2018-08-17 11:08:22 +02:00

191 lines
7.1 KiB
TeX

\documentclass[twoside]{article}
\usepackage[english]{babel}
%\usepackage{a4}
\usepackage{amssymb,amsmath,bm}
\usepackage{graphicx,tabularx}
\usepackage{fancyhdr}
\usepackage{array}
\usepackage{float}
\usepackage{hyperref}
\usepackage{xspace}
\usepackage{rotating}
\usepackage{dcolumn}
\usepackage{geometry}
\usepackage{color}
\geometry{a4paper,left=20mm,right=20mm,top=20mm,bottom=20mm}
% \setlength{\topmargin}{10mm}
% \setlength{\topmargin}{-13mm}
% % \setlength{\oddsidemargin}{0.5cm}
% % \setlength{\evensidemargin}{0cm}
% \setlength{\oddsidemargin}{1cm}
% \setlength{\evensidemargin}{1cm}
% \setlength{\textwidth}{15cm}
\setlength{\textheight}{23.8cm}
\pagestyle{fancyplain}
\addtolength{\headwidth}{0.6cm}
\fancyhead{}%
\fancyhead[RE,LO]{\bf \textsc{LineProfile}}%
\fancyhead[LE,RO]{\thepage}
\cfoot{--- J.~A.~Krieger -- \today~ ---}
\rfoot{\includegraphics[width=2cm]{PSI-Logo_narrow.jpg}}
\DeclareMathAlphabet{\bi}{OML}{cmm}{b}{it}
\newcommand{\mean}[1]{\langle #1 \rangle}
\newcommand{\lem}{LE-$\mu$SR\xspace}
\newcommand{\lemhead}{LE-$\bm{\mu}$SR\xspace}
\newcommand{\musr}{$\mu$SR\xspace}
\newcommand{\musrhead}{$\bm{\mu}$SR\xspace}
\newcommand{\trimsp}{\textsc{trim.sp}\xspace}
\newcommand{\musrfithead}{MUSRFIT\xspace}
\newcommand{\musrfit}{\textsc{musrfit}\xspace}
\newcommand{\gapint}{\textsc{GapIntegrals}\xspace}
\newcommand{\YBCO}{YBa$_{2}$Cu$_{3}$O$_{7-\delta}$\xspace}
\newcommand{\YBCOhead}{YBa$_{\bm{2}}$Cu$_{\bm{3}}$O$_{\bm{7-\delta}}$\xspace}
\newcolumntype{d}[1]{D{.}{.}{#1}}
\newcolumntype{C}[1]{>{\centering\arraybackslash}p{#1}}
\begin{document}
% Header info --------------------------------------------------
\thispagestyle{empty}
\noindent
\begin{tabular}{@{\hspace{-0.2cm}}l@{\hspace{6cm}}r}
\noindent\includegraphics[width=3.4cm]{PSI-Logo_narrow.jpg} &
{\Huge\sf Memorandum}
\end{tabular}
%
\vskip 1cm
%
\begin{tabular}{@{\hspace{-0.5cm}}ll@{\hspace{4cm}}ll}
Date: & \today & & \\[3ex]
From: & J.~A.~Krieger & \\
E-Mail: & \verb?jonas.krieger@psi.ch? &&
\end{tabular}
%
\vskip 0.3cm
\noindent\hrulefill
\vskip 1cm
%
\section*{\musrfithead plug-in for simple $\beta$-NMR resonance line shapes}%
This library contains useful functions to fit NMR and $\beta$-NMR line shapes.
The functional form of the powder averages was taken from
\href{http://dx.doi.org/10.1007/978-3-642-68756-3_2}{M. Mehring, Principles
of High Resolution NMR in Solids (Springer 1983)}.
%
The \texttt{libLineProfile} library currently contains the following functions:
\begin{description}
\item[LineGauss]
\begin{equation}
A(f)=e^{-\frac{4\ln 2 (f-f_0)^2}{ \sigma^2}}
\end{equation}
Gaussian line shape around $f_0$ with width $\sigma$ and height~$1$.\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile LineGauss 1 2?\\[1.5ex]
Parameters: $f_0$, $\sigma$.
\item[LineLaplace]
\begin{equation}
A(f)=e^{-2\ln 2 \left|\frac{f-f_0}{\sigma}\right|}
\end{equation}
Laplaceian line shape around $f_0$ with width $\sigma$ and
height~$1$.\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile LineLaplace 1 2?
\\[1.5ex]
Parameters: $f_0$, $\sigma$.
\item[LineLorentzian]
\begin{equation}
A(f)=
\frac{\sigma^2}{4(f-f_0)^2+\sigma^2}
\end{equation}
Lorentzian line shape around $f_0$ with width $\sigma$ and
height~$1$.\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile LineLorentzian 1 2?
\\[1.5ex]
Parameters: $f_0$, $\sigma$.
\item[LineSkewLorentzian]
\begin{equation}
A(f)= \frac{\sigma*\sigma_a}{4(f-f_0)^2+\sigma_a^2}, \quad \sigma_a=\frac{2\sigma}{1+e^{a(f-f_0)}}
\end{equation}
Skewed Lorentzian line shape around $f_0$ with width $\sigma$,
height~$1$ and skewness parameter $a$.\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile LineSkewLorentzian 1 2 3?
\\[1.5ex]
Parameters: $f_0$, $\sigma$, $a$.
\item[LineSkewLorentzian2]
\begin{equation}
A(f)= \left\{\begin{matrix}\frac{{\sigma_1}^2}{4{(f-f_0)}^2+{\sigma_1}^2},&f<f_0\\[9pt] \frac{{\sigma_2}^2}{4{(f-f_0)}^2+{\sigma_2}^2},&f>f_0\end{matrix}\right.
\end{equation}
Skewed Lorentzian line shape around $f_0$ with height~$1$ and widths $\sigma_1$,
and $\sigma_2$.\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile LineSkewLorentzian2 1 2 3?
\\[1.5ex]
Parameters: $f_0$, $\sigma_1$, $\sigma_2$.
\item[PowderLineAxialLor]
\begin{equation}
A(f)= I_{\mathrm ax}(f)\circledast\left( \frac{\sigma^2}{4f^2+\sigma^2} \right)
\end{equation}
Powder average of a axially symmetric interaction, convoluted with a Lorentzian.
\begin{equation}\label{eq:Iax}
I_{\mathrm ax}(f)=\left\{\begin{matrix} \frac{1}{2\sqrt{(f_\parallel-f_\perp)(f-f_\perp)}}& f\in(f_\perp,f_\parallel)\cup(f_\parallel,f_\perp)\\[6pt] 0 & \text{otherwise}\end{matrix} \right.
\end{equation}
The maximal height of the curve is normalized to $\sim$1.
\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile PowderLineAxialLor 1 2 3?
\\[1.5ex]
Parameters: $f_\parallel$, $f_\perp$, $\sigma$.
\item[PowderLineAxialGss]
\begin{equation}
A(f)= I_{\mathrm ax}(f)\circledast\left(e^{-\frac{4\ln 2 (f-f_0)^2}{
\sigma^2}} \right)
\end{equation}
Powder average of a axially symmetric interaction (Eq.~\ref{eq:Iax}), convoluted with a Gaussian. The maximal height of the curve is normalized to $\sim$1.
\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile PowderLineAxialGss 1 2 3?
\\[1.5ex]
Parameters: $f_\parallel$, $f_\perp$, $\sigma$.
\item[PowderLineAsymLor]
\begin{equation}
A(f)= I(f)\circledast\left( \frac{\sigma^2}{4f^2+\sigma^2} \right)
\end{equation}
Powder average of a asymmetric interaction, convoluted with a Lorentzian.
Assume without loss of generality that $f_1<f_2<f_3$, then
\begin{align}\label{eq:Iasym}
I(f)&=\left\{\begin{matrix}
\frac{K(m)}{\pi\sqrt{(f-f_1)(f_3-f_2)}},& f_3\geq f>f_2 \\[9pt]
\frac{K(m)}{\pi\sqrt{(f_3-f)(f_2-f_1)}},& f_2>f\geq f_1\\[9pt]
0 & \text{otherwise}
\end{matrix} \right. \\
m&=\left\{\begin{matrix}
\frac{(f_2-f_1)(f_3-f)}{(f_3-f_2)(f-f_1)},& f_3\geq f>f_2 \\[6pt]
\frac{(f-f_1)(f_3-f_2)}{(f_3-f)(f_2-f_1)},& f_2>f\geq f_1\\[6pt]
\end{matrix} \right. \\\label{eq:Kofm}
K(m)&=\int_0^{\pi/2}\frac{\mathrm d\varphi}{\sqrt{1-m^2\sin^2{\varphi}}},
\end{align}
where $K(m)$ is the complete elliptic integral of the first kind.
Note that $f_1<f_2<f_3$ is not required by the code.
The maximal height of the curve is normalized to $\sim$1.
\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile PowderLineAsymLor 1 2 3 4?
\\[1.5ex]
Parameters: $f_1$, $f_2$,$f_3$, $\sigma$.
\item[PowderLineAsymGss]
\begin{equation}
A(f)= I(f)\circledast\left(e^{-\frac{4\ln 2 (f-f_0)^2}{ \sigma^2}} \right)
\end{equation}
Powder average of a asymmetric interaction {(Eq.~\ref{eq:Iasym}\,-\,\ref{eq:Kofm})}, convoluted with a Gaussian.
The maximal height of the curve is normalized to $\sim$1.
\\[1.5ex]
\musrfit theory line: \verb?userFcn libLineProfile PowderLineAsymGss 1 2 3 4?
\\[1.5ex]
Parameters: $f_1$, $f_2$,$f_3$, $\sigma$.
\end{description}
\end{document}