551 lines
18 KiB
C++
551 lines
18 KiB
C++
/***************************************************************************
|
|
|
|
TCalcMeanFieldsLEM.cpp
|
|
|
|
Author: Bastian M. Wojek
|
|
|
|
$Id$
|
|
|
|
***************************************************************************/
|
|
|
|
/***************************************************************************
|
|
* Copyright (C) 2009 by Bastian M. Wojek *
|
|
* *
|
|
* *
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
* it under the terms of the GNU General Public License as published by *
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
* (at your option) any later version. *
|
|
* *
|
|
* This program is distributed in the hope that it will be useful, *
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
* GNU General Public License for more details. *
|
|
* *
|
|
* You should have received a copy of the GNU General Public License *
|
|
* along with this program; if not, write to the *
|
|
* Free Software Foundation, Inc., *
|
|
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
|
|
***************************************************************************/
|
|
|
|
#include <cassert>
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <string>
|
|
#include <iostream>
|
|
using namespace std;
|
|
|
|
#include <TSAXParser.h>
|
|
#include "BMWStartupHandler.h"
|
|
|
|
#include "TCalcMeanFieldsLEM.h"
|
|
|
|
ClassImp(TMeanFieldsForScHalfSpace)
|
|
ClassImp(TMeanFieldsForScSingleLayer)
|
|
ClassImp(TMeanFieldsForScBilayer)
|
|
ClassImp(TMeanFieldsForScTrilayer)
|
|
|
|
// Constructor: Read the energies from the xml-file and load the according TRIM.SP-data files
|
|
|
|
TMeanFieldsForScHalfSpace::TMeanFieldsForScHalfSpace() {
|
|
|
|
// read startup file
|
|
string startup_path_name("BMW_startup.xml");
|
|
|
|
TSAXParser *saxParser = new TSAXParser();
|
|
BMWStartupHandler *startupHandler = new BMWStartupHandler();
|
|
saxParser->ConnectToHandler("BMWStartupHandler", startupHandler);
|
|
int status (saxParser->ParseFile(startup_path_name.c_str()));
|
|
// check for parse errors
|
|
if (status) { // error
|
|
cerr << endl << "**ERROR** reading/parsing " << startup_path_name << " failed." \
|
|
<< endl << "**ERROR** Please make sure that the file exists in the local directory and it is set up correctly!" \
|
|
<< endl;
|
|
assert(false);
|
|
}
|
|
|
|
string rge_path(startupHandler->GetDataPath());
|
|
map<double, string> energy_vec(startupHandler->GetEnergies());
|
|
|
|
fImpProfile = new TTrimSPData(rge_path, energy_vec, startupHandler->GetDebug());
|
|
|
|
// clean up
|
|
if (saxParser) {
|
|
delete saxParser;
|
|
saxParser = 0;
|
|
}
|
|
if (startupHandler) {
|
|
delete startupHandler;
|
|
startupHandler = 0;
|
|
}
|
|
|
|
}
|
|
|
|
// Operator-method that returns the mean field for a given implantation energy
|
|
// Parameters: field, deadlayer, lambda
|
|
|
|
double TMeanFieldsForScHalfSpace::operator()(double E, const vector<double> &par_vec) const{
|
|
|
|
// Calculate field profile
|
|
vector<double> parForBofZ(par_vec);
|
|
|
|
TLondon1D_HS BofZ(parForBofZ);
|
|
|
|
vector<double> energies(fImpProfile->Energy());
|
|
vector<double>::const_iterator energyIter;
|
|
energyIter = find(energies.begin(), energies.end(), E);
|
|
|
|
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
|
return CalcMeanB(E, BofZ);
|
|
} else {
|
|
if (E < energies.front())
|
|
return CalcMeanB(energies.front(), BofZ);
|
|
if (E > energies.back())
|
|
return CalcMeanB(energies.back(), BofZ);
|
|
|
|
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
|
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
|
|
|
double E1(*(energyIter - 1));
|
|
double E2(*(energyIter));
|
|
|
|
double B1(CalcMeanB(E1, BofZ));
|
|
double B2(CalcMeanB(E2, BofZ));
|
|
|
|
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
|
}
|
|
|
|
}
|
|
|
|
double TMeanFieldsForScHalfSpace::CalcMeanB (double E, const TLondon1D_HS& BofZ) const {
|
|
//calcData->UseHighResolution(E);
|
|
|
|
fImpProfile->Normalize(E);
|
|
|
|
vector<double> z(fImpProfile->DataZ(E));
|
|
vector<double> nz(fImpProfile->DataNZ(E));
|
|
double dz(fImpProfile->DataDZ(E));
|
|
|
|
// calculate mean field
|
|
|
|
double meanB(0.);
|
|
|
|
for (unsigned int i(0); i<z.size(); i++) {
|
|
meanB += dz*nz[i]*BofZ.GetBofZ(z[i]/10.);
|
|
}
|
|
return meanB;
|
|
}
|
|
|
|
// Constructor: Read the energies from the xml-file and load the according TRIM.SP-data files
|
|
|
|
TMeanFieldsForScSingleLayer::TMeanFieldsForScSingleLayer() {
|
|
|
|
// read startup file
|
|
string startup_path_name("BMW_startup.xml");
|
|
|
|
TSAXParser *saxParser = new TSAXParser();
|
|
BMWStartupHandler *startupHandler = new BMWStartupHandler();
|
|
saxParser->ConnectToHandler("BMWStartupHandler", startupHandler);
|
|
int status (saxParser->ParseFile(startup_path_name.c_str()));
|
|
// check for parse errors
|
|
if (status) { // error
|
|
cerr << endl << "**ERROR** reading/parsing " << startup_path_name << " failed." \
|
|
<< endl << "**ERROR** Please make sure that the file exists in the local directory and it is set up correctly!" \
|
|
<< endl;
|
|
assert(false);
|
|
}
|
|
|
|
string rge_path(startupHandler->GetDataPath());
|
|
map<double, string> energy_vec(startupHandler->GetEnergies());
|
|
|
|
fImpProfile = new TTrimSPData(rge_path, energy_vec, startupHandler->GetDebug());
|
|
|
|
// clean up
|
|
if (saxParser) {
|
|
delete saxParser;
|
|
saxParser = 0;
|
|
}
|
|
if (startupHandler) {
|
|
delete startupHandler;
|
|
startupHandler = 0;
|
|
}
|
|
|
|
}
|
|
|
|
// Operator-method that returns the mean field for a given implantation energy
|
|
// Parameters: field, deadlayer, thicknessSC, lambda, weight (deadlayer), weight (SC), weight (substrate)
|
|
|
|
double TMeanFieldsForScSingleLayer::operator()(double E, const vector<double> &par_vec) const{
|
|
|
|
vector<double> interfaces;
|
|
interfaces.push_back(par_vec[1]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]);
|
|
|
|
vector<double> weights;
|
|
weights.push_back(par_vec[4]);
|
|
weights.push_back(par_vec[5]);
|
|
weights.push_back(par_vec[6]);
|
|
|
|
// Calculate field profile
|
|
vector<double> parForBofZ(par_vec);
|
|
|
|
TLondon1D_1L BofZ(parForBofZ);
|
|
|
|
vector<double> energies(fImpProfile->Energy());
|
|
vector<double>::const_iterator energyIter;
|
|
energyIter = find(energies.begin(), energies.end(), E);
|
|
|
|
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
|
return CalcMeanB(E, interfaces, weights, BofZ);
|
|
} else {
|
|
if (E < energies.front())
|
|
return CalcMeanB(energies.front(), interfaces, weights, BofZ);
|
|
if (E > energies.back())
|
|
return CalcMeanB(energies.back(), interfaces, weights, BofZ);
|
|
|
|
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
|
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
|
|
|
double E1(*(energyIter - 1));
|
|
double E2(*(energyIter));
|
|
|
|
double B1(CalcMeanB(E1, interfaces, weights, BofZ));
|
|
double B2(CalcMeanB(E2, interfaces, weights, BofZ));
|
|
|
|
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
|
}
|
|
}
|
|
|
|
double TMeanFieldsForScSingleLayer::CalcMeanB (double E, const vector<double>& interfaces, const vector<double>& weights, const TLondon1D_1L& BofZ) const {
|
|
//calcData->UseHighResolution(E);
|
|
fImpProfile->WeightLayers(E, interfaces, weights);
|
|
fImpProfile->Normalize(E);
|
|
|
|
vector<double> z(fImpProfile->DataZ(E));
|
|
vector<double> nz(fImpProfile->DataNZ(E));
|
|
double dz(fImpProfile->DataDZ(E));
|
|
|
|
// calculate mean field
|
|
|
|
double meanB(0.);
|
|
|
|
for (unsigned int i(0); i<z.size(); i++) {
|
|
meanB += dz*nz[i]*BofZ.GetBofZ(0.1*z[i]);
|
|
}
|
|
return meanB;
|
|
}
|
|
|
|
// Constructor: Read the energies from the xml-file and load the according TRIM.SP-data files
|
|
|
|
TMeanFieldsForScBilayer::TMeanFieldsForScBilayer() {
|
|
|
|
// read startup file
|
|
string startup_path_name("BMW_startup.xml");
|
|
|
|
TSAXParser *saxParser = new TSAXParser();
|
|
BMWStartupHandler *startupHandler = new BMWStartupHandler();
|
|
saxParser->ConnectToHandler("BMWStartupHandler", startupHandler);
|
|
int status (saxParser->ParseFile(startup_path_name.c_str()));
|
|
// check for parse errors
|
|
if (status) { // error
|
|
cerr << endl << "**ERROR** reading/parsing " << startup_path_name << " failed." \
|
|
<< endl << "**ERROR** Please make sure that the file exists in the local directory and it is set up correctly!" \
|
|
<< endl;
|
|
assert(false);
|
|
}
|
|
|
|
string rge_path(startupHandler->GetDataPath());
|
|
map<double, string> energy_vec(startupHandler->GetEnergies());
|
|
|
|
fImpProfile = new TTrimSPData(rge_path, energy_vec, startupHandler->GetDebug());
|
|
|
|
// clean up
|
|
if (saxParser) {
|
|
delete saxParser;
|
|
saxParser = 0;
|
|
}
|
|
if (startupHandler) {
|
|
delete startupHandler;
|
|
startupHandler = 0;
|
|
}
|
|
|
|
}
|
|
|
|
// Operator-method that returns the mean field for a given implantation energy
|
|
// Parameters: field, deadlayer, layer1, layer2, lambda1, lambda2, weight1 (deadlayer), weight2, weight3, weight4 (substrate)
|
|
|
|
double TMeanFieldsForScBilayer::operator()(double E, const vector<double> &par_vec) const{
|
|
|
|
vector<double> interfaces;
|
|
interfaces.push_back(par_vec[1]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]);
|
|
|
|
vector<double> weights;
|
|
weights.push_back(par_vec[6]);
|
|
weights.push_back(par_vec[7]);
|
|
weights.push_back(par_vec[8]);
|
|
weights.push_back(par_vec[9]);
|
|
|
|
// Calculate field profile
|
|
vector<double> parForBofZ;
|
|
for (unsigned int i(0); i<6; i++)
|
|
parForBofZ.push_back(par_vec[i]);
|
|
|
|
TLondon1D_2L BofZ(parForBofZ);
|
|
|
|
vector<double> energies(fImpProfile->Energy());
|
|
vector<double>::const_iterator energyIter;
|
|
energyIter = find(energies.begin(), energies.end(), E);
|
|
|
|
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
|
return CalcMeanB(E, interfaces, weights, BofZ);
|
|
} else {
|
|
if (E < energies.front())
|
|
return CalcMeanB(energies.front(), interfaces, weights, BofZ);
|
|
if (E > energies.back())
|
|
return CalcMeanB(energies.back(), interfaces, weights, BofZ);
|
|
|
|
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
|
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
|
|
|
double E1(*(energyIter - 1));
|
|
double E2(*(energyIter));
|
|
|
|
double B1(CalcMeanB(E1, interfaces, weights, BofZ));
|
|
double B2(CalcMeanB(E2, interfaces, weights, BofZ));
|
|
|
|
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
|
}
|
|
}
|
|
|
|
double TMeanFieldsForScBilayer::CalcMeanB (double E, const vector<double>& interfaces, const vector<double>& weights, const TLondon1D_2L& BofZ) const {
|
|
//calcData->UseHighResolution(E);
|
|
fImpProfile->WeightLayers(E, interfaces, weights);
|
|
fImpProfile->Normalize(E);
|
|
|
|
vector<double> z(fImpProfile->DataZ(E));
|
|
vector<double> nz(fImpProfile->DataNZ(E));
|
|
double dz(fImpProfile->DataDZ(E));
|
|
|
|
// calculate mean field
|
|
|
|
double meanB(0.);
|
|
|
|
for (unsigned int i(0); i<z.size(); i++) {
|
|
meanB += dz*nz[i]*BofZ.GetBofZ(z[i]/10.);
|
|
}
|
|
return meanB;
|
|
}
|
|
|
|
// Constructor: Read the energies from the xml-file and load the according TRIM.SP-data files
|
|
|
|
TMeanFieldsForScTrilayer::TMeanFieldsForScTrilayer() {
|
|
|
|
// read startup file
|
|
string startup_path_name("BMW_startup.xml");
|
|
|
|
TSAXParser *saxParser = new TSAXParser();
|
|
BMWStartupHandler *startupHandler = new BMWStartupHandler();
|
|
saxParser->ConnectToHandler("BMWStartupHandler", startupHandler);
|
|
int status (saxParser->ParseFile(startup_path_name.c_str()));
|
|
// check for parse errors
|
|
if (status) { // error
|
|
cerr << endl << "**ERROR** reading/parsing " << startup_path_name << " failed." \
|
|
<< endl << "**ERROR** Please make sure that the file exists in the local directory and it is set up correctly!" \
|
|
<< endl;
|
|
assert(false);
|
|
}
|
|
|
|
string rge_path(startupHandler->GetDataPath());
|
|
map<double, string> energy_vec(startupHandler->GetEnergies());
|
|
|
|
fImpProfile = new TTrimSPData(rge_path, energy_vec, startupHandler->GetDebug());
|
|
|
|
// clean up
|
|
if (saxParser) {
|
|
delete saxParser;
|
|
saxParser = 0;
|
|
}
|
|
if (startupHandler) {
|
|
delete startupHandler;
|
|
startupHandler = 0;
|
|
}
|
|
|
|
}
|
|
|
|
// Operator-method that returns the mean field for a given implantation energy
|
|
// Parameters: field, deadlayer, layer1, layer2, layer3, lambda1, lambda2, lambda3, weight1, weight2, weight3, weight4, weight5
|
|
|
|
double TMeanFieldsForScTrilayer::operator()(double E, const vector<double> &par_vec) const{
|
|
|
|
vector<double> interfaces;
|
|
interfaces.push_back(par_vec[1]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]+par_vec[4]);
|
|
|
|
vector<double> weights;
|
|
weights.push_back(par_vec[8]);
|
|
weights.push_back(par_vec[9]);
|
|
weights.push_back(par_vec[10]);
|
|
weights.push_back(par_vec[11]);
|
|
weights.push_back(par_vec[12]);
|
|
|
|
// Calculate field profile
|
|
vector<double> parForBofZ;
|
|
for (unsigned int i(0); i<8; i++)
|
|
parForBofZ.push_back(par_vec[i]);
|
|
|
|
TLondon1D_3L BofZ(parForBofZ);
|
|
|
|
vector<double> energies(fImpProfile->Energy());
|
|
vector<double>::const_iterator energyIter;
|
|
energyIter = find(energies.begin(), energies.end(), E);
|
|
|
|
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
|
return CalcMeanB(E, interfaces, weights, BofZ);
|
|
} else {
|
|
if (E < energies.front())
|
|
return CalcMeanB(energies.front(), interfaces, weights, BofZ);
|
|
if (E > energies.back())
|
|
return CalcMeanB(energies.back(), interfaces, weights, BofZ);
|
|
|
|
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
|
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
|
|
|
double E1(*(energyIter - 1));
|
|
double E2(*(energyIter));
|
|
|
|
double B1(CalcMeanB(E1, interfaces, weights, BofZ));
|
|
double B2(CalcMeanB(E2, interfaces, weights, BofZ));
|
|
|
|
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
|
}
|
|
}
|
|
|
|
double TMeanFieldsForScTrilayer::CalcMeanB (double E, const vector<double>& interfaces, const vector<double>& weights, const TLondon1D_3L& BofZ) const {
|
|
//calcData->UseHighResolution(E);
|
|
fImpProfile->WeightLayers(E, interfaces, weights);
|
|
fImpProfile->Normalize(E);
|
|
|
|
vector<double> z(fImpProfile->DataZ(E));
|
|
vector<double> nz(fImpProfile->DataNZ(E));
|
|
double dz(fImpProfile->DataDZ(E));
|
|
|
|
// calculate mean field
|
|
|
|
double meanB(0.);
|
|
|
|
for (unsigned int i(0); i<z.size(); i++) {
|
|
meanB += dz*nz[i]*BofZ.GetBofZ(z[i]/10.);
|
|
}
|
|
return meanB;
|
|
}
|
|
|
|
// Constructor: Read the energies from the xml-file and load the according TRIM.SP-data files
|
|
|
|
TMeanFieldsForScTrilayerWithInsulator::TMeanFieldsForScTrilayerWithInsulator() {
|
|
|
|
// read startup file
|
|
string startup_path_name("BMW_startup.xml");
|
|
|
|
TSAXParser *saxParser = new TSAXParser();
|
|
BMWStartupHandler *startupHandler = new BMWStartupHandler();
|
|
saxParser->ConnectToHandler("BMWStartupHandler", startupHandler);
|
|
int status (saxParser->ParseFile(startup_path_name.c_str()));
|
|
// check for parse errors
|
|
if (status) { // error
|
|
cerr << endl << "**ERROR** reading/parsing " << startup_path_name << " failed." \
|
|
<< endl << "**ERROR** Please make sure that the file exists in the local directory and it is set up correctly!" \
|
|
<< endl;
|
|
assert(false);
|
|
}
|
|
|
|
string rge_path(startupHandler->GetDataPath());
|
|
map<double, string> energy_vec(startupHandler->GetEnergies());
|
|
|
|
fImpProfile = new TTrimSPData(rge_path, energy_vec, startupHandler->GetDebug());
|
|
|
|
// clean up
|
|
if (saxParser) {
|
|
delete saxParser;
|
|
saxParser = 0;
|
|
}
|
|
if (startupHandler) {
|
|
delete startupHandler;
|
|
startupHandler = 0;
|
|
}
|
|
|
|
}
|
|
|
|
// Operator-method that returns the mean field for a given implantation energy
|
|
// Parameters: field, deadlayer, layer1, layer2, layer3, lambda1, lambda2, weight1, weight2, weight3, weight4, weight5
|
|
|
|
double TMeanFieldsForScTrilayerWithInsulator::operator()(double E, const vector<double> &par_vec) const{
|
|
|
|
vector<double> interfaces;
|
|
interfaces.push_back(par_vec[1]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]);
|
|
interfaces.push_back(par_vec[1]+par_vec[2]+par_vec[3]+par_vec[4]);
|
|
|
|
vector<double> weights;
|
|
weights.push_back(par_vec[7]);
|
|
weights.push_back(par_vec[8]);
|
|
weights.push_back(par_vec[9]);
|
|
weights.push_back(par_vec[10]);
|
|
weights.push_back(par_vec[11]);
|
|
|
|
// Calculate field profile
|
|
vector<double> parForBofZ;
|
|
for (unsigned int i(0); i<7; i++)
|
|
parForBofZ.push_back(par_vec[i]);
|
|
|
|
TLondon1D_3LwInsulator BofZ(parForBofZ);
|
|
|
|
vector<double> energies(fImpProfile->Energy());
|
|
vector<double>::const_iterator energyIter;
|
|
energyIter = find(energies.begin(), energies.end(), E);
|
|
|
|
if (energyIter != energies.end()) { // implantation profile found - no interpolation needed
|
|
return CalcMeanB(E, interfaces, weights, BofZ);
|
|
} else {
|
|
if (E < energies.front())
|
|
return CalcMeanB(energies.front(), interfaces, weights, BofZ);
|
|
if (E > energies.back())
|
|
return CalcMeanB(energies.back(), interfaces, weights, BofZ);
|
|
|
|
energyIter = find_if(energies.begin(), energies.end(), bind2nd( greater<double>(), E));
|
|
// cout << *(energyIter - 1) << " " << *(energyIter) << endl;
|
|
|
|
double E1(*(energyIter - 1));
|
|
double E2(*(energyIter));
|
|
|
|
double B1(CalcMeanB(E1, interfaces, weights, BofZ));
|
|
double B2(CalcMeanB(E2, interfaces, weights, BofZ));
|
|
|
|
return B1 + (B2-B1)/(E2-E1)*(E-E1);
|
|
}
|
|
}
|
|
|
|
double TMeanFieldsForScTrilayerWithInsulator::CalcMeanB
|
|
(double E, const vector<double>& interfaces, const vector<double>& weights, const TLondon1D_3LwInsulator& BofZ) const {
|
|
//calcData->UseHighResolution(E);
|
|
fImpProfile->WeightLayers(E, interfaces, weights);
|
|
fImpProfile->Normalize(E);
|
|
|
|
vector<double> z(fImpProfile->DataZ(E));
|
|
vector<double> nz(fImpProfile->DataNZ(E));
|
|
double dz(fImpProfile->DataDZ(E));
|
|
|
|
// calculate mean field
|
|
|
|
double meanB(0.);
|
|
|
|
for (unsigned int i(0); i<z.size(); i++) {
|
|
meanB += dz*nz[i]*BofZ.GetBofZ(0.1*z[i]);
|
|
}
|
|
return meanB;
|
|
}
|