musrfit/src/include/PFourier.h

171 lines
7.2 KiB
C++

/***************************************************************************
PFourier.h
Author: Andreas Suter
e-mail: andreas.suter@psi.ch
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007-2024 by Andreas Suter *
* andreas.suter@psi.ch *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef _PFOURIER_H_
#define _PFOURIER_H_
#include <vector>
#ifndef HAVE_DKS
#include <vector>
#include "fftw3.h"
#else
#include <complex>
#include "DKSBase.h"
#include "DKSFFT.h"
#endif
#include <TH1F.h>
#include <TH1F.h>
#include "Minuit2/FCNBase.h"
#include "PMusr.h"
#define F_APODIZATION_NONE 1
#define F_APODIZATION_WEAK 2
#define F_APODIZATION_MEDIUM 3
#define F_APODIZATION_STRONG 4
/**
* Re Fourier phase correction
*/
class PFTPhaseCorrection : public ROOT::Minuit2::FCNBase
{
public:
PFTPhaseCorrection(const Int_t minBin=-1, const Int_t maxBin=-1);
PFTPhaseCorrection(std::vector<Double_t> &reFT, std::vector<Double_t> &imFT, const Int_t minBin=-1, const Int_t maxBin=-1);
virtual ~PFTPhaseCorrection() {}
virtual Bool_t IsValid() { return fValid; }
virtual void Minimize();
virtual void SetGamma(const Double_t gamma) { fGamma = gamma; }
virtual void SetPh(const Double_t c0, const Double_t c1) { fPh_c0 = c0; fPh_c1 = c1; CalcPhasedFT(); CalcRealPhFTDerivative(); }
virtual Double_t GetGamma() { return fGamma; }
virtual Double_t GetPhaseCorrectionParam(UInt_t idx);
virtual Double_t GetMinimum();
private:
Bool_t fValid;
std::vector<Double_t> fReal; /// original real Fourier data set
std::vector<Double_t> fImag; /// original imag Fourier data set
mutable std::vector<Double_t> fRealPh; /// phased real Fourier data set
mutable std::vector<Double_t> fImagPh; /// phased imag Fourier data set
mutable std::vector<Double_t> fRealPhD; /// 1st derivative of fRealPh
Int_t fMinBin; /// minimum bin from Fourier range to be used for the phase correction estimate
Int_t fMaxBin; /// maximum bin from Fourier range to be used for the phase correction estimate
mutable Double_t fPh_c0; /// constant part of the phase dispersion used for the phase correction
mutable Double_t fPh_c1; /// linear part of the phase dispersion used for the phase correction
Double_t fGamma; /// gamma parameter to balance between entropy and penalty
Double_t fMin; /// keeps the minimum of the entropy/penalty minimization
virtual void Init();
virtual void CalcPhasedFT() const;
virtual void CalcRealPhFTDerivative() const;
virtual Double_t Penalty() const;
virtual Double_t Entropy() const;
virtual Double_t Up() const { return 1.0; }
virtual Double_t operator()(const std::vector<Double_t>&) const;
};
/**
* muSR Fourier class.
*/
class PFourier
{
public:
PFourier(TH1F *data, Int_t unitTag,
Double_t startTime = 0.0, Double_t endTime = 0.0,
Bool_t dcCorrected = false, UInt_t zeroPaddingPower = 0,
Bool_t useFFTW = true);
virtual ~PFourier();
virtual void Transform(UInt_t apodizationTag = F_APODIZATION_NONE);
virtual void SetUseFFTW(const Bool_t flag);
virtual const char* GetDataTitle() { return fData->GetTitle(); }
virtual const Int_t GetUnitTag() { return fUnitTag; }
virtual Double_t GetResolution() { return fResolution; }
virtual Double_t GetMaxFreq();
virtual TH1F* GetRealFourier(const Double_t scale = 1.0);
//as virtual TH1F* GetPhaseOptRealFourier(std::vector<Double_t> &phase, const Double_t scale = 1.0, const Double_t min = -1.0, const Double_t max = -1.0);
virtual TH1F* GetImaginaryFourier(const Double_t scale = 1.0);
virtual TH1F* GetPowerFourier(const Double_t scale = 1.0);
virtual TH1F* GetPhaseFourier(const Double_t scale = 1.0);
static TH1F* GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, std::vector<Double_t> &phase,
const Double_t scale = 1.0, const Double_t min = -1.0, const Double_t max = -1.0);
virtual Bool_t IsValid() { return fValid; }
virtual Bool_t IsUseFFTW() { return fUseFFTW; }
private:
TH1F *fData; ///< data histogram to be Fourier transformed.
Bool_t fValid; ///< true = all boundary conditions fullfilled and hence a Fourier transform can be performed.
Int_t fUnitTag; ///< 1=Field Units (G), 2=Field Units (T), 3=Frequency Units (MHz), 4=Angular Frequency Units (Mc/s)
Bool_t fUseFFTW; ///< true = use FFTW, otherwise use DKS if present
Int_t fApodization; ///< 0=none, 1=weak, 2=medium, 3=strong
Double_t fTimeResolution; ///< time resolution of the data histogram in (us)
Double_t fStartTime; ///< start time of the data histogram
Double_t fEndTime; ///< end time of the data histogram
Bool_t fDCCorrected; ///< if true, removed DC offset from signal before Fourier transformation, otherwise not
UInt_t fZeroPaddingPower; ///< power for zero padding, if set < 0 no zero padding will be done
Double_t fResolution; ///< Fourier resolution (field, frequency, or angular frequency)
UInt_t fNoOfData; ///< number of bins in the time interval between fStartTime and fStopTime
UInt_t fNoOfBins; ///< number of bins to be Fourier transformed. Might be different to fNoOfData due to zero padding
fftw_plan fFFTwPlan; ///< fftw plan (see FFTW3 User Manual)
fftw_complex *fIn; ///< real part of the Fourier transform
fftw_complex *fOut; ///< imaginary part of the Fourier transform
#ifdef HAVE_DKS
double *fInDKS; ///< real part of the Fourier transform
std::complex<double> *fOutDKS; ///< imaginary part of the Fourier transform
DKSFFT fDks; ///< Dynamic Kernel Scheduler
void *fReal_ptr; ///< real part of the Fourier on accelartor
void *fComp_ptr; ///< imaginary part of the Fourier on the acclerator
#endif
virtual void PrepareFFTwInputData(UInt_t apodizationTag);
virtual void ApodizeData(Int_t apodizationTag);
};
#endif // _PFOURIER_H_