178 lines
5.3 KiB
TeX
178 lines
5.3 KiB
TeX
% $Id$
|
|
\documentclass[twoside]{article}
|
|
|
|
\usepackage[english]{babel}
|
|
\usepackage{a4}
|
|
\usepackage{amssymb}
|
|
\usepackage{graphicx}
|
|
\usepackage{fancyhdr}
|
|
\usepackage{array}
|
|
\usepackage{float}
|
|
\usepackage{hyperref}
|
|
\usepackage{xspace}
|
|
\usepackage{rotating}
|
|
\usepackage{dcolumn}
|
|
|
|
\setlength{\topmargin}{10mm}
|
|
\setlength{\topmargin}{-13mm}
|
|
% \setlength{\oddsidemargin}{0.5cm}
|
|
% \setlength{\evensidemargin}{0cm}
|
|
\setlength{\oddsidemargin}{1cm}
|
|
\setlength{\evensidemargin}{1cm}
|
|
\setlength{\textwidth}{14.5cm}
|
|
\setlength{\textheight}{23.8cm}
|
|
|
|
\def\mathbi#1{\textbf{\em #1}}
|
|
|
|
\pagestyle{fancyplain}
|
|
\addtolength{\headwidth}{0.6cm}
|
|
\fancyhead{}%
|
|
\fancyhead[RE,LO]{\bf Estimate $\mathbi{N}_0$}%
|
|
\fancyhead[LE,RO]{\thepage}
|
|
\cfoot{--- Andreas Suter -- \today ---}
|
|
\rfoot{\includegraphics[width=6.4cm]{PSI_Logo_wide_blau.pdf}}
|
|
|
|
\DeclareMathAlphabet{\bi}{OML}{cmm}{b}{it}
|
|
|
|
\newcommand{\mean}[1]{\langle #1 \rangle}
|
|
\newcommand{\lem}{LE-$\mu$SR\xspace}
|
|
\newcommand{\musr}{$\mu$SR\xspace}
|
|
\newcommand{\etal}{\emph{et al.\xspace}}
|
|
\newcommand{\ie}{\emph{i.e.\xspace}}
|
|
\newcommand{\eg}{\emph{e.g.\xspace}}
|
|
|
|
\newcolumntype{d}[1]{D{.}{.}{#1}}
|
|
|
|
\begin{document}
|
|
|
|
% Header info --------------------------------------------------
|
|
\thispagestyle{empty}
|
|
\noindent
|
|
\begin{tabular}{@{\hspace{-0.7cm}}l@{\hspace{6cm}}r}
|
|
\noindent\includegraphics[width=3.4cm]{PSI_Logo_narrow_blau.jpg} &
|
|
{\Huge\sf Memorandum}
|
|
\end{tabular}
|
|
%
|
|
\vskip 1cm
|
|
%
|
|
\begin{tabular}{@{\hspace{-0.5cm}}ll@{\hspace{4cm}}ll}
|
|
Datum: & \today & & \\[3ex]
|
|
Von: & Andreas Suter & An: & \\
|
|
Telefon: & +41\, (0)56\, 310\, 4238 & & \\
|
|
Raum: & WLGA / 119 & cc: & \\
|
|
e-mail: & \verb?andreas.suter@psi.ch? & & \\
|
|
\end{tabular}
|
|
%
|
|
\vskip 0.3cm
|
|
\noindent\hrulefill
|
|
\vskip 1cm
|
|
%
|
|
|
|
\noindent The \musr decay histogram can be described by
|
|
|
|
\begin{equation}\label{eq:decay}
|
|
N(t) = N_0\, e^{-t/\tau_\mu} \left[ 1 + A P(t) \right] + \mathrm{Bkg}
|
|
\end{equation}
|
|
|
|
\noindent For single histogram fits a good initial estimate for $N_0$ is needed
|
|
in order that \textsc{Minuit2} has a chance to converge.
|
|
Here I summaries how $N_0$ can be reasonably well estimates. For all estimates,
|
|
it is assumed that rather to take Eq.(\ref{eq:decay}),
|
|
the following ansatz will be used
|
|
|
|
\begin{equation}\label{eq:N0ansatz}
|
|
T(t) = N_0\, e^{-t/\tau_\mu} + \mathrm{Bkg},
|
|
\end{equation}
|
|
|
|
\noindent \ie the asymmetry is ignored all together.
|
|
|
|
|
|
\section*{Estimate $\mathbi{N}_0$ with free Background}
|
|
|
|
We would like to minimize $\chi^2$, which is
|
|
|
|
\begin{equation}\label{eq:chisq}
|
|
\chi^2 = \sum_i \frac{(D_i - T_i)^2}{\sigma_i^2} = \sum_i \frac{(D_i -
|
|
T_i)^2}{D_i},
|
|
\end{equation}
|
|
|
|
\noindent where $D_i$ is a histogram entry of the measured data, $T_i$ the
|
|
evaluation of Eq.(\ref{eq:N0ansatz}) at $t_i = \Delta t \cdot i$, with $\Delta
|
|
t$ the histogram time resolution. In the last step Poisson statistics is used,
|
|
\ie $\sigma_i^2 = D_i$.
|
|
In order to minimize Eq.(\ref{eq:N0ansatz}), it is sufficient that $\nabla
|
|
\chi^2 = 0 \Longrightarrow$
|
|
|
|
\begin{eqnarray*}
|
|
\frac{\partial \chi^2}{\partial N_0} &=& \sum_i \left[ \frac{2 (D_i -
|
|
T_i)}{D_i}\, e^{-t_i/\tau_\mu} \right] = 0 \\
|
|
\frac{\partial \chi^2}{\partial \mathrm{Bkg}} &=& \sum_i \left[ \frac{2 (D_i -
|
|
T_i)}{D_i} \right] = 0
|
|
\end{eqnarray*}
|
|
|
|
\noindent With the following abbreviations
|
|
|
|
\begin{eqnarray}\label{eq:abbrv}
|
|
x_i &=& e^{-t_i/\tau_\mu} \\
|
|
\Delta &=& \sum_i 1/D_i \nonumber \\
|
|
S &=& \sum_i 1 \nonumber
|
|
\end{eqnarray}
|
|
|
|
\noindent ($S$ is the number of bins in the histogram) the background can be
|
|
written as
|
|
|
|
\begin{equation}\label{eq:bkgEstimate}
|
|
\mathrm{Bkg} = \frac{1}{\Delta}\, \sum_i \left[ 1 - \frac{N_0}{D_i}\, x_i
|
|
\right]
|
|
\end{equation}
|
|
|
|
\noindent and using this result, $N_0$ is
|
|
|
|
\begin{equation}\label{eq:N0estimate}
|
|
N_0 = \frac{\displaystyle\sum_i \left[x_i \left(1-\frac{S}{D_i
|
|
\Delta}\right)\right]}{\displaystyle\sum_j \left[\frac{x_j}{D_j}\left(x_j -
|
|
\frac{1}{\Delta} \sum_k \frac{x_k}{D_k}\right)\right]}.
|
|
\end{equation}
|
|
|
|
\noindent Eqs.(\ref{eq:bkgEstimate}) \& (\ref{eq:N0estimate}) allow to estimate
|
|
$N_0$ and Bkg. However, the results are mostly unsatisfactory since typically
|
|
$N_0$ is underestimate whereas Bkg is grossly overestimated. The reason is the
|
|
missing asymmetry term.
|
|
|
|
\section*{Estimate $\mathbi{N}_0$ with linked Background}
|
|
|
|
A much more robust ansatz is to link the background to $N_0$, \ie
|
|
|
|
\begin{equation}\label{eq:N0ansatz_with_linked_bkg}
|
|
T(t) = N_0\, e^{-t/\tau_\mu} + \mathrm{Bkg} = N_0\, e^{-t/\tau_\mu} + \alpha
|
|
N_0,
|
|
\end{equation}
|
|
|
|
\noindent where $\alpha$ is typically $0.01$ are smaller. The practical tests
|
|
show that it is mostly save to set $\alpha=0$. From
|
|
|
|
$$ \frac{\partial \chi^2}{\partial N_0} = 0 $$
|
|
|
|
\noindent it follows
|
|
|
|
\begin{equation}\label{eq:N0estimate_with_linked_bkg}
|
|
N_0 = \frac{\displaystyle\sum_i (\alpha +
|
|
x_i)}{\displaystyle\sum_i\frac{(\alpha + x_i)^2}{D_i}}.
|
|
\end{equation}
|
|
|
|
\noindent Eq.(\ref{eq:N0estimate_with_linked_bkg}) with $\alpha < 0.01$ leads typically to
|
|
very good results.
|
|
|
|
A closer look at Eq.(\ref{eq:N0estimate_with_linked_bkg}) reveals that there is
|
|
a principle problem. How should one deal with $D_i = 0$? There are two
|
|
possibilities:
|
|
|
|
\begin{enumerate}
|
|
\item if $D_i = 0$, set it to $D_i = 1$. This implicitly assumes that an empty bin has an uncertainty of 1.
|
|
\item if $D_i = 0$, ignore it!
|
|
\end{enumerate}
|
|
|
|
\noindent Currently \texttt{musrfit} ignores empty bins.
|
|
|
|
\end{document}
|