
// CalcChiSquare
//--------------------------------------------------------------------------
/**
* <p>
*
* \param par parameter vector iterated by minuit
*/
double PRunNonMusr::CalcChiSquare(const std::vector<double>& par)
{
double chisq = 0.0;
double diff = 0.0;
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), fRunInfo->fMap, par);
}
// calculate chi square
double x;
for (unsigned int i=0; i<fData.fValue.size(); i++) {
x = fData.fX[i];
if ((x>=fFitStartTime) && (x<=fFitStopTime)) {
diff = fData.fValue[i] - fTheory->Func(x, par, fFuncValues);
chisq += diff*diff / (fData.fError[i]*fData.fError[i]);
}
}
//cout << endl << ">> chisq=" << chisq;
return chisq;
}
//--------------------------------------------------------------------------
// CalcMaxLikelihood
//--------------------------------------------------------------------------
/**
* <p>
*
* \param par parameter vector iterated by minuit
*/
double PRunNonMusr::CalcMaxLikelihood(const std::vector<double>& par)
{
cout << endl << "PRunSingleHisto::CalcMaxLikelihood(): not implemented yet ..." << endl;
return 1.0;
}
//--------------------------------------------------------------------------
// CalcTheory
//--------------------------------------------------------------------------
/**
* <p>
*
*/
void PRunNonMusr::CalcTheory()
{
}
//--------------------------------------------------------------------------
// PrepareData
//--------------------------------------------------------------------------
/**
* <p>
*
*/
bool PRunNonMusr::PrepareData()
{
bool success = true;
cout << endl << "in PRunNonMusr::PrepareData(): will feed fFitData";
if (fRunInfo->fRunName.size() > 1) { // ADDRUN present which is not supported for NonMusr
cout << endl << ">> PRunNonMusr::PrepareData(): **WARNING** ADDRUN NOT SUPPORTED FOR THIS FIT TYPE, WILL IGNORE IT." << endl;
}
if (fHandleTag == kFit)
success = PrepareFitData();
else if (fHandleTag == kView)
success = PrepareViewData();
else
success = false;
return success;
}
//--------------------------------------------------------------------------
// PrepareFitData
//--------------------------------------------------------------------------
/**
* <p>
*
*/
bool PRunNonMusr::PrepareFitData()
{
bool success = true;
// keep start/stop time for fit: here the meaning is of course start x, stop x
fFitStartTime = fRunInfo->fFitRange[0];
fFitStopTime = fRunInfo->fFitRange[1];
// get x-, y-index
unsigned int xIndex = GetXIndex();
unsigned int yIndex = GetYIndex();
// cout << endl << ">> xIndex=" << xIndex << ", yIndex=" << yIndex;
// pack the raw data
double value = 0.0;
double err = 0.0;
// cout << endl << ">> fRawRunData->fDataNonMusr.fData[" << xIndex << "].size()=" << fRawRunData->fDataNonMusr.fData[xIndex].size();
for (unsigned int i=0; i<fRawRunData->fDataNonMusr.fData[xIndex].size(); i++) {
// cout << endl << ">> i=" << i << ", packing=" << fRunInfo->fPacking;
if (fRunInfo->fPacking == 1) {
fData.fX.push_back(fRawRunData->fDataNonMusr.fData[xIndex][i]);
fData.fValue.push_back(fRawRunData->fDataNonMusr.fData[yIndex][i]);
fData.fError.push_back(fRawRunData->fDataNonMusr.fErrData[yIndex][i]);
} else { // packed data, i.e. fRunInfo->fPacking > 1
if ((i % fRunInfo->fPacking == 0) && (i != 0)) { // fill data
// cout << endl << "-> i=" << i;
fData.fX.push_back(fRawRunData->fDataNonMusr.fData[xIndex][i]-(fRawRunData->fDataNonMusr.fData[xIndex][i]-fRawRunData->fDataNonMusr.fData[xIndex][i-fRunInfo->fPacking])/2.0);
fData.fValue.push_back(value);
fData.fError.push_back(TMath::Sqrt(err));
value = 0.0;
err = 0.0;
}
// sum raw data values
value += fRawRunData->fDataNonMusr.fData[yIndex][i];
err += fRawRunData->fDataNonMusr.fErrData[yIndex][i]*fRawRunData->fDataNonMusr.fErrData[yIndex][i];
}
}
// cout << endl << ">> fData.fValue.size()=" << fData.fValue.size();
// count the number of bins to be fitted
fNoOfFitBins=0;
double x;
for (unsigned int i=0; i<fData.fValue.size(); i++) {
x = fData.fX[i];
if ((x >= fFitStartTime) && (x <= fFitStopTime))
fNoOfFitBins++;
}
// cout << endl << ">> fNoOfFitBins=" << fNoOfFitBins;
return success;
}
//--------------------------------------------------------------------------
// PrepareViewData
//--------------------------------------------------------------------------
/**
* <p>
*
*/
bool PRunNonMusr::PrepareViewData()
{
bool success = true;
// cout << endl << ">> fRunInfo->fRunName = " << fRunInfo->fRunName[0].Data();
// get x-, y-index
unsigned int xIndex = GetXIndex();
unsigned int yIndex = GetYIndex();
// cout << endl << "PRunNonMusr::PrepareViewData: xIndex=" << xIndex << ", yIndex=" << yIndex << endl;
// fill data histo
// pack the raw data
double value = 0.0;
double err = 0.0;
// cout << endl << ">> fRawRunData->fDataNonMusr.fData[" << xIndex << "].size()=" << fRawRunData->fDataNonMusr.fData[xIndex].size();
for (unsigned int i=0; i<fRawRunData->fDataNonMusr.fData[xIndex].size(); i++) {
// cout << endl << ">> i=" << i << ", packing=" << fRunInfo->fPacking;
if (fRunInfo->fPacking == 1) {
fData.fX.push_back(fRawRunData->fDataNonMusr.fData[xIndex][i]);
fData.fValue.push_back(fRawRunData->fDataNonMusr.fData[yIndex][i]);
fData.fError.push_back(fRawRunData->fDataNonMusr.fErrData[yIndex][i]);
} else { // packed data, i.e. fRunInfo->fPacking > 1
if ((i % fRunInfo->fPacking == 0) && (i != 0)) { // fill data
// cout << endl << "-> i=" << i;
fData.fX.push_back(fRawRunData->fDataNonMusr.fData[xIndex][i]-(fRawRunData->fDataNonMusr.fData[xIndex][i]-fRawRunData->fDataNonMusr.fData[xIndex][i-fRunInfo->fPacking])/2.0);
fData.fValue.push_back(value);
fData.fError.push_back(TMath::Sqrt(err));
value = 0.0;
err = 0.0;
}
// sum raw data values
value += fRawRunData->fDataNonMusr.fData[yIndex][i];
err += fRawRunData->fDataNonMusr.fErrData[yIndex][i]*fRawRunData->fDataNonMusr.fErrData[yIndex][i];
}
}
// cout << endl << ">> fData.fValue.size()=" << fData.fValue.size();
// count the number of bins to be fitted
fNoOfFitBins = fData.fValue.size();
// cout << endl << ">> fNoOfFitBins=" << fNoOfFitBins;
// fill theory histo
// feed the parameter vector
std::vector<double> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (unsigned int i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), fRunInfo->fMap, par);
}
// cout << endl << ">> after parameter fill" << endl;
// get plot range
PMsrPlotList *plotList;
PMsrPlotStructure plotBlock;
plotList = fMsrInfo->GetMsrPlotList();
// find the proper plot block
// Here a small complication has to be handled: there are potentially multiple
// run blocks and the run might be present in various of these run blocks. In
// order to get a nice resolution on the theory the following procedure will be
// followed: the smallest x-interval found will be used to for the fXTheory resolution
// which is 1000 function points. The function will be calculated from the smallest
// xmin found up to the largest xmax found.
Double_t xMin = 0.0, xMax = 0.0;
Double_t xAbsMin = 0.0, xAbsMax = 0.0;
bool first = true;
// cout << endl << ">> plotList->size()=" << plotList->size();
for (unsigned int i=0; i<plotList->size(); i++) {
plotBlock = plotList->at(i);
// cout << endl << ">> plotBlock.fRuns.size()=" << plotBlock.fRuns.size() << endl;
for (unsigned int j=0; j<plotBlock.fRuns.size(); j++) {
// cout << endl << ">> j=" << j;
// cout << endl << ">> fRunNo=" << fRunNo;
// cout << endl << ">> plotBlock.fRuns[j].Re()=" << plotBlock.fRuns[j].Re();
// cout << endl;
if (fRunNo == plotBlock.fRuns[j].Re()-1) { // run found
if (first) {
first = false;
xMin = plotBlock.fTmin;
xMax = plotBlock.fTmax;
xAbsMin = xMin;
xAbsMax = xMax;
// cout << endl << ">> first: xMin=" << xMin << ", xMax=" << xMax << endl;
} else {
if (fabs(xMax-xMin) > fabs(plotBlock.fTmax-plotBlock.fTmin)) {
xMin = plotBlock.fTmin;
xMax = plotBlock.fTmax;
}
if (xMin < xAbsMin)
xAbsMin = xMin;
if (xMax > xAbsMax)
xAbsMax = xMax;
// cout << endl << ">> !first: xMin=" << xMin << ", xMax=" << xMax << endl;
}
// cout << endl << ">> xMin=" << xMin << ", xMax=" << xMax << endl;
}
}
}
// cout << endl << ">> after the xmin/xmax loop." << endl;
// typically take 1000 points to calculate the theory, except if there are more data points, than take that number
double xStep;
if (fData.fX.size() > 1000.0)
xStep = (xMax-xMin)/fData.fX.size();
else
xStep = (xMax-xMin)/1000.0;
double xx = xAbsMin;
do {
// fill x-vector
fData.fXTheory.push_back(xx);
// fill y-vector
fData.fTheory.push_back(fTheory->Func(xx, par, fFuncValues));
// calculate next xx
xx += xStep;
} while (xx < xAbsMax);
// clean up
par.clear();
return success;
}
//--------------------------------------------------------------------------
// GetXIndex
//--------------------------------------------------------------------------
/**
* <p>
*
*/
unsigned int PRunNonMusr::GetXIndex()
{
unsigned int index = 0;
bool found = false;
//cout << endl << ">> PRunNonMusr::GetXIndex: fRawRunData->fDataNonMusr.fXIndex = " << fRawRunData->fDataNonMusr.fXIndex;
if (fRawRunData->fDataNonMusr.fXIndex >= 0) { // ascii-file format
//cout << endl << ">> PRunNonMusr::GetXIndex: ascii-file format";
index = fRawRunData->fDataNonMusr.fXIndex;
found = true;
} else { // db-file format
//cout << endl << ">> PRunNonMusr::GetXIndex: db-file format";
if (fRunInfo->fXYDataIndex[0] > 0) { // xy-data already indices
//cout << endl << ">> PRunNonMusr::GetXIndex: xy-data are already indices, i.e. not labels";
index = fRunInfo->fXYDataIndex[0]-1; // since xy-data start with 1 ...
found = true;
} else { // xy-data data tags which needs to be converted to an index
//cout << endl << ">> fDataTags.size()=" << fRawRunData->fDataNonMusr.fDataTags.size();
for (unsigned int i=0; i<fRawRunData->fDataNonMusr.fDataTags.size(); i++) {
if (fRawRunData->fDataNonMusr.fDataTags[i].CompareTo(fRunInfo->fXYDataLabel[0]) == 0) {
//cout << endl << ">> i=" << i << ", fRawRunData->fDataNonMusr.fDataTags[i]=" << fRawRunData->fDataNonMusr.fDataTags[i].Data();
//cout << endl << ">> fRunInfo->fXYDataLabel[0]=" << fRunInfo->fXYDataLabel[0].Data();
index = i;
found = true;
break;
}
}
}
}
if (!found) {
cout << endl << "PRunNonMusr::GetXIndex(): **ERROR** Couldn't obtain x-data index!";
cout << endl;
assert(0);
}
return index;
}
//--------------------------------------------------------------------------
// GetYIndex
//--------------------------------------------------------------------------
/**
* <p>
*
*/
unsigned int PRunNonMusr::GetYIndex()
{
unsigned int index = 0;
bool found = false;
// cout << endl << ">> PRunNonMusr::GetYIndex:";
if (fRawRunData->fDataNonMusr.fYIndex >= 0) { // ascii-file format
index = fRawRunData->fDataNonMusr.fYIndex;
found = true;
} else { // db-file format
if (fRunInfo->fXYDataIndex[1] > 0) { // xy-data already indices
index = fRunInfo->fXYDataIndex[1]-1; // since xy-data start with 1 ...
found = true;
} else { // xy-data data tags which needs to be converted to an index
for (unsigned int i=0; i<fRawRunData->fDataNonMusr.fDataTags.size(); i++) {
if (fRawRunData->fDataNonMusr.fDataTags[i].CompareTo(fRunInfo->fXYDataLabel[1]) == 0) {
// cout << endl << ">> i=" << i << ", fRawRunData->fDataNonMusr.fDataTags[i]=" << fRawRunData->fDataNonMusr.fDataTags[i].Data();
// cout << endl << ">> fRunInfo->fXYDataLabel[1]=" << fRunInfo->fXYDataLabel[1].Data();
index = i;
found = true;
break;
}
}
}
}
if (!found) {
cout << endl << "PRunNonMusr::GetYIndex(): **ERROR** Couldn't obtain y-data index!";
cout << endl;
assert(0);
}
return index;
}