Files
musrfit/src/classes/PRunMuMinus.cpp
Andreas Suter 7b6180a688 Functions can now not only operate on parameters and maps but also on meta information
obtained from the data files. Currently the following meta information can be accessed
if available:
field in (G): B or b
energy in (keV): En or en
temperature in (K): since some data files contain a vector of temperature, they have
                    to be accessed with an index, like T0 or t0, etc.
2020-06-17 19:31:31 +02:00

1025 lines
40 KiB
C++

/***************************************************************************
PRunMuMinus.cpp
Author: Andreas Suter
e-mail: andreas.suter@psi.ch
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007-2020 by Andreas Suter *
* andreas.suter@psi.ch *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_GOMP
#include <omp.h>
#endif
#include <iostream>
#include <TString.h>
#include <TObjArray.h>
#include <TObjString.h>
#include "PRunMuMinus.h"
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>Constructor
*/
PRunMuMinus::PRunMuMinus() : PRunBase()
{
fNoOfFitBins = 0;
fPacking = -1;
// the 2 following variables are need in case fit range is given in bins, and since
// the fit range can be changed in the command block, these variables need to be accessible
fGoodBins[0] = -1;
fGoodBins[1] = -1;
fStartTimeBin = -1;
fEndTimeBin = -1;
fHandleTag = kEmpty;
}
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>Constructor
*
* \param msrInfo pointer to the msr-file handler
* \param rawData raw run data
* \param runNo number of the run within the msr-file
* \param tag tag showing what shall be done: kFit == fitting, kView == viewing
*/
PRunMuMinus::PRunMuMinus(PMsrHandler *msrInfo, PRunDataHandler *rawData, UInt_t runNo, EPMusrHandleTag tag) : PRunBase(msrInfo, rawData, runNo, tag)
{
fNoOfFitBins = 0;
fPacking = fRunInfo->GetPacking();
if (fPacking == -1) { // i.e. packing is NOT given in the RUN-block, it must be given in the GLOBAL-block
fPacking = fMsrInfo->GetMsrGlobal()->GetPacking();
}
if (fPacking == -1) { // this should NOT happen, somethin is severely wrong
std::cerr << std::endl << ">> PRunMuMinus::PRunMuMinus: **SEVERE ERROR**: Couldn't find any packing information!";
std::cerr << std::endl << ">> This is very bad :-(, will quit ...";
std::cerr << std::endl;
fValid = false;
return;
}
// the 2 following variables are need in case fit range is given in bins, and since
// the fit range can be changed in the command block, these variables need to be accessible
fGoodBins[0] = -1;
fGoodBins[1] = -1;
fStartTimeBin = -1;
fEndTimeBin = -1;
if (!PrepareData()) {
std::cerr << std::endl << ">> PRunMuMinus::PRunMuMinus: **SEVERE ERROR**: Couldn't prepare data for fitting!";
std::cerr << std::endl << ">> This is very bad :-(, will quit ...";
std::cerr << std::endl;
fValid = false;
}
}
//--------------------------------------------------------------------------
// Destructor
//--------------------------------------------------------------------------
/**
* <p>Destructor
*/
PRunMuMinus::~PRunMuMinus()
{
fForward.clear();
}
//--------------------------------------------------------------------------
// CalcChiSquare
//--------------------------------------------------------------------------
/**
* <p>Calculate chi-square.
*
* <b>return:</b>
* - chisq value
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunMuMinus::CalcChiSquare(const std::vector<Double_t>& par)
{
Double_t chisq = 0.0;
Double_t diff = 0.0;
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
Int_t funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData);
}
// calculate chi square
Double_t time(1.0);
Int_t i;
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
// for a given set of parameters---which should be done outside of the parallelized loop.
// For all other functions it means a tiny and acceptable overhead.
time = fTheory->Func(time, par, fFuncValues);
#ifdef HAVE_GOMP
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
if (chunk < 10)
chunk = 10;
#pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq)
#endif
for (i=fStartTimeBin; i < fEndTimeBin; ++i) {
time = fData.GetDataTimeStart() + static_cast<Double_t>(i)*fData.GetDataTimeStep();
diff = fData.GetValue()->at(i) - fTheory->Func(time, par, fFuncValues);
chisq += diff*diff / (fData.GetError()->at(i)*fData.GetError()->at(i));
}
return chisq;
}
//--------------------------------------------------------------------------
// CalcChiSquareExpected (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate expected chi-square.
*
* <b>return:</b>
* - chisq value == 0.0
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunMuMinus::CalcChiSquareExpected(const std::vector<Double_t>& par)
{
Double_t chisq = 0.0;
Double_t diff = 0.0;
Double_t theo = 0.0;
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
Int_t funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData);
}
// calculate chi square
Double_t time(1.0);
Int_t i;
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
// for a given set of parameters---which should be done outside of the parallelized loop.
// For all other functions it means a tiny and acceptable overhead.
time = fTheory->Func(time, par, fFuncValues);
#ifdef HAVE_GOMP
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
if (chunk < 10)
chunk = 10;
#pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq)
#endif
for (i=fStartTimeBin; i < fEndTimeBin; ++i) {
time = fData.GetDataTimeStart() + static_cast<Double_t>(i)*fData.GetDataTimeStep();
theo = fTheory->Func(time, par, fFuncValues);
diff = fData.GetValue()->at(i) - theo;
chisq += diff*diff / theo;
}
return 0.0;
}
//--------------------------------------------------------------------------
// CalcMaxLikelihood
//--------------------------------------------------------------------------
/**
* <p>Calculate log max-likelihood. See http://pdg.lbl.gov/index.html
*
* <b>return:</b>
* - log max-likelihood value
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunMuMinus::CalcMaxLikelihood(const std::vector<Double_t>& par)
{
Double_t mllh = 0.0; // maximum log likelihood assuming poisson distribution for the single bin
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
Int_t funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData);
}
// calculate maximum log likelihood
Double_t theo;
Double_t data;
Double_t time(1.0);
Int_t i;
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
// for a given set of parameters---which should be done outside of the parallelized loop.
// For all other functions it means a tiny and acceptable overhead.
time = fTheory->Func(time, par, fFuncValues);
#ifdef HAVE_GOMP
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
if (chunk < 10)
chunk = 10;
#pragma omp parallel for default(shared) private(i,time,theo,data) schedule(dynamic,chunk) reduction(-:mllh)
#endif
for (i=fStartTimeBin; i < fEndTimeBin; ++i) {
time = fData.GetDataTimeStart() + static_cast<Double_t>(i)*fData.GetDataTimeStep();
// calculate theory for the given parameter set
theo = fTheory->Func(time, par, fFuncValues);
data = fData.GetValue()->at(i);
if (theo <= 0.0) {
std::cerr << ">> PRunMuMinus::CalcMaxLikelihood: **WARNING** NEGATIVE theory!!" << std::endl;
continue;
}
if (data > 1.0e-9) {
mllh += (theo-data) + data*log(data/theo);
} else {
mllh += (theo-data);
}
}
return 2.0*mllh;
}
//--------------------------------------------------------------------------
// GetNoOfFitBins (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate the number of fitted bins for the current fit range.
*
* <b>return:</b> number of fitted bins.
*/
UInt_t PRunMuMinus::GetNoOfFitBins()
{
CalcNoOfFitBins();
return fNoOfFitBins;
}
//--------------------------------------------------------------------------
// SetFitRangeBin (public)
//--------------------------------------------------------------------------
/**
* <p>Allows to change the fit range on the fly. Used in the COMMAND block.
* The syntax of the string is: FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]].
* If only one pair of fgb/lgb is given, it is used for all runs in the RUN block section.
* If multiple fgb/lgb's are given, the number N has to be the number of RUN blocks in
* the msr-file.
*
* <p>nXY are offsets which can be used to shift, limit the fit range.
*
* \param fitRange string containing the necessary information.
*/
void PRunMuMinus::SetFitRangeBin(const TString fitRange)
{
TObjArray *tok = nullptr;
TObjString *ostr = nullptr;
TString str;
Ssiz_t idx = -1;
Int_t offset = 0;
tok = fitRange.Tokenize(" \t");
if (tok->GetEntries() == 3) { // structure FIT_RANGE fgb+n0 lgb-n1
// handle fgb+n0 entry
ostr = dynamic_cast<TObjString*>(tok->At(1));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("+");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution;
// handle lgb-n1 entry
ostr = dynamic_cast<TObjString*>(tok->At(2));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("-");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution;
} else if ((tok->GetEntries() > 3) && (tok->GetEntries() % 2 == 1)) { // structure FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]]
Int_t pos = 2*(fRunNo+1)-1;
if (pos + 1 >= tok->GetEntries()) {
std::cerr << std::endl << ">> PRunMuMinus::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'";
std::cerr << std::endl << ">> will ignore it. Sorry ..." << std::endl;
} else {
// handle fgb+n0 entry
ostr = dynamic_cast<TObjString*>(tok->At(pos));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("+");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution;
// handle lgb-n1 entry
ostr = dynamic_cast<TObjString*>(tok->At(pos+1));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("-");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution;
}
} else { // error
std::cerr << std::endl << ">> PRunMuMinus::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'";
std::cerr << std::endl << ">> will ignore it. Sorry ..." << std::endl;
}
// clean up
if (tok) {
delete tok;
}
}
//--------------------------------------------------------------------------
// CalcNoOfFitBins (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate the number of fitted bins for the current fit range.
*/
void PRunMuMinus::CalcNoOfFitBins()
{
// In order not having to loop over all bins and to stay consistent with the chisq method, calculate the start and end bins explicitly
fStartTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
if (fStartTimeBin < 0)
fStartTimeBin = 0;
fEndTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
if (fEndTimeBin > static_cast<Int_t>(fData.GetValue()->size()))
fEndTimeBin = fData.GetValue()->size();
if (fEndTimeBin > fStartTimeBin)
fNoOfFitBins = fEndTimeBin - fStartTimeBin;
else
fNoOfFitBins = 0;
}
//--------------------------------------------------------------------------
// CalcTheory
//--------------------------------------------------------------------------
/**
* <p>Calculate theory for a given set of fit-parameters.
*/
void PRunMuMinus::CalcTheory()
{
// feed the parameter vector
std::vector<Double_t> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (UInt_t i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par, fMetaData);
}
// calculate theory
UInt_t size = fData.GetValue()->size();
Double_t start = fData.GetDataTimeStart();
Double_t resolution = fData.GetDataTimeStep();
Double_t time;
for (UInt_t i=0; i<size; i++) {
time = start + static_cast<Double_t>(i)*resolution;
fData.AppendTheoryValue(fTheory->Func(time, par, fFuncValues));
}
// clean up
par.clear();
}
//--------------------------------------------------------------------------
// PrepareData
//--------------------------------------------------------------------------
/**
* <p>Prepare data for fitting or viewing. What is already processed at this stage:
* -# get proper raw run data
* -# get all needed forward histograms
* -# get time resolution
* -# get t0's and perform necessary cross checks (e.g. if t0 of msr-file (if present) are consistent with t0 of the data files, etc.)
* -# add runs (if addruns are present)
* -# group histograms (if grouping is present)
*
* <b>return:</b>
* - true if everthing went smooth
* - false, otherwise.
*/
Bool_t PRunMuMinus::PrepareData()
{
Bool_t success = true;
// keep the Global block info
PMsrGlobalBlock *globalBlock = fMsrInfo->GetMsrGlobal();
// get the proper run
PRawRunData* runData = fRawData->GetRunData(*fRunInfo->GetRunName());
if (!runData) { // couldn't get run
std::cerr << std::endl << ">> PRunMuMinus::PrepareData(): **ERROR** Couldn't get run " << fRunInfo->GetRunName()->Data() << "!";
std::cerr << std::endl;
return false;
}
// keep the field from the meta-data from the data-file
fMetaData.fField = runData->GetField();
// keep the energy from the meta-data from the data-file
fMetaData.fEnergy = runData->GetEnergy();
// keep the temperature(s) from the meta-data from the data-file
for (unsigned int i=0; i<runData->GetNoOfTemperatures(); i++)
fMetaData.fTemp.push_back(runData->GetTemperature(i));
// collect histogram numbers
PUIntVector histoNo; // histoNo = msr-file forward + redGreen_offset - 1
for (UInt_t i=0; i<fRunInfo->GetForwardHistoNoSize(); i++) {
histoNo.push_back(fRunInfo->GetForwardHistoNo(i));
if (!runData->IsPresent(histoNo[i])) {
std::cerr << std::endl << ">> PRunMuMinus::PrepareData(): **PANIC ERROR**:";
std::cerr << std::endl << ">> histoNo found = " << histoNo[i] << ", which is NOT present in the data file!?!?";
std::cerr << std::endl << ">> Will quit :-(";
std::cerr << std::endl;
histoNo.clear();
return false;
}
}
// keep the time resolution in (us)
fTimeResolution = runData->GetTimeResolution()/1.0e3;
std::cout.precision(10);
std::cout << std::endl << ">> PRunMuMinus::PrepareData(): time resolution=" << std::fixed << runData->GetTimeResolution() << "(ns)" << std::endl;
// get all the proper t0's and addt0's for the current RUN block
if (!GetProperT0(runData, globalBlock, histoNo)) {
return false;
}
// keep the histo of each group at this point (addruns handled below)
std::vector<PDoubleVector> forward;
forward.resize(histoNo.size()); // resize to number of groups
for (UInt_t i=0; i<histoNo.size(); i++) {
forward[i].resize(runData->GetDataBin(histoNo[i])->size());
forward[i] = *runData->GetDataBin(histoNo[i]);
}
// check if there are runs to be added to the current one
if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present
PRawRunData *addRunData;
for (UInt_t i=1; i<fRunInfo->GetRunNameSize(); i++) {
// get run to be added to the main one
addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i));
if (addRunData == nullptr) { // couldn't get run
std::cerr << std::endl << ">> PRunMuMinus::PrepareData(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!";
std::cerr << std::endl;
return false;
}
// add forward run
UInt_t addRunSize;
for (UInt_t k=0; k<histoNo.size(); k++) { // fill each group
addRunSize = addRunData->GetDataBin(histoNo[k])->size();
for (UInt_t j=0; j<addRunData->GetDataBin(histoNo[k])->size(); j++) { // loop over the bin indices
// make sure that the index stays in the proper range
if ((static_cast<Int_t>(j)+static_cast<Int_t>(fAddT0s[i-1][k])-static_cast<Int_t>(fT0s[k]) >= 0) &&
(j+static_cast<Int_t>(fAddT0s[i-1][k])-static_cast<Int_t>(fT0s[k]) < addRunSize)) {
forward[k][j] += addRunData->GetDataBin(histoNo[k])->at(j+static_cast<Int_t>(fAddT0s[i-1][k])-static_cast<Int_t>(fT0s[k]));
}
}
}
}
}
// set forward/backward histo data of the first group
fForward.resize(forward[0].size());
for (UInt_t i=0; i<fForward.size(); i++) {
fForward[i] = forward[0][i];
}
// group histograms, add all the remaining forward histograms of the group
for (UInt_t i=1; i<histoNo.size(); i++) { // loop over the groupings
for (UInt_t j=0; j<runData->GetDataBin(histoNo[i])->size(); j++) { // loop over the bin indices
// make sure that the index stays within proper range
if ((static_cast<Int_t>(j)+fT0s[i]-fT0s[0] >= 0) && (j+fT0s[i]-fT0s[0] < runData->GetDataBin(histoNo[i])->size())) {
fForward[j] += forward[i][j+static_cast<Int_t>(fT0s[i])-static_cast<Int_t>(fT0s[0])];
}
}
}
// get the data range (fgb/lgb) for the current RUN block
if (!GetProperDataRange()) {
return false;
}
// get the fit range for the current RUN block
GetProperFitRange(globalBlock);
// do the more fit/view specific stuff
if (fHandleTag == kFit)
success = PrepareFitData(runData, histoNo[0]);
else if (fHandleTag == kView)
success = PrepareRawViewData(runData, histoNo[0]);
else
success = false;
// cleanup
histoNo.clear();
return success;
}
//--------------------------------------------------------------------------
// PrepareFitData (private)
//--------------------------------------------------------------------------
/**
* <p>Take the pre-processed data (i.e. grouping and addrun are preformed) and form the histogram for fitting.
* The following steps are preformed:
* -# get fit start/stop time
* -# check that 'first good data bin', 'last good data bin', and 't0' make any sense
* -# packing (i.e rebinning)
*
* <b>return:</b>
* - true, if everything went smooth
* - false, otherwise
*
* \param runData raw run data handler
* \param histoNo forward histogram number
*/
Bool_t PRunMuMinus::PrepareFitData(PRawRunData* runData, const UInt_t histoNo)
{
// transform raw histo data. This is done the following way (for details see the manual):
// for the single histo fit, just the rebinned raw data are copied
// fill data set
Int_t t0 = static_cast<Int_t>(fT0s[0]);
Double_t value = 0.0;
// data start at data_start-t0
// time shifted so that packing is included correctly, i.e. t0 == t0 after packing
fData.SetDataTimeStart(fTimeResolution*(static_cast<Double_t>(fGoodBins[0])-static_cast<Double_t>(t0)+static_cast<Double_t>(fPacking-1)/2.0));
fData.SetDataTimeStep(fTimeResolution*fPacking);
for (Int_t i=fGoodBins[0]; i<fGoodBins[1]; i++) {
if (fPacking == 1) {
value = fForward[i];
fData.AppendValue(value);
if (value == 0.0)
fData.AppendErrorValue(1.0);
else
fData.AppendErrorValue(TMath::Sqrt(value));
} else { // packed data, i.e. fPacking > 1
if (((i-fGoodBins[0]) % fPacking == 0) && (i != fGoodBins[0])) { // fill data
fData.AppendValue(value);
if (value == 0.0)
fData.AppendErrorValue(1.0);
else
fData.AppendErrorValue(TMath::Sqrt(value));
// reset values
value = 0.0;
}
value += fForward[i];
}
}
CalcNoOfFitBins();
return true;
}
//--------------------------------------------------------------------------
// PrepareRawViewData (private)
//--------------------------------------------------------------------------
/**
* <p>Take the pre-processed data (i.e. grouping and addrun are preformed) and form the histogram for viewing
* without any life time correction.
* <p>The following steps are preformed:
* -# check if view packing is whished.
* -# check that 'first good data bin', 'last good data bin', and 't0' makes any sense
* -# packing (i.e. rebinnig)
* -# calculate theory
*
* <b>return:</b>
* - true, if everything went smooth
* - false, otherwise.
*
* \param runData raw run data handler
* \param histoNo forward histogram number
*/
Bool_t PRunMuMinus::PrepareRawViewData(PRawRunData* runData, const UInt_t histoNo)
{
// check if view_packing is wished
Int_t packing = fPacking;
if (fMsrInfo->GetMsrPlotList()->at(0).fViewPacking > 0) {
packing = fMsrInfo->GetMsrPlotList()->at(0).fViewPacking;
}
// calculate necessary norms
Double_t theoryNorm = 1.0;
if (fMsrInfo->GetMsrPlotList()->at(0).fViewPacking > 0) {
theoryNorm = static_cast<Double_t>(fMsrInfo->GetMsrPlotList()->at(0).fViewPacking)/static_cast<Double_t>(fPacking);
}
// raw data, since PMusrCanvas is doing ranging etc.
// start = the first bin which is a multiple of packing backward from first good data bin
Int_t start = fGoodBins[0] - (fGoodBins[0]/packing)*packing;
// end = last bin starting from start which is a multipl of packing and still within the data
Int_t end = start + ((fForward.size()-start)/packing)*packing;
// check if data range has been provided, and if not try to estimate them
if (start < 0) {
Int_t offset = static_cast<Int_t>(10.0e-3/fTimeResolution);
start = (static_cast<Int_t>(fT0s[0])+offset) - ((static_cast<Int_t>(fT0s[0])+offset)/packing)*packing;
end = start + ((fForward.size()-start)/packing)*packing;
std::cerr << std::endl << ">> PRunMuMinus::PrepareData(): **WARNING** data range was not provided, will try data range start = " << start << ".";
std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE.";
std::cerr << std::endl;
}
// check if start, end, and t0 make any sense
// 1st check if start and end are in proper order
if (end < start) { // need to swap them
Int_t keep = end;
end = start;
start = keep;
}
// 2nd check if start is within proper bounds
if ((start < 0) || (start > static_cast<Int_t>(fForward.size()))) {
std::cerr << std::endl << ">> PRunMuMinus::PrepareRawViewData(): **ERROR** start data bin doesn't make any sense!";
std::cerr << std::endl;
return false;
}
// 3rd check if end is within proper bounds
if ((end < 0) || (end > static_cast<Int_t>(fForward.size()))) {
std::cerr << std::endl << ">> PRunMuMinus::PrepareRawViewData(): **ERROR** end data bin doesn't make any sense!";
std::cerr << std::endl;
return false;
}
// if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now
if (fRunInfo->IsFitRangeInBin()) {
fFitStartTime = (fRunInfo->GetDataRange(0) + fRunInfo->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt
fFitEndTime = (fRunInfo->GetDataRange(1) - fRunInfo->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt
}
// everything looks fine, hence fill data set
Int_t t0 = static_cast<Int_t>(fT0s[0]);
Double_t value = 0.0;
// data start at data_start-t0
// time shifted so that packing is included correctly, i.e. t0 == t0 after packing
fData.SetDataTimeStart(fTimeResolution*(static_cast<Double_t>(start)-static_cast<Double_t>(t0)+static_cast<Double_t>(packing-1)/2.0));
fData.SetDataTimeStep(fTimeResolution*packing);
for (Int_t i=start; i<end; i++) {
if (((i-start) % packing == 0) && (i != start)) { // fill data
fData.AppendValue(value);
if (value == 0.0)
fData.AppendErrorValue(1.0);
else
fData.AppendErrorValue(TMath::Sqrt(value));
// reset values
value = 0.0;
}
value += fForward[i];
}
CalcNoOfFitBins();
// fill theory vector for kView
// feed the parameter vector
std::vector<Double_t> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (UInt_t i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par, fMetaData);
}
// calculate theory
UInt_t size = fForward.size();
Double_t factor = 1.0;
if (fData.GetValue()->size() * 10 > fForward.size()) {
size = fData.GetValue()->size() * 10;
factor = static_cast<Double_t>(fForward.size()) / static_cast<Double_t>(size);
}
Double_t time;
Double_t theoryValue;
fData.SetTheoryTimeStart(fData.GetDataTimeStart());
fData.SetTheoryTimeStep(fTimeResolution*factor);
for (UInt_t i=0; i<size; i++) {
time = fData.GetTheoryTimeStart() + i*fData.GetTheoryTimeStep();
theoryValue = fTheory->Func(time, par, fFuncValues);
if (fabs(theoryValue) > 1.0e10) { // dirty hack needs to be fixed!!
theoryValue = 0.0;
}
fData.AppendTheoryValue(theoryNorm*theoryValue);
}
// clean up
par.clear();
return true;
}
//--------------------------------------------------------------------------
// GetProperT0 (private)
//--------------------------------------------------------------------------
/**
* <p>Get the proper t0 for the single histogram run.
* -# the t0 vector size = number of detectors (grouping) for forward.
* -# initialize t0's with -1
* -# fill t0's from RUN block
* -# if t0's are missing (i.e. t0 == -1), try to fill from the GLOBAL block.
* -# if t0's are missing, try t0's from the data file
* -# if t0's are missing, try to estimate them
*
* \param histoNo histogram number vector of forward; histoNo = msr-file forward + redGreen_offset - 1
*
* <b>return:</b>
* - true if everthing went smooth
* - false, otherwise.
*/
Bool_t PRunMuMinus::GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalBlock, PUIntVector &histoNo)
{
// feed all T0's
// first init T0's, T0's are stored as (forward T0, backward T0, etc.)
fT0s.clear();
fT0s.resize(histoNo.size());
for (UInt_t i=0; i<fT0s.size(); i++) {
fT0s[i] = -1.0;
}
// fill in the T0's from the msr-file (if present)
for (UInt_t i=0; i<fRunInfo->GetT0BinSize(); i++) {
fT0s[i] = fRunInfo->GetT0Bin(i);
}
// fill in the T0's from the GLOBAL block section (if present)
for (UInt_t i=0; i<globalBlock->GetT0BinSize(); i++) {
if (fT0s[i] == -1.0) { // i.e. not given in the RUN block section
fT0s[i] = globalBlock->GetT0Bin(i);
}
}
// fill in the T0's from the data file, if not already present in the msr-file
for (UInt_t i=0; i<histoNo.size(); i++) {
if (fT0s[i] == -1.0) { // i.e. not present in the msr-file, try the data file
if (runData->GetT0Bin(histoNo[i]) > 0.0) {
fT0s[i] = runData->GetT0Bin(histoNo[i]);
fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file
}
}
}
// fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file
for (UInt_t i=0; i<histoNo.size(); i++) {
if (fT0s[i] == -1.0) { // i.e. not present in the msr-file and data file, use the estimated T0
fT0s[i] = runData->GetT0BinEstimated(histoNo[i]);
fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file
std::cerr << std::endl << ">> PRunMuMinus::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!";
std::cerr << std::endl << ">> run: " << fRunInfo->GetRunName()->Data();
std::cerr << std::endl << ">> will try the estimated one: forward t0 = " << runData->GetT0BinEstimated(histoNo[i]);
std::cerr << std::endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!";
std::cerr << std::endl;
}
}
// check if t0 is within proper bounds
for (UInt_t i=0; i<fRunInfo->GetForwardHistoNoSize(); i++) {
if ((fT0s[i] < 0) || (fT0s[i] > static_cast<Int_t>(runData->GetDataBin(histoNo[i])->size()))) {
std::cerr << std::endl << ">> PRunMuMinus::GetProperT0(): **ERROR** t0 data bin (" << fT0s[i] << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
}
// check if there are runs to be added to the current one
if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present
PRawRunData *addRunData;
fAddT0s.resize(fRunInfo->GetRunNameSize()-1); // resize to the number of addruns
for (UInt_t i=1; i<fRunInfo->GetRunNameSize(); i++) {
// get run to be added to the main one
addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i));
if (addRunData == nullptr) { // couldn't get run
std::cerr << std::endl << ">> PRunMuMinus::GetProperT0(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!";
std::cerr << std::endl;
return false;
}
// feed all T0's
// first init T0's, T0's are stored as (forward T0, backward T0, etc.)
fAddT0s[i-1].resize(histoNo.size());
for (UInt_t j=0; j<fAddT0s[i-1].size(); j++) {
fAddT0s[i-1][j] = -1.0;
}
// fill in the T0's from the msr-file (if present)
for (UInt_t j=0; j<fRunInfo->GetT0BinSize(); j++) {
fAddT0s[i-1][j] = fRunInfo->GetAddT0Bin(i-1,j); // addRunIdx starts at 0
}
// fill in the T0's from the data file, if not already present in the msr-file
for (UInt_t j=0; j<histoNo.size(); j++) {
if (fAddT0s[i-1][j] == -1.0) // i.e. not present in the msr-file, try the data file
if (addRunData->GetT0Bin(histoNo[j]) > 0.0) {
fAddT0s[i-1][j] = addRunData->GetT0Bin(histoNo[j]);
fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file
}
}
// fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file
for (UInt_t j=0; j<histoNo.size(); j++) {
if (fAddT0s[i-1][j] == -1.0) { // i.e. not present in the msr-file and data file, use the estimated T0
fAddT0s[i-1][j] = addRunData->GetT0BinEstimated(histoNo[j]);
fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file
std::cerr << std::endl << ">> PRunMuMinus::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!";
std::cerr << std::endl << ">> run: " << fRunInfo->GetRunName(i)->Data();
std::cerr << std::endl << ">> will try the estimated one: forward t0 = " << addRunData->GetT0BinEstimated(histoNo[j]);
std::cerr << std::endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!";
std::cerr << std::endl;
}
}
// check if t0 is within proper bounds
for (UInt_t j=0; j<fRunInfo->GetForwardHistoNoSize(); j++) {
if ((fAddT0s[i-1][j] < 0) || (fAddT0s[i-1][j] > static_cast<Int_t>(addRunData->GetDataBin(histoNo[j])->size()))) {
std::cerr << std::endl << ">> PRunMuMinus::GetProperT0(): **ERROR** addt0 data bin (" << fAddT0s[i-1][j] << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
}
}
}
return true;
}
//--------------------------------------------------------------------------
// GetProperDataRange (private)
//--------------------------------------------------------------------------
/**
* <p>Get the proper data range, i.e. first/last good bin (fgb/lgb).
* -# get fgb/lgb from the RUN block
* -# if fgb/lgb still undefined, try to get it from the GLOBAL block
* -# if fgb/lgb still undefined, try to estimate them.
*
* <b>return:</b>
* - true if everthing went smooth
* - false, otherwise.
*/
Bool_t PRunMuMinus::GetProperDataRange()
{
// get start/end data
Int_t start;
Int_t end;
start = fRunInfo->GetDataRange(0);
end = fRunInfo->GetDataRange(1);
// check if data range has been given in the RUN block, if not try to get it from the GLOBAL block
if (start < 0) {
start = fMsrInfo->GetMsrGlobal()->GetDataRange(0);
}
if (end < 0) {
end = fMsrInfo->GetMsrGlobal()->GetDataRange(1);
}
// check if data range has been provided, and if not try to estimate them
if (start < 0) {
Int_t offset = static_cast<Int_t>(10.0e-3/fTimeResolution);
start = static_cast<Int_t>(fT0s[0])+offset;
fRunInfo->SetDataRange(start, 0);
std::cerr << std::endl << ">> PRunMuMinus::GetProperDataRange(): **WARNING** data range was not provided, will try data range start = t0+" << offset << "(=10ns) = " << start << ".";
std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE.";
std::cerr << std::endl;
}
if (end < 0) {
end = fForward.size();
fRunInfo->SetDataRange(end, 1);
std::cerr << std::endl << ">> PRunMuMinus::GetProperDataRange(): **WARNING** data range was not provided, will try data range end = " << end << ".";
std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE.";
std::cerr << std::endl;
}
// check if start and end make any sense
// 1st check if start and end are in proper order
if (end < start) { // need to swap them
Int_t keep = end;
end = start;
start = keep;
}
// 2nd check if start is within proper bounds
if ((start < 0) || (start > static_cast<Int_t>(fForward.size()))) {
std::cerr << std::endl << ">> PRunMuMinus::GetProperDataRange(): **ERROR** start data bin (" << start << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
// 3rd check if end is within proper bounds
if ((end < 0) || (end > static_cast<Int_t>(fForward.size()))) {
std::cerr << std::endl << ">> PRunMuMinus::GetProperDataRange(): **ERROR** end data bin (" << end << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
// keep good bins for potential later use
fGoodBins[0] = start;
fGoodBins[1] = end;
return true;
}
//--------------------------------------------------------------------------
// GetProperFitRange (private)
//--------------------------------------------------------------------------
/**
* <p>Get the proper fit range. There are two possible fit range commands:
* fit <start> <end> given in (usec), or
* fit fgb+offset_0 lgb-offset_1 given in (bins), therefore it works the following way:
* -# get fit range assuming given in time from RUN block
* -# if fit range in RUN block is given in bins, replace start/end
* -# if fit range is NOT given yet, try fit range assuming given in time from GLOBAL block
* -# if fit range in GLOBAL block is given in bins, replace start/end
* -# if still no fit range is given, use fgb/lgb.
*
* \param globalBlock pointer to the GLOBAL block information form the msr-file.
*/
void PRunMuMinus::GetProperFitRange(PMsrGlobalBlock *globalBlock)
{
// set fit start/end time; first check RUN Block
fFitStartTime = fRunInfo->GetFitRange(0);
fFitEndTime = fRunInfo->GetFitRange(1);
// if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now
if (fRunInfo->IsFitRangeInBin()) {
fFitStartTime = (fGoodBins[0] + fRunInfo->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt
fFitEndTime = (fGoodBins[1] - fRunInfo->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt
// write these times back into the data structure. This way it is available when writting the log-file
fRunInfo->SetFitRange(fFitStartTime, 0);
fRunInfo->SetFitRange(fFitEndTime, 1);
}
if (fFitStartTime == PMUSR_UNDEFINED) { // fit start/end NOT found in the RUN block, check GLOBAL block
fFitStartTime = globalBlock->GetFitRange(0);
fFitEndTime = globalBlock->GetFitRange(1);
// if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now
if (globalBlock->IsFitRangeInBin()) {
fFitStartTime = (fGoodBins[0] + globalBlock->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt
fFitEndTime = (fGoodBins[1] - globalBlock->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt
// write these times back into the data structure. This way it is available when writting the log-file
globalBlock->SetFitRange(fFitStartTime, 0);
globalBlock->SetFitRange(fFitEndTime, 1);
}
}
if ((fFitStartTime == PMUSR_UNDEFINED) || (fFitEndTime == PMUSR_UNDEFINED)) {
fFitStartTime = (fGoodBins[0] - fT0s[0]) * fTimeResolution; // (fgb-t0)*dt
fFitEndTime = (fGoodBins[1] - fT0s[0]) * fTimeResolution; // (lgb-t0)*dt
std::cerr << ">> PRunMuMinus::GetProperFitRange(): **WARNING** Couldn't get fit start/end time!" << std::endl;
std::cerr << ">> Will set it to fgb/lgb which given in time is: " << fFitStartTime << "..." << fFitEndTime << " (usec)" << std::endl;
}
}