musrfit/src/classes/PRunSingleHisto.cpp

388 lines
14 KiB
C++

/***************************************************************************
PRunSingleHisto.cpp
Author: Andreas Suter
e-mail: andreas.suter@psi.ch
$Id$
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007 by Andreas Suter *
* andreas.suter@psi.c *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include <iostream>
#include <fstream>
#include "PMusr.h"
#include "PRunSingleHisto.h"
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>
*
*/
PRunSingleHisto::PRunSingleHisto() : PRunBase()
{
fFitStartTime = 0.0;
fFitStopTime = 0.0;
fNoOfFitBins = 0;
}
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>
*
* \param msrInfo pointer to the msr info structure
* \param runNo number of the run of the msr-file
*/
PRunSingleHisto::PRunSingleHisto(PMsrHandler *msrInfo, PRunDataHandler *rawData, unsigned int runNo) : PRunBase(msrInfo, rawData, runNo)
{
if (!PrepareData()) {
cout << endl << "**SEVERE ERROR**: PRunSingleHisto::PRunSingleHisto: Couldn't prepare data for fitting!";
cout << endl << " This is very bad :-(, will quit ...";
fValid = false;
}
}
//--------------------------------------------------------------------------
// Destructor
//--------------------------------------------------------------------------
/**
* <p>
*
*/
PRunSingleHisto::~PRunSingleHisto()
{
}
//--------------------------------------------------------------------------
// CalcChiSquare
//--------------------------------------------------------------------------
/**
* <p>
*
* The return value is chisq * fRunInfo->fPacking, the reason is:
* the data d_i and the theory t_i are scaled by the packing, i.e. d_i -> d_i / packing.
* Since the error is 1/sqrt(d_i) and hence error^2 = d_i it follows that
* (d_i - t_i)^2 ~ 1/packing^2 and error^2 ~ 1/packing, and hence the chisq needs
* to be scaled by packing.
*
* \param par parameter vector iterated by minuit
*/
double PRunSingleHisto::CalcChiSquare(const std::vector<double>& par)
{
double chisq = 0.0;
double diff = 0.0;
double N0;
// check if norm is a parameter or a function
if (fRunInfo->fNormParamNo < MSR_PARAM_FUN_OFFSET) { // norm is a parameter
N0 = par[fRunInfo->fNormParamNo-1];
} else { // norm is a function
// get function number
unsigned int funNo = fRunInfo->fNormParamNo-MSR_PARAM_FUN_OFFSET;
// evaluate function
N0 = fMsrInfo->EvalFunc(funNo,fRunInfo->fMap,par);
}
// get tau
double tau;
if (fRunInfo->fLifetimeParamNo != -1)
tau = par[fRunInfo->fLifetimeParamNo-1];
else
tau = PMUON_LIFETIME;
// get background
double bkg = par[fRunInfo->fBkgFitParamNo-1];
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
int funcNo = fMsrInfo->GetFuncNo(i);
//cout << ">> i = " << i << ", funcNo = " << funcNo << endl;
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, fRunInfo->fMap, par);
}
// calculate chi square
for (unsigned int i=0; i<fData.fValue.size(); i++) {
if ((fData.fTime[i]>=fFitStartTime) && (fData.fTime[i]<=fFitStopTime)) {
diff = fData.fValue[i] -
(N0*TMath::Exp(-fData.fTime[i]/tau)*(1+fTheory->Func(fData.fTime[i], par, fFuncValues))+bkg);
chisq += diff*diff / (fData.fError[i]*fData.fError[i]);
}
}
// static int counter = 0;
// TString fln=fRunInfo->fRunName+"_"+(Long_t)fRunInfo->fForwardHistoNo+"_data.dat";
// ofstream f(fln.Data(),ios_base::out);
// for (unsigned int i=0; i<fData.fValue.size(); i++) {
// f << endl << fData.fTime[i] << " " << fData.fValue[i] << " " << fData.fError[i];
// }
// f.close();
//
// fln=fRunInfo->fRunName+"_"+(Long_t)fRunInfo->fForwardHistoNo+"_theo.dat";
// ofstream ft(fln.Data(),ios_base::out);
// for (unsigned int i=0; i<fData.fValue.size(); i++) {
// ft << endl << fData.fTime[i] << " " << N0*TMath::Exp(-fData.fTime[i]/tau)*(1+fTheory->Func(fData.fTime[i], par))+bkg;
// }
// ft.close();
// counter++;
// if (counter == 4) exit(0);
return chisq*fRunInfo->fPacking;
}
//--------------------------------------------------------------------------
// CalcMaxLikelihood
//--------------------------------------------------------------------------
/**
* <p>
*
* \param par parameter vector iterated by minuit
*/
double PRunSingleHisto::CalcMaxLikelihood(const std::vector<double>& par)
{
double mllh = 0.0; // maximum log likelihood assuming poisson distribution for the single bin
double N0;
// check if norm is a parameter or a function
if (fRunInfo->fNormParamNo < MSR_PARAM_FUN_OFFSET) { // norm is a parameter
N0 = par[fRunInfo->fNormParamNo-1];
} else { // norm is a function
// get function number
unsigned int funNo = fRunInfo->fNormParamNo-MSR_PARAM_FUN_OFFSET;
// evaluate function
N0 = fMsrInfo->EvalFunc(funNo,fRunInfo->fMap,par);
}
// get tau
double tau;
if (fRunInfo->fLifetimeParamNo != -1)
tau = par[fRunInfo->fLifetimeParamNo-1];
else
tau = PMUON_LIFETIME;
// get background
double bkg = par[fRunInfo->fBkgFitParamNo-1];
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
int funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, fRunInfo->fMap, par);
}
// calculate maximum log likelihood
double theo;
double data;
for (unsigned int i=0; i<fData.fValue.size(); i++) {
if ((fData.fTime[i]>=fFitStartTime) && (fData.fTime[i]<=fFitStopTime)) {
// calculate theory for the given parameter set
theo = N0*TMath::Exp(-fData.fTime[i]/tau)*(1+fTheory->Func(fData.fTime[i], par, fFuncValues))+bkg;
// check if data value is not too small
if (fData.fValue[i] > 1.0e-9)
data = fData.fValue[i];
else
data = 1.0e-9;
// add maximum log likelihood contribution of bin i
mllh -= data*TMath::Log(theo) - theo - TMath::LnGamma(data+1);
}
}
return mllh;
}
//--------------------------------------------------------------------------
// CalcTheory
//--------------------------------------------------------------------------
/**
* <p>
*
*/
void PRunSingleHisto::CalcTheory()
{
// feed the parameter vector
std::vector<double> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (unsigned int i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate asymmetry
double N0 = par[fRunInfo->fNormParamNo-1];
// get tau
double tau;
if (fRunInfo->fLifetimeParamNo != -1)
tau = par[fRunInfo->fLifetimeParamNo-1];
else
tau = PMUON_LIFETIME;
// get background
double bkg = par[fRunInfo->fBkgFitParamNo-1];
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), fRunInfo->fMap, par);
}
// calculate theory
for (unsigned int i=0; i<fData.fTime.size(); i++) {
fData.fTheory.push_back(N0*TMath::Exp(-fData.fTime[i]/tau)*(1+fTheory->Func(fData.fTime[i], par, fFuncValues))+bkg);
}
// clean up
par.clear();
}
//--------------------------------------------------------------------------
// PrepareData
//--------------------------------------------------------------------------
/**
* <p>
*
*/
bool PRunSingleHisto::PrepareData()
{
// cout << endl << "in PRunSingleHisto::PrepareData(): will feed fData";
// get the proper run
PRawRunData* runData = fRawData->GetRunData(fRunInfo->fRunName);
if (!runData) { // couldn't get run
cout << endl << "PRunSingleHisto::PrepareData(): Couldn't get run " << fRunInfo->fRunName.Data() << "!";
return false;
}
// keep the time resolution in (us)
fTimeResolution = runData->fTimeResolution/1.0e3;
// keep start/stop time for fit
fFitStartTime = fRunInfo->fFitRange[0];
fFitStopTime = fRunInfo->fFitRange[1];
//cout << endl << "start/stop (fit): " << fFitStartTime << ", " << fFitStopTime;
// check if the t0's are given in the msr-file
if (fRunInfo->fT0[0] == -1) { // t0's are NOT in the msr-file
// check if the t0's are in the data file
if (runData->fT0s.size() != 0) { // t0's in the run data
// keep the proper t0's. For single histo runs, forward is holding the histo no
// fForwardHistoNo starts with 1 not with 0 ;-)
fT0s.push_back(runData->fT0s[fRunInfo->fForwardHistoNo-1]);
} else { // t0's are neither in the run data nor in the msr-file -> not acceptable!
cout << endl << "PRunSingleHisto::PrepareData(): NO t0's found, neither in the run data nor in the msr-file!";
return false;
}
} else { // t0's in the msr-file
// check if t0's are given in the data file
if (runData->fT0s.size() != 0) {
// compare t0's of the msr-file with the one in the data file
if (fabs(fRunInfo->fT0[0]-runData->fT0s[fRunInfo->fForwardHistoNo-1])>5.0) { // given in bins!!
cout << endl << "PRunSingleHisto::PrepareData(): **WARNING**:";
cout << endl << " t0 from the msr-file is " << fRunInfo->fT0[0];
cout << endl << " t0 from the data file is " << runData->fT0s[fRunInfo->fForwardHistoNo-1];
cout << endl << " This is quite a deviation! Is this done intentionally??";
cout << endl;
}
}
fT0s.push_back(fRunInfo->fT0[0]);
}
// check if post pile up data shall be used
unsigned int histoNo;
if (fRunInfo->fFileFormat.Contains("ppc")) {
histoNo = runData->fDataBin.size()/2 + fRunInfo->fForwardHistoNo-1;
} else {
histoNo = fRunInfo->fForwardHistoNo-1;
}
if ((runData->fDataBin.size() < histoNo) || (histoNo < 0)) {
cout << endl << "PRunSingleHisto::PrepareData(): PANIC ERROR:";
cout << endl << " histoNo found = " << histoNo << ", but there are only " << runData->fDataBin.size() << " runs!?!?";
cout << endl << " Will quite :-(";
cout << endl;
return false;
}
// transform raw histo data. This is done the following way (for details see the manual):
// for the single histo fit, just the rebinned raw data are copied
// first get start data, end data, and t0
unsigned int start = fRunInfo->fDataRange[0];
unsigned int end = fRunInfo->fDataRange[1];
unsigned int t0 = fT0s[0];
// check if start, end, and t0 make any sense
// 1st check if start and end are in proper order
if (end < start) { // need to swap them
int keep = end;
end = start;
start = keep;
}
// 2nd check if start is within proper bounds
if ((start < 0) || (start > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareData(): start data bin doesn't make any sense!";
return false;
}
// 3rd check if end is within proper bounds
if ((end < 0) || (end > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareData(): end data bin doesn't make any sense!";
return false;
}
// 4th check if t0 is within proper bounds
if ((t0 < 0) || (t0 > runData->fDataBin[histoNo].size())) {
cout << endl << "PRunSingleHisto::PrepareData(): t0 data bin doesn't make any sense!";
return false;
}
// everything looks fine, hence fill data set
double value = 0.0;
for (unsigned i=start; i<end; i++) {
if (((i-start) % fRunInfo->fPacking == 0) && (i != start)) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= fRunInfo->fPacking;
// time shifted so that packing is included correctly, i.e. t0 == t0 after packing
fData.fTime.push_back(fTimeResolution*((double)i-(double)t0-(double)fRunInfo->fPacking));
fData.fValue.push_back(value);
if (value == 0.0)
fData.fError.push_back(1.0);
else
fData.fError.push_back(TMath::Sqrt(value));
value = 0.0;
}
value += runData->fDataBin[histoNo][i];
}
// count the number of bins to be fitted
fNoOfFitBins=0;
for (unsigned int i=0; i<fData.fValue.size(); i++) {
if ((fData.fTime[i] >= fFitStartTime) && (fData.fTime[i] <= fFitStopTime))
fNoOfFitBins++;
}
return true;
}