659 lines
50 KiB
HTML
659 lines
50 KiB
HTML
|
|
<!DOCTYPE html>
|
|
|
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
|
<head>
|
|
<meta charset="utf-8" />
|
|
<title>Documentation of user libs (user functions) — musrfit 1.6.3 documentation</title>
|
|
<link rel="stylesheet" href="_static/nature.css" type="text/css" />
|
|
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
|
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
|
|
<script type="text/javascript" src="_static/jquery.js"></script>
|
|
<script type="text/javascript" src="_static/underscore.js"></script>
|
|
<script type="text/javascript" src="_static/doctools.js"></script>
|
|
<script type="text/javascript" src="_static/language_data.js"></script>
|
|
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
|
|
<link rel="index" title="Index" href="genindex.html" />
|
|
<link rel="search" title="Search" href="search.html" />
|
|
<link rel="next" title="Setting up musrfit on Different Platforms" href="setup-standard.html" />
|
|
<link rel="prev" title="User manual" href="user-manual.html" />
|
|
</head><body>
|
|
<div class="related" role="navigation" aria-label="related navigation">
|
|
<h3>Navigation</h3>
|
|
<ul>
|
|
<li class="right" style="margin-right: 10px">
|
|
<a href="genindex.html" title="General Index"
|
|
accesskey="I">index</a></li>
|
|
<li class="right" >
|
|
<a href="setup-standard.html" title="Setting up musrfit on Different Platforms"
|
|
accesskey="N">next</a> |</li>
|
|
<li class="right" >
|
|
<a href="user-manual.html" title="User manual"
|
|
accesskey="P">previous</a> |</li>
|
|
<li class="nav-item nav-item-0"><a href="index.html">musrfit 1.6.3 documentation</a> »</li>
|
|
</ul>
|
|
</div>
|
|
|
|
<div class="document">
|
|
<div class="documentwrapper">
|
|
<div class="bodywrapper">
|
|
<div class="body" role="main">
|
|
|
|
<div class="section" id="documentation-of-user-libs-user-functions">
|
|
<span id="user-libs"></span><span id="index-0"></span><h1>Documentation of user libs (user functions)<a class="headerlink" href="#documentation-of-user-libs-user-functions" title="Permalink to this headline">¶</a></h1>
|
|
<div class="section" id="meissner-profiles-vortex-lattice-related-functions-bmw-libs">
|
|
<span id="bmw-libs"></span><span id="index-1"></span><h2>Meissner-Profiles / Vortex-Lattice related functions (BMW libs)<a class="headerlink" href="#meissner-profiles-vortex-lattice-related-functions-bmw-libs" title="Permalink to this headline">¶</a></h2>
|
|
<div class="section" id="libfitpofb">
|
|
<span id="index-2"></span><h3>libFitPofB<a class="headerlink" href="#libfitpofb" title="Permalink to this headline">¶</a></h3>
|
|
<div class="section" id="introduction">
|
|
<h4>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h4>
|
|
<p><code class="docutils literal notranslate"><span class="pre">libFitPofB</span></code> is a collection of <code class="docutils literal notranslate"><span class="pre">C++</span></code> classes using the <code class="docutils literal notranslate"><span class="pre">musrfit</span></code> <a class="reference internal" href="user-manual.html#id38"><span class="std std-ref">user-functions</span></a>
|
|
interface in order to facilitate the usage in conjunction with <code class="docutils literal notranslate"><span class="pre">musrfit</span></code>. The classes contained in this
|
|
library generally implement calculations of one-dimensional static magnetic field distributions
|
|
<span class="math notranslate nohighlight">\(p(B)\)</span> which lead to the muon-spin depolarization functions</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[{\cal P}(t) = \int p(B) \cos(\gamma_\mu B t + \varphi) dB,\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(\gamma_\mu = 2 \pi \times 135.54\)</span> MHz/T is the gyromagnetic ratio of the muon and <span class="math notranslate nohighlight">\(\varphi\)</span>
|
|
is the initial phase of the muon spins with respect to the positron detector. At the moment the only available
|
|
implementations deal with field distributions measured in local isotropic superconductors, either by means of
|
|
low-energy μSR (see <a class="reference external" href="https://www.psi.ch/smus/lem">https://www.psi.ch/smus/lem</a>) in the Meissner state or by bulk μSR in the mixed state.
|
|
In the following the basic usage of the library in <code class="docutils literal notranslate"><span class="pre">musrfit</span></code> is explained—the calculations by themselves are only
|
|
outlined. For further information please refer to the original literature and/or the source code of the implementation.</p>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>In order to supply certain information needed for the calculations but not suited to be stored in the <code class="docutils literal notranslate"><span class="pre">musrfit</span></code>
|
|
msr files an <code class="docutils literal notranslate"><span class="pre">XML</span></code> configuration file in the working directory is used. For details, see below.</p>
|
|
</div>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>The implementations in this library heavily rely on <a class="reference external" href="http://fftw.org/">FFTW3</a>. In principle, it always checks what
|
|
is the best way to do efficient Fourier transforms for a given machine before the transforms are actually done. If
|
|
repeatedly Fourier transforms of the same (sizable) length should be done, it might be worth storing the once
|
|
obtained information in an external file and just load it the next time this information is needed
|
|
(<a class="reference external" href="http://fftw.org/fftw3_doc/Wisdom.html">wisdom handling</a>). In case this feature shall be used, a valid wisdom
|
|
file has to be specified in the <code class="docutils literal notranslate"><span class="pre">XML</span></code> file.</p>
|
|
</div>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>The model functions described in the following do generally <em>not behave nicely</em> in conjunction with <code class="docutils literal notranslate"><span class="pre">MINUIT</span></code>
|
|
function minimizations (or maximizations). The analysis process at the moment in most cases involves some
|
|
tedious trial-and-error procedure, where the displayed MINUIT information as always deserves attention.
|
|
This is especially true if small effects should be analyzed (<em>e.g.</em> small diamagnetic shifts in superconductors).
|
|
The parameter uncertainty in many cases has to be estimated independently. Due to these limitations, also
|
|
the use of the fit option of <code class="docutils literal notranslate"><span class="pre">msr2data</span></code> <em>cannot</em> be advised.</p>
|
|
</div>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>If these classes still prove useful and results obtained through them are part of scientific publications,
|
|
an acknowledgment of the use of the library is appreciated.</p>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="le-mgrsr">
|
|
<h4>LE-μSR<a class="headerlink" href="#le-mgrsr" title="Permalink to this headline">¶</a></h4>
|
|
<div class="section" id="one-dimensional-london-model-for-the-meissner-state-of-isotropic-superconductors">
|
|
<span id="index-3"></span><h5>One-dimensional London model for the Meissner state of isotropic superconductors<a class="headerlink" href="#one-dimensional-london-model-for-the-meissner-state-of-isotropic-superconductors" title="Permalink to this headline">¶</a></h5>
|
|
<p>The models for analyzing LE-μSR data assume the magnetic induction <span class="math notranslate nohighlight">\(B(z)\)</span> to vary only in the
|
|
dimension parallel to the momentum of the incident muons. In such a case the magnetic field distribution is given by</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[p(B) = n(z) \left| \frac{dB(z)}{dz} \right|^{-1}\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(n(z)\)</span> is the muon implantation profile simulated by <code class="docutils literal notranslate"><span class="pre">TRIM.SP</span></code>.</p>
|
|
<p>Assuming an array of <em>N</em> isotropic local superconductors with a total thickness <em>d</em> in the Meissner state
|
|
the magnetic induction is given by solving the 1D London equation</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[\frac{\partial^2}{\partial z^2}B_i(z) = \frac{1}{\lambda_i^2}B_i(z)\]</div>
|
|
<p>for each layer <em>i</em> taking into account the boundary conditions (F. London, Superfluids: Macroscopic Theory of Superconductivity, Dover (1961), p. 34)</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[ \begin{align}\begin{aligned}B_1(0) = B_N(d) = \mu_0H\\B_i(d_i) = B_{i+1}(d_i)\\\lambda_i^2B_i'(z)\Big\vert_{z=d_i} = \lambda_{i+1}^2B_{i+1}'(z)\Big\vert_{z=d_i},\end{aligned}\end{align} \]</div>
|
|
<p>where the <span class="math notranslate nohighlight">\(d_i\)</span> specify the interfaces between two adjacent layers and <span class="math notranslate nohighlight">\(\lambda_i\)</span> is
|
|
the magnetic field penetration depth in the constituent <span class="math notranslate nohighlight">\(i\)</span>.</p>
|
|
<p>The calculation of the field distribution has been set up for a superconducting half-space as well
|
|
as superconducting thin films with up to three superconducting layers with different penetration depths.
|
|
The muon-spin depolarization functions are calculated using the following lines in the <code class="docutils literal notranslate"><span class="pre">THEORY</span></code> block
|
|
of a <code class="docutils literal notranslate"><span class="pre">musrfit</span></code> msr file:</p>
|
|
<p id="index-4"><strong>Superconducting half-space</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TLondon1DHS</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span> <span class="mi">5</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>muon implantation energy as specified in the <a class="reference internal" href="#bmwlibs-xml"><span class="std std-ref">XML startup</span></a> file (keV)</p></li>
|
|
<li><p>applied field (G)</p></li>
|
|
<li><p>thickness of the dead layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth (nm)</p></li>
|
|
</ol>
|
|
<p id="index-5"><strong>Superconducting thin film (one layer)</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TLondon1D1L</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span> <span class="mi">5</span> <span class="mi">6</span> <span class="p">[</span><span class="n">a</span> <span class="n">b</span><span class="p">]</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The mandatory parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>muon implantation energy as specified in the <a class="reference internal" href="#bmwlibs-xml"><span class="std std-ref">XML startup</span></a> file (keV)</p></li>
|
|
<li><p>applied field (G)</p></li>
|
|
<li><p>thickness of the dead layer (nm)</p></li>
|
|
<li><p>thickness of the actually superconducting layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth (nm)</p></li>
|
|
</ol>
|
|
<p>The optional parameters are:</p>
|
|
<ol class="loweralpha simple">
|
|
<li><p>fraction f<sub>1</sub> of muons in the thin film contributing to the signal (0 ≤ f<sub>1</sub> ≤ 1)</p></li>
|
|
<li><p>fraction f<sub>s</sub> of muons in the substrate contributing to the signal (0 ≤ f<sub>s</sub> ≤ 1)</p></li>
|
|
</ol>
|
|
<p id="index-6"><strong>Superconducting thin-film bilayer heterostructure</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TLondon1D2L</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span> <span class="mi">5</span> <span class="mi">6</span> <span class="mi">7</span> <span class="mi">8</span> <span class="p">[</span><span class="n">a</span> <span class="n">b</span> <span class="n">c</span><span class="p">]</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The mandatory parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>muon implantation energy as specified in the <a class="reference internal" href="#bmwlibs-xml"><span class="std std-ref">XML startup</span></a> file (keV)</p></li>
|
|
<li><p>applied field (G)</p></li>
|
|
<li><p>thickness of the dead layer (nm)</p></li>
|
|
<li><p>thickness of the actually superconducting first layer (nm)</p></li>
|
|
<li><p>thickness of the actually superconducting second layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth of the first layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth of the second layer (nm)</p></li>
|
|
</ol>
|
|
<p>The optional parameters are:</p>
|
|
<ol class="loweralpha simple">
|
|
<li><p>fraction f<sub>1</sub> of muons in the dead and first layer contributing to the signal (0 ≤ f<sub>1</sub> ≤ 1)</p></li>
|
|
<li><p>fraction f<sub>2</sub> of muons in the second layer contributing to the signal (0 ≤ f<sub>2</sub> ≤ 1)</p></li>
|
|
<li><p>fraction f<sub>s</sub> of muons in the substrate contributing to the signal (0 ≤ f<sub>s</sub> ≤ 1)</p></li>
|
|
</ol>
|
|
<p id="index-7"><strong>Superconducting thin-film trilayer heterostructure</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TLondon1D3L</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span> <span class="mi">5</span> <span class="mi">6</span> <span class="mi">7</span> <span class="mi">8</span> <span class="mi">9</span> <span class="mi">10</span> <span class="p">[</span><span class="n">a</span> <span class="n">b</span> <span class="n">c</span> <span class="n">d</span><span class="p">]</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The mandatory parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>muon implantation energy as specified in the <a class="reference internal" href="#bmwlibs-xml"><span class="std std-ref">XML startup</span></a> file (keV)</p></li>
|
|
<li><p>applied field (G)</p></li>
|
|
<li><p>thickness of the dead layer (nm)</p></li>
|
|
<li><p>thickness of the actually superconducting first layer (nm)</p></li>
|
|
<li><p>thickness of the actually superconducting second layer (nm)</p></li>
|
|
<li><p>thickness of the actually superconducting third layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth of the first layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth of the second layer (nm)</p></li>
|
|
<li><p>magnetic field penetration depth of the third layer (nm)</p></li>
|
|
</ol>
|
|
<p>The optional parameters are:</p>
|
|
<ol class="loweralpha simple">
|
|
<li><p>fraction f<sub>1</sub> of muons in the dead and first layer contributing to the signal (0 ≤ f<sub>1</sub> ≤ 1)</p></li>
|
|
<li><p>fraction f<sub>2</sub> of muons in the second layer contributing to the signal (0 ≤ f<sub>2</sub> ≤ 1)</p></li>
|
|
<li><p>fraction f<sub>3</sub> of muons in the third layer contributing to the signal (0 ≤ f<sub>3</sub> ≤ 1)</p></li>
|
|
<li><p>fraction f<sub>s</sub> of muons in the substrate contributing to the signal (0 ≤ f<sub>s</sub> ≤ 1)</p></li>
|
|
</ol>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="bulk-mgrsr">
|
|
<h4>Bulk μSR<a class="headerlink" href="#bulk-mgrsr" title="Permalink to this headline">¶</a></h4>
|
|
<div class="section" id="field-distributions-in-the-mixed-state-of-isotropic-superconductors">
|
|
<span id="index-8"></span><h5>Field distributions in the mixed state of isotropic superconductors<a class="headerlink" href="#field-distributions-in-the-mixed-state-of-isotropic-superconductors" title="Permalink to this headline">¶</a></h5>
|
|
<p>When investigating superconductors in the mixed state by means of conventional μSR a
|
|
two-dimensional flux-line lattice is probed randomly by the muons. The spatial field
|
|
distributions within such an ordered lattice are modeled using the Fourier series</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[B(\mathbf{r}) = \langle B \rangle \sum\limits_{\mathbf{K}}B_{\mathbf{K}}\exp(-\imath\mathbf{K}\mathbf{r}),\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(\mathbf{r}=(x,y)\)</span>, <strong>K</strong> are the reciprocal lattice vectors of a two-dimensional
|
|
vortex lattice and the <span class="math notranslate nohighlight">\(B_{\mathbf{K}}\)</span> are the Fourier coefficients depending on the
|
|
magnetic penetration depth <span class="math notranslate nohighlight">\(\lambda\)</span> and the superconducting coherence length <span class="math notranslate nohighlight">\(\xi\)</span>.
|
|
The <span class="math notranslate nohighlight">\(B_{\mathbf{K}}\)</span> for some specific models are as follows:</p>
|
|
<p><strong>London model with Gaussian cutoff</strong> (E.H. Brandt, <a class="reference external" href="http://dx.doi.org/10.1007/BF00683568">J. Low Temp. Phys. 73, 355 (1988)</a>.)</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[B_{\mathbf{K}} = \frac{\exp\left({-K^2\xi^2/2}\right)}{1 + K^2\lambda^2}\]</div>
|
|
<p><strong>Modified London model</strong> (T.M. Riseman <em>et al.</em>, <a class="reference external" href="http://dx.doi.org/10.1103/PhysRevB.52.10569">Phys. Rev. B 52, 10569 (1995)</a>.)</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[B_{\mathbf{K}} = \frac{\exp\left({-K^2\xi^2/2(1-b)}\right)}{1 + K^2\lambda^2/(1-b)},\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(b = \langle B \rangle / (\mu_0 H_{\rm c2})\)</span>.</p>
|
|
<p><strong>Analytical Ginzburg-Landau model</strong> ( A. Yaouanc, P. Dalmas de Réotier and E.H. Brandt, <a class="reference external" href="http://dx.doi.org/10.1103/PhysRevB.55.11107">Phys. Rev. B 55, 11107 (1997)</a>)</p>
|
|
<div class="math notranslate nohighlight">
|
|
\[B_{\mathbf{K}} = \frac{f_{\infty}K_1\left(\frac{\xi_v}{\lambda}\sqrt{f_{\infty}^2+\lambda^2K^2}\right)}{K_1\left(\frac{\xi_v}{\lambda}f_{\infty}\right)\sqrt{f_{\infty}^2+\lambda^2K^2}},\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(f_{\infty} = 1 - b^4,~\xi_v = \xi\left(\sqrt{2}-{3\xi}/\left({4\lambda}\right)\right)\sqrt{(1+b^4)(1-2b(1-b)^2)}\)</span> and
|
|
<span class="math notranslate nohighlight">\(K_1\)</span> is a modified Bessel function.</p>
|
|
<p>Apart from the mentioned analytic models the <strong>numerical Ginzburg-Landau model</strong> (<a class="reference external" href="http://dx.doi.org/10.1103/PhysRevB.68.054506">E.H. Brandt, Phys. Rev. B 68, 054506 (2003).</a>) is available. In this case <span class="math notranslate nohighlight">\(B(\mathbf{r})\)</span> is obtained by an iterative minimization of the free energy of the vortex lattice.</p>
|
|
<p><strong>Concerning the applicability (e.g. field regions) of each of the mentioned models please refer to the original publications!</strong></p>
|
|
<p>At the moment, the calculation of the field distribution has been implemented for <em>triangular</em> flux-line lattices.
|
|
The number of grid lines in which the inter-vortex distance is divided for the calculations to be specified through
|
|
the <a class="reference internal" href="#bmwlibs-xml"><span class="std std-ref">XML startup</span></a>.
|
|
The muon-spin depolarization functions finally are calculated using the following lines in the THEORY block of a <code class="docutils literal notranslate"><span class="pre">musrfit</span></code> msr file:</p>
|
|
<p id="index-9"><strong>2D triangular vortex lattice, London model with Gaussian cutoff</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TBulkTriVortexLondon</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>mean magnetic induction (G)</p></li>
|
|
<li><p>magnetic penetration depth (nm)</p></li>
|
|
<li><p>Ginzburg-Landau coherence length (nm)</p></li>
|
|
</ol>
|
|
<p id="index-10"><strong>2D triangular vortex lattice, modified London model</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TBulkTriVortexML</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>mean magnetic induction (G)</p></li>
|
|
<li><p>magnetic penetration depth (nm)</p></li>
|
|
<li><p>Ginzburg-Landau coherence length (nm)</p></li>
|
|
</ol>
|
|
<p id="index-11"><strong>2D triangular vortex lattice, analytic Ginzburg-Landau model</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TBulkTriVortexAGL</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>mean magnetic induction (G)</p></li>
|
|
<li><p>magnetic penetration depth (nm)</p></li>
|
|
<li><p>Ginzburg-Landau coherence length (nm)</p></li>
|
|
</ol>
|
|
<p id="index-12"><strong>2D triangular vortex lattice, numerical Ginzburg-Landau model</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libFitPofB</span> <span class="n">TBulkTriVortexNGL</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>phase (deg)</p></li>
|
|
<li><p>mean magnetic induction (G)</p></li>
|
|
<li><p>magnetic penetration depth (nm)</p></li>
|
|
<li><p>Ginzburg-Landau coherence length (nm)</p></li>
|
|
</ol>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>In order to improve the convergence of <code class="docutils literal notranslate"><span class="pre">MIGRAD</span></code> it has proven useful to use the log-likelihood
|
|
maximization instead of the <span class="math notranslate nohighlight">\(\chi^2\)</span> minimization routines and to choose sufficiently large
|
|
initial steps for the parameters. Calling <code class="docutils literal notranslate"><span class="pre">MINOS</span></code> in conjunction with these functions is futile.</p>
|
|
</div>
|
|
<p>Therefore, the <a class="reference internal" href="user-manual.html#msr-commands-block"><span class="std std-ref">COMMANDS block</span></a> of the msr file could look like:</p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">COMMANDS</span>
|
|
<span class="n">STRATEGY</span> <span class="mi">2</span>
|
|
<span class="n">MAX_LIKELIHOOD</span>
|
|
<span class="n">MIGRAD</span>
|
|
<span class="n">HESSE</span>
|
|
<span class="n">SAVE</span>
|
|
</pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="the-xml-startup-file">
|
|
<span id="bmwlibs-xml"></span><span id="index-13"></span><h4>The XML startup file<a class="headerlink" href="#the-xml-startup-file" title="Permalink to this headline">¶</a></h4>
|
|
<p><code class="docutils literal notranslate"><span class="pre">BMW_startup.xml</span></code> is a configuration file located in the working directory. In this file some settings
|
|
like the time and field resolution of the calculations as well as the present muon implantation profiles
|
|
for a LE-μSR analysis have to be defined. The following XML tags are allowed to define settings:</p>
|
|
<dl>
|
|
<dt><strong><debug>ONE_OR_ZERO</debug></strong></dt><dd><p>activate the debugging output of the settings read from the XML file by setting 1, deactivate it with 0.</p>
|
|
</dd>
|
|
<dt><strong><wisdom>PATH_TO_FILE</wisdom></strong></dt><dd><p>specify the <code class="docutils literal notranslate"><span class="pre">PATH_TO_FILE</span></code> to an <a class="reference external" href="http://fftw.org/fftw3_doc/Wisdom.html#Wisdom">FFTW3 wisdom file</a>
|
|
that should be used; if the <code class="docutils literal notranslate"><span class="pre">PATH_TO_FILE</span></code> is invalid, no <code class="docutils literal notranslate"><span class="pre">FFTW3</span></code> wisdom will be used.</p>
|
|
</dd>
|
|
<dt><strong><delta_t>ResT</delta_t></strong></dt><dd><p>set the time resolution <code class="docutils literal notranslate"><span class="pre">ResT</span></code> for the calculated depolarization function in microseconds.</p>
|
|
</dd>
|
|
<dt><strong><delta_B>ResB</delta_B></strong></dt><dd><p>set the field resolution <code class="docutils literal notranslate"><span class="pre">ResB</span></code> for the calculated field distribution in Gauss.</p>
|
|
</dd>
|
|
<dt><strong><VortexLattice></VortexLattice></strong></dt><dd><p>set the parameters used for the calculation of the spatial field distribution of a vortex lattice.</p>
|
|
<dl class="simple">
|
|
<dt><strong><N_VortexGrid>N</N_VortexGrid></strong></dt><dd><p>specify the number of points <strong>N</strong> (in each of the two dimensions) for which the fields within the
|
|
vortex lattice are calculated (inside a <strong><VortexLattice></strong> environment)</p>
|
|
</dd>
|
|
</dl>
|
|
</dd>
|
|
<dt><strong><LEM></LEM></strong></dt><dd><p>set the parameters used for the calculation of LE-μSR field distributions</p>
|
|
<dl>
|
|
<dt><strong><data_path>DATA_PATH_PREFIX</data_path></strong></dt><dd><p>specify the <code class="docutils literal notranslate"><span class="pre">DATA_PATH_PREFIX</span></code> to the <code class="docutils literal notranslate"><span class="pre">TRIM.SP</span></code> implantation profiles (inside a <strong><LEM></strong> environment)</p>
|
|
</dd>
|
|
<dt><strong><N_theory>N_THEORY</N_theory></strong></dt><dd><p>specify the number of points <strong>N_THEORY</strong> for which <em>B(z)</em> is calculated (inside a <strong><LEM></strong> environment)
|
|
The specification of this number is not needed if the calculation of the inverse of <em>B(z)</em> is implemented!</p>
|
|
</dd>
|
|
<dt><strong><energy_list></energy_list></strong></dt><dd><p>set the energies for which <code class="docutils literal notranslate"><span class="pre">TRIM.SP</span></code> implantation profiles are available (inside a <strong><LEM></strong> environment)</p>
|
|
<dl class="simple">
|
|
<dt><strong><energy_label>LABEL</energy_label></strong></dt><dd><p>specify the <strong>LABEL</strong> within the file name of a available <code class="docutils literal notranslate"><span class="pre">TRIM.SP</span></code> <code class="docutils literal notranslate"><span class="pre">RGE</span></code> file (inside a <strong><energy_list></strong> environment)
|
|
The expected name of the <code class="docutils literal notranslate"><span class="pre">RGE</span></code> file will be: <code class="docutils literal notranslate"><span class="pre">DATA_PATH_PREFIX</span> <span class="pre">+</span> <span class="pre">LABEL</span> <span class="pre">+</span> <span class="pre">.rge</span></code></p>
|
|
</dd>
|
|
<dt><strong><energy>E</energy></strong></dt><dd><p>specify the muon energy <em>E</em> (in keV) belonging to the <code class="docutils literal notranslate"><span class="pre">TRIM.SP</span></code> <code class="docutils literal notranslate"><span class="pre">RGE</span></code> file given above (inside a <strong><energy_list></strong> environment)</p>
|
|
</dd>
|
|
</dl>
|
|
</dd>
|
|
</dl>
|
|
</dd>
|
|
</dl>
|
|
<p>An example XML file looks as follows:</p>
|
|
<div class="highlight-xml notranslate"><div class="highlight"><pre><span></span><span class="cp"><?xml version="1.0" encoding="UTF-8"?></span>
|
|
<span class="nt"><BMW></span>
|
|
<span class="nt"><debug></span>0<span class="nt"></debug></span>
|
|
<span class="nt"><wisdom></span>/home/user/WordsOfWisdom.dat<span class="nt"></wisdom></span>
|
|
<span class="nt"><delta_t></span>0.01<span class="nt"></delta_t></span>
|
|
<span class="nt"><delta_B></span>0.5<span class="nt"></delta_B></span>
|
|
<span class="nt"><VortexLattice></span>
|
|
<span class="nt"><N_VortexGrid></span>1024<span class="nt"></N_VortexGrid></span>
|
|
<span class="nt"></VortexLattice></span>
|
|
<span class="nt"><LEM></span>
|
|
<span class="nt"><data_path></span>/home/user/TrimSP/some-sample-<span class="nt"></data_path></span>
|
|
<span class="nt"><N_theory></span>5000<span class="nt"></N_theory></span>
|
|
<span class="nt"><energy_list></span>
|
|
<span class="nt"><energy_label></span>02_0<span class="nt"></energy_label></span>
|
|
<span class="nt"><energy></span>2.0<span class="nt"></energy></span>
|
|
<span class="nt"><energy_label></span>03_0<span class="nt"></energy_label></span>
|
|
<span class="nt"><energy></span>3.0<span class="nt"></energy></span>
|
|
<span class="nt"><energy_label></span>03_6<span class="nt"></energy_label></span>
|
|
<span class="nt"><energy></span>3.6<span class="nt"></energy></span>
|
|
<span class="nt"><energy_label></span>05_0<span class="nt"></energy_label></span>
|
|
<span class="nt"><energy></span>5.0<span class="nt"></energy></span>
|
|
<span class="nt"><energy_label></span>05_3<span class="nt"></energy_label></span>
|
|
<span class="nt"><energy></span>5.3<span class="nt"></energy></span>
|
|
<span class="nt"></energy_list></span>
|
|
<span class="nt"></LEM></span>
|
|
<span class="nt"></BMW></span>
|
|
</pre></div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="nonlocal-superconductivity-related-meissner-screening-functions-as-libs">
|
|
<h2>Nonlocal superconductivity related Meissner screening functions (AS libs)<a class="headerlink" href="#nonlocal-superconductivity-related-meissner-screening-functions-as-libs" title="Permalink to this headline">¶</a></h2>
|
|
<p>To be written yet …</p>
|
|
</div>
|
|
<div class="section" id="functions-to-analyze-bgr-nmr-data-bnmr-libs">
|
|
<span id="bnmr-libs"></span><span id="index-14"></span><h2>Functions to analyze β-NMR data (BNMR libs)<a class="headerlink" href="#functions-to-analyze-bgr-nmr-data-bnmr-libs" title="Permalink to this headline">¶</a></h2>
|
|
<p>This is a collection of <code class="docutils literal notranslate"><span class="pre">C++</span></code> classes using the <code class="docutils literal notranslate"><span class="pre">musrfit</span></code> <a class="reference internal" href="user-manual.html#id38"><span class="std std-ref">user-functions</span></a>
|
|
interface in order to facilitate the usage in conjunction with <code class="docutils literal notranslate"><span class="pre">musrfit</span></code>. It consists of two libraries:</p>
|
|
<ul class="simple">
|
|
<li><p><code class="docutils literal notranslate"><span class="pre">libBNMR</span></code> contains functions to fit spin lattice relaxation (SLR) data.</p></li>
|
|
<li><p><code class="docutils literal notranslate"><span class="pre">libLineProfile</span></code> contains functions to fit resonance lineshapes.</p></li>
|
|
</ul>
|
|
<div class="admonition note">
|
|
<p class="admonition-title">Note</p>
|
|
<p>Currently it is recommended to read in the data in ASCII format as a non-μSR fit <a class="reference internal" href="user-manual.html#non-musr-fit"><span class="std std-ref">(fit type 8)</span></a>.</p>
|
|
</div>
|
|
<div class="section" id="libbnmr">
|
|
<span id="index-15"></span><h3>libBNMR<a class="headerlink" href="#libbnmr" title="Permalink to this headline">¶</a></h3>
|
|
<p>In β-NMR the SLR is usually measured by implanting a pulse of <span class="math notranslate nohighlight">\(^8\)</span>Li with a length <span class="math notranslate nohighlight">\(t_0\)</span> into the sample.
|
|
The asymmetry is measured both during the pulse and afterwards. For a a general spin relaxation function <span class="math notranslate nohighlight">\(f(t)\)</span> the time evolution of the asymmetry is then given by [<a class="reference external" href="http://dx.doi.org/10.1103/PhysRevLett.96.147601">Z. Salman, et al., PRL 96, 147601 (2006)</a>]:</p>
|
|
<div class="math notranslate nohighlight" id="slr">
|
|
<span id="index-16"></span>\[\begin{split}P(t) = \left\{\begin{matrix}
|
|
\frac{\int_0^t e^{-(t-t')/\tau_{\mathrm{Li}}}f(t-t')dt'}{\int_0^t e^{-t'/\tau_{\mathrm{Li}}}dt' } & t\leq t_0\\[6pt]
|
|
\frac{\int_0^{t_0}e^{-(t_0-t')/\tau_{\mathrm{Li}}}f(t-t')dt'}{\int_0^{t_0}e^{-t'/\tau_{\mathrm{Li}}}dt'} & t> t_0,
|
|
\end{matrix}\right.\end{split}\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(\tau_{\mathrm{Li}}=1.21\)</span>s is the <span class="math notranslate nohighlight">\(^8\)</span>Li lifetime.</p>
|
|
<div class="section" id="functions">
|
|
<h4>Functions<a class="headerlink" href="#functions" title="Permalink to this headline">¶</a></h4>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">libBNMR</span></code> library currently contains the following functions:</p>
|
|
<p id="index-17"><strong>Exponential relaxation</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libBNMR</span> <span class="n">ExpRlx</span> <span class="mi">1</span> <span class="mi">2</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>pulse length <span class="math notranslate nohighlight">\(t_0\)</span> (s)</p></li>
|
|
<li><p>relaxation rate <span class="math notranslate nohighlight">\(\lambda\)</span> (s<span class="math notranslate nohighlight">\(^{-1}\)</span>)</p></li>
|
|
</ol>
|
|
<p>This function implements <span class="math notranslate nohighlight">\(f(t)=e^{-\lambda t}\)</span>.</p>
|
|
<p id="index-18"><strong>Stretched exponential relaxation</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libBNMR</span> <span class="n">SExpRlx</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>pulse length <span class="math notranslate nohighlight">\(t_0\)</span> (s)</p></li>
|
|
<li><p>relaxation rate <span class="math notranslate nohighlight">\(\lambda\)</span> (s<span class="math notranslate nohighlight">\(^{-1}\)</span>)</p></li>
|
|
<li><p>stretching exponent <span class="math notranslate nohighlight">\(\beta\)</span></p></li>
|
|
</ol>
|
|
<p>This function implements <span class="math notranslate nohighlight">\(f(t)=e^{-(\lambda t)^{\beta}}\)</span>.</p>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="liblineprofile">
|
|
<span id="index-19"></span><h3>libLineProfile<a class="headerlink" href="#liblineprofile" title="Permalink to this headline">¶</a></h3>
|
|
<p>In addition to some simple line shapes <code class="docutils literal notranslate"><span class="pre">libLineProfile</span></code> contains functions to fit chemical shift anisotropies in the powder average.
|
|
Their functional form can be found in <a class="reference external" href="http://dx.doi.org/10.1007/978-3-642-68756-3_2">M. Mehring, Principles of High Resolution NMR in Solids (Springer 1983)</a>.</p>
|
|
<p>For an axially symmetric interaction it is given by:</p>
|
|
<div class="math notranslate nohighlight" id="iax">
|
|
<span id="index-20"></span>\[\begin{split}I_{\mathrm ax}(f)=\left\{\begin{matrix} \frac{1}{2\sqrt{(f_\parallel-f_\perp)(f-f_\perp)}}& f\in(f_\perp,f_\parallel)\cup(f_\parallel,f_\perp)\\[6pt] 0 & \text{otherwise}\end{matrix} \right.\end{split}\]</div>
|
|
<p>where <span class="math notranslate nohighlight">\(f_\parallel\)</span> and <span class="math notranslate nohighlight">\(f_\perp\)</span> are the frequencies that would be observed if the field is oriented paralell or perpendicular to the symmetry axis, respectively.</p>
|
|
<div class="line-block">
|
|
<div class="line">In case of a completely anisotropic interaction, the powder average can be described by the frequencies along the three principle axis <span class="math notranslate nohighlight">\(f_1,f_2,f_3\)</span>.</div>
|
|
<div class="line">Assume without loss of generality that <span class="math notranslate nohighlight">\(f_1<f_2<f_3\)</span>, then</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight" id="ianiso">
|
|
<span id="index-21"></span>\[\begin{split}I(f)&=\left\{\begin{matrix}
|
|
\frac{K(m)}{\pi\sqrt{(f-f_1)(f_3-f_2)}},& f_3\geq f>f_2 \\[9pt]
|
|
\frac{K(m)}{\pi\sqrt{(f_3-f)(f_2-f_1)}},& f_2>f\geq f_1\\[9pt]
|
|
0 & \text{otherwise}
|
|
\end{matrix} \right. \\
|
|
\\
|
|
m&=\left\{\begin{matrix}
|
|
\frac{(f_2-f_1)(f_3-f)}{(f_3-f_2)(f-f_1)},& f_3\geq f>f_2 \\[6pt]
|
|
\frac{(f-f_1)(f_3-f_2)}{(f_3-f)(f_2-f_1)},& f_2>f\geq f_1\\[6pt]
|
|
\end{matrix} \right. \\
|
|
\\
|
|
K(m)&=\int_0^{\pi/2}\frac{\mathrm d\varphi}{\sqrt{1-m^2\sin^2{\varphi}}},\end{split}\]</div>
|
|
<p><span class="math notranslate nohighlight">\(K(m)\)</span> is the complete elliptic integral of the first kind.</p>
|
|
<div class="section" id="id1">
|
|
<h4>Functions<a class="headerlink" href="#id1" title="Permalink to this headline">¶</a></h4>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">libLineProfile</span></code> library currently contains the following functions:</p>
|
|
<p id="index-22"><strong>Gaussian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">LineGauss</span> <span class="mi">1</span> <span class="mi">2</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>center of the line <span class="math notranslate nohighlight">\(f_0\)</span></p></li>
|
|
<li><p>FWHM of the line <span class="math notranslate nohighlight">\(\sigma\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is 1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)=e^{-\frac{4\ln 2 (f-f_0)^2}{ \sigma^2}}\]</div>
|
|
<p id="index-23"><strong>Lorentzian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">LineLorentzian</span> <span class="mi">1</span> <span class="mi">2</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>center of the line <span class="math notranslate nohighlight">\(f_0\)</span></p></li>
|
|
<li><p>FWHM of the line <span class="math notranslate nohighlight">\(w\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is 1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)= \frac{w^2}{4(f-f_0)^2+w^2}\]</div>
|
|
<p id="index-24"><strong>Laplacian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">LineLaplace</span> <span class="mi">1</span> <span class="mi">2</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>center of the line <span class="math notranslate nohighlight">\(f_0\)</span></p></li>
|
|
<li><p>FWHM of the line <span class="math notranslate nohighlight">\(w\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is 1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)=e^{-2\ln 2 \left|\frac{f-f_0}{w}\right|}\]</div>
|
|
<p id="index-25"><strong>Skewed Lorentzian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">LineSkewLorentzian</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>center of the line <span class="math notranslate nohighlight">\(f_0\)</span></p></li>
|
|
<li><p>width of the line <span class="math notranslate nohighlight">\(w\)</span></p></li>
|
|
<li><p>skewness parameter <span class="math notranslate nohighlight">\(a\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is 1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)= \frac{w w_a}{4(f-f_0)^2+w_a^2}, \quad w_a=\frac{2w}{1+e^{a(f-f_0)}}\]</div>
|
|
<p id="index-26"><strong>Skewed Lorentzian 2</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">LineSkewLorentzian2</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>center of the line <span class="math notranslate nohighlight">\(f_0\)</span></p></li>
|
|
<li><p>width left of the center <span class="math notranslate nohighlight">\(w_1\)</span></p></li>
|
|
<li><p>width right of the center <span class="math notranslate nohighlight">\(w_2\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is 1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[\begin{split}A(f)= \left\{\begin{matrix}\frac{{w_1}^2}{4{(f-f_0)}^2+{w_1}^2},&f\leq f_0\\[9pt] \frac{{w_2}^2}{4{(f-f_0)}^2+{w_2}^2},&f>f_0\end{matrix}\right.\end{split}\]</div>
|
|
<p id="index-27"><strong>Powder average of an axially symmetric interaction convoluted with a Lorentzian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">PowderLineAxialLor</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>frequency for the field oriented paralell to the symmetry axis <span class="math notranslate nohighlight">\(f_\parallel\)</span></p></li>
|
|
<li><p>frequency for the field oriented perpendicular to the symmetry axis <span class="math notranslate nohighlight">\(f_\parallel\)</span></p></li>
|
|
<li><p>FWHM of the Lorentzian <span class="math notranslate nohighlight">\(w\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is <span class="math notranslate nohighlight">\(\sim\)</span>1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)= I_{\mathrm ax}(f)\circledast\left( \frac{w^2}{4f^2+w^2} \right)\]</div>
|
|
<p>with <span class="math notranslate nohighlight">\(I_{\mathrm ax}(f)\)</span> defined <a class="reference internal" href="#iax"><span class="std std-ref">above</span></a>.</p>
|
|
<p id="index-28"><strong>Powder average of an axially symmetric interaction convoluted with a Gaussian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">PowderLineAxialGss</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p>frequency for the field oriented paralell to the symmetry axis <span class="math notranslate nohighlight">\(f_\parallel\)</span></p></li>
|
|
<li><p>frequency for the field oriented perpendicular to the symmetry axis <span class="math notranslate nohighlight">\(f_\parallel\)</span></p></li>
|
|
<li><p>FWHM of the Gaussian <span class="math notranslate nohighlight">\(\sigma\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is <span class="math notranslate nohighlight">\(\sim\)</span>1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)= I_{\mathrm ax}(f)\circledast\left( e^{-\frac{4\ln 2 (f-f_0)^2}{ \sigma^2}} \right)\]</div>
|
|
<p>with <span class="math notranslate nohighlight">\(I_{\mathrm ax}(f)\)</span> defined <a class="reference internal" href="#iax"><span class="std std-ref">above</span></a>.</p>
|
|
<p id="index-29"><strong>Powder average of an anisotropic interaction convoluted with a Lorentzian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">PowderLineAsymLor</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p><span class="math notranslate nohighlight">\(f_1\)</span></p></li>
|
|
<li><p><span class="math notranslate nohighlight">\(f_1\)</span></p></li>
|
|
<li><p><span class="math notranslate nohighlight">\(f_3\)</span> frequencies along the principal axes</p></li>
|
|
<li><p>FWHM of the Lorentzian <span class="math notranslate nohighlight">\(w\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is <span class="math notranslate nohighlight">\(\sim\)</span>1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)= I(f)\circledast\left( \frac{w^2}{4f^2+w^2} \right)\]</div>
|
|
<p>with <span class="math notranslate nohighlight">\(I(f)\)</span> defined <a class="reference internal" href="#ianiso"><span class="std std-ref">above</span></a>. Note that <span class="math notranslate nohighlight">\(f_1<f_2<f_3\)</span> is not required by the code.</p>
|
|
<p id="index-30"><strong>Powder average of an anisotropic interaction convoluted with a Gaussian</strong></p>
|
|
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">userFcn</span> <span class="n">libLineProfile</span> <span class="n">PowderLineAsymGss</span> <span class="mi">1</span> <span class="mi">2</span> <span class="mi">3</span> <span class="mi">4</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>The parameters are:</p>
|
|
<ol class="arabic simple">
|
|
<li><p><span class="math notranslate nohighlight">\(f_1\)</span></p></li>
|
|
<li><p><span class="math notranslate nohighlight">\(f_1\)</span></p></li>
|
|
<li><p><span class="math notranslate nohighlight">\(f_3\)</span> frequencies along the principal axes</p></li>
|
|
<li><p>FWHM of the Gaussian <span class="math notranslate nohighlight">\(\sigma\)</span></p></li>
|
|
</ol>
|
|
<div class="line-block">
|
|
<div class="line">The height of the peak is <span class="math notranslate nohighlight">\(\sim\)</span>1.</div>
|
|
<div class="line">The functional form is given by</div>
|
|
</div>
|
|
<div class="math notranslate nohighlight">
|
|
\[A(f)= I(f)\circledast\left( e^{-\frac{4\ln 2 (f-f_0)^2}{ \sigma^2}} \right)\]</div>
|
|
<p>with <span class="math notranslate nohighlight">\(I(f)\)</span> defined <a class="reference internal" href="#ianiso"><span class="std std-ref">above</span></a>. Note that <span class="math notranslate nohighlight">\(f_1<f_2<f_3\)</span> is not required by the code.</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
|
|
<div class="sphinxsidebarwrapper">
|
|
<h3><a href="index.html">Table of Contents</a></h3>
|
|
<ul>
|
|
<li><a class="reference internal" href="#">Documentation of user libs (user functions)</a><ul>
|
|
<li><a class="reference internal" href="#meissner-profiles-vortex-lattice-related-functions-bmw-libs">Meissner-Profiles / Vortex-Lattice related functions (BMW libs)</a><ul>
|
|
<li><a class="reference internal" href="#libfitpofb">libFitPofB</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a class="reference internal" href="#nonlocal-superconductivity-related-meissner-screening-functions-as-libs">Nonlocal superconductivity related Meissner screening functions (AS libs)</a></li>
|
|
<li><a class="reference internal" href="#functions-to-analyze-bgr-nmr-data-bnmr-libs">Functions to analyze β-NMR data (BNMR libs)</a><ul>
|
|
<li><a class="reference internal" href="#libbnmr">libBNMR</a></li>
|
|
<li><a class="reference internal" href="#liblineprofile">libLineProfile</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
|
|
<h4>Previous topic</h4>
|
|
<p class="topless"><a href="user-manual.html"
|
|
title="previous chapter">User manual</a></p>
|
|
<h4>Next topic</h4>
|
|
<p class="topless"><a href="setup-standard.html"
|
|
title="next chapter">Setting up <code class="docutils literal notranslate"><span class="pre">musrfit</span></code> on Different Platforms</a></p>
|
|
<div role="note" aria-label="source link">
|
|
<h3>This Page</h3>
|
|
<ul class="this-page-menu">
|
|
<li><a href="_sources/user-libs.rst.txt"
|
|
rel="nofollow">Show Source</a></li>
|
|
</ul>
|
|
</div>
|
|
<div id="searchbox" style="display: none" role="search">
|
|
<h3 id="searchlabel">Quick search</h3>
|
|
<div class="searchformwrapper">
|
|
<form class="search" action="search.html" method="get">
|
|
<input type="text" name="q" aria-labelledby="searchlabel" />
|
|
<input type="submit" value="Go" />
|
|
</form>
|
|
</div>
|
|
</div>
|
|
<script type="text/javascript">$('#searchbox').show(0);</script>
|
|
</div>
|
|
</div>
|
|
<div class="clearer"></div>
|
|
</div>
|
|
<div class="related" role="navigation" aria-label="related navigation">
|
|
<h3>Navigation</h3>
|
|
<ul>
|
|
<li class="right" style="margin-right: 10px">
|
|
<a href="genindex.html" title="General Index"
|
|
>index</a></li>
|
|
<li class="right" >
|
|
<a href="setup-standard.html" title="Setting up musrfit on Different Platforms"
|
|
>next</a> |</li>
|
|
<li class="right" >
|
|
<a href="user-manual.html" title="User manual"
|
|
>previous</a> |</li>
|
|
<li class="nav-item nav-item-0"><a href="index.html">musrfit 1.6.3 documentation</a> »</li>
|
|
</ul>
|
|
</div>
|
|
<div class="footer" role="contentinfo">
|
|
© Copyright 2020, Andreas Suter.
|
|
Last updated on Jul 27, 2020.
|
|
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 2.2.2.
|
|
</div>
|
|
</body>
|
|
</html> |