musrfit/doc/html/user/MUSR/MusrFit.html

1736 lines
167 KiB
HTML

<!DOCTYPE html><html lang="en">
<!-- Mirrored from intranet.psi.ch/MUSR/MusrFit?cover=print by HTTrack Website Copier/3.x [XR&CO'2010], Fri, 16 Dec 2016 16:01:02 GMT -->
<!-- Added by HTTrack --><meta http-equiv="content-type" content="text/html;charset=utf-8"><!-- /Added by HTTrack -->
<head>
<link rel="stylesheet" href="../pub/System/HeadlinesPlugin/style.css" type="text/css" media="all" />
<title> MUSR :: MusrFit</title>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1.5, user-scalable=yes" />
<meta name="mobile-web-app-capable" content="yes" />
<meta name="mobile-web-app-status-bar-style" content="black-translucent" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
<link rel="icon" href="../pub/Main/WebPreferences/favicon.ico" type="image/x-icon" />
<link rel="shortcut icon" href="../pub/Main/WebPreferences/favicon.ico" type="image/x-icon" />
<link rel="alternate" href="https://intranet.psi.ch/wiki/bin/edit/MUSR/MusrFit?t=1481904044" type="application/x-wiki" title="edit MusrFit" />
<meta name="TEXT_NUM_TOPICS" content="Number of topics:" />
<meta name="TEXT_MODIFY_SEARCH" content="Modify search" />
<meta name="robots" content="noindex" /><link rel="alternate" type="application/rss+xml" title="RSS Feed" href="WebRsshtml.html" />
<base /><!--[if IE]></base><![endif]--><style class='head TABLEPLUGIN_default' type="text/css" media="all">
body .foswikiTable {border-width:1px}
body .foswikiTable .tableSortIcon img {padding-left:.3em; vertical-align:text-bottom}
body .foswikiTable td {border-style:solid none; vertical-align:top}
body .foswikiTable th {border-style:none solid; vertical-align:top; background-color:#d6d3cf; color:#000000}
body .foswikiTable th a:link {color:#000000}
body .foswikiTable th a:visited {color:#000000}
body .foswikiTable th a:hover {color:#000000; background-color:#d6d3cf}
body .foswikiTable th.foswikiSortedCol {background-color:#c4c1ba}
body .foswikiTable tr.foswikiTableRowdataBg0 td {background-color:#ffffff}
body .foswikiTable tr.foswikiTableRowdataBg0 td.foswikiSortedCol {background-color:#f7f7f6}
body .foswikiTable tr.foswikiTableRowdataBg1 td {background-color:#f7f7f6}
body .foswikiTable tr.foswikiTableRowdataBg1 td.foswikiSortedCol {background-color:#f0f0ee}
</style><!--TABLEPLUGIN_default-->
<link class='head IMAGEPLUGIN' rel="stylesheet" href="../pub/System/ImagePlugin/style.css" type="text/css" media="all" /><!--IMAGEPLUGIN-->
<link class='head FOOTNOTEPLUGIN_LINKCSS' rel="stylesheet" href="../pub/System/FootNotePlugin/styles.css" type="text/css" media="all" /><!--FOOTNOTEPLUGIN_LINKCSS-->
<link class='head JQUERYPLUGIN::COMMENT' rel='stylesheet' href='../pub/System/CommentPlugin/commentf5b6.css?version=3.0' type='text/css' media='all' /><!--JQUERYPLUGIN::COMMENT-->
<link class='head SMILIESPLUGIN' rel='stylesheet' href='../pub/System/SmiliesPlugin/smilies.css' type='text/css' media='all' /><!--SMILIESPLUGIN-->
<link class='head CLASSIFICATIONPLUGIN::CSS' rel="stylesheet" href="../pub/System/ClassificationPlugin/styles.css" media="all" /><!--CLASSIFICATIONPLUGIN::CSS--><link rel='stylesheet' href='../pub/System/SkinTemplates/base.css' media='all' type='text/css' />
<style type="text/css" media="all">
@import url('../pub/System/PatternSkinTheme/layout.css');
@import url('../pub/System/PatternSkinTheme2009/style.css');
@import url('../pub/System/PatternSkinTheme2009/colors.css');
</style>
<link rel='stylesheet' href='../pub/System/PatternSkinTheme2009/column_left.css' media='all' type='text/css' />
<link rel='stylesheet' href='../pub/System/PatternSkinTheme2009/variant_twiki.css' media='all' type='text/css' /><style type="text/css" media="all">
/* Styles that are set using variables */
.patternBookView .foswikiTopRow,
.patternWebIndicator,
.patternWebIndicator a {
background-color:#D0D0D0;
}
#patternTopBarContents { background-image:url(../pub/System/PatternSkin/header5.gif); background-repeat:repeat-x;}
#patternTopBarContents { background-color:#ffffff;}
.patternBookView {
border-color:#D0D0D0;
}
.patternPreviewPage #patternMain {
/* uncomment to set the preview image */
/*background-image:url("/pub/System/PreviewBackground/preview2bg.gif");*/
}
</style>
<style type="text/css" media="all">
@import url("../pub/System/PsiSkin/psicolors.css");
@import url("../pub/System/PsiSkin/psistyle.css");
.foswikiTopic {overflow: hidden;}
</style>
<link rel='stylesheet' href='../pub/System/PatternSkin/print.css' media='all' type='text/css' />
<!--[if IE 7 ]><style type="text/css" media="screen">
.foswikiAttachments,
.foswikiForm,
.foswikiHelp,
.foswikiPreviewArea,
.patternPreviewPage .foswikiForm,
.patternSigLine,
.patternToolBar,
.patternTop,
.patternTopicAction,
#patternSideBarContents .patternLeftBarPersonal,
#patternSideBarContents h2,
#patternSideBarContents li,
#patternTopBarButtons ul {
height:1%;
}
#patternSideBarContents .patternLeftBarPersonal {
width:100%;
}
.foswikiFormStep {
height:100%;
}
#foswikiLogin {
margin-left: 25%;
margin-right: 25%;
}
#foswikiLogin .foswikiFormSteps {
width:auto;
}
#foswikiLogin input[type="text"],
#foswikiLogin input[type="password"] {
width: auto;
}
.patternShadow {
border:10px solid #fff;
margin-top:10px;
margin-bottom:10px;
border:2px solid #ccc;
}
</style><![endif]-->
<!--[if lte IE 9]>
<![endif]-->
<!--[if gt IE 9]><!-->
<!--<![endif]-->
<!--JQUERYPLUGIN-->
<!--JQUERYPLUGIN::MIGRATE-->
<!--JQUERYPLUGIN::FOSWIKI-->
<!--JQUERYPLUGIN::LIVEQUERY-->
<!--JavascriptFiles/foswikiString-->
<!--JavascriptFiles/foswikiPref-->
<!--JavascriptFiles/foswikiForm-->
<!--PatternSkin/pattern-->
<!--JQUERYPLUGIN::METADATA-->
<!--JQUERYPLUGIN::COMMENT-->
<!--JQUERYPLUGIN::FOSWIKI::PREFERENCES-->
<!--JQUERYPLUGIN::CHILI--><link class='head FOOTNOTEPLUGIN_LINKCSS' rel="stylesheet" href="../pub/System/FootNotePlugin/styles.css" type="text/css" media="all" /><!--FOOTNOTEPLUGIN_LINKCSS-->
</head>
<body class="foswikiNoJs patternViewPage patternPrintPage">
<span id="PageTop"></span><div class="foswikiPage"><div id="patternScreen">
<div id="patternPageShadow">
<div id="patternPage">
<div id="patternOuter" class="clear">
<div id="patternFloatWrap">
<div id="patternMain">
<div id="patternMainContents">
<div class="patternContent"><div class="foswikiTopic">
<span id="UserManual"></span>
<h1 id="A_61_61musrfit_61_61_User_Manual"> <code><b>musrfit</b></code> User Manual </h1>
<div class="foswikiToc" id="foswikiTOC"> <ul>
<li> <a href="MusrFit.html#A_61_61musrfit_61_61_User_Manual"> musrfit User Manual </a>
</li> <li> <a href="MusrFit.html#A_1_Introduction"> 1 Introduction </a>
</li> <li> <a href="MusrFit.html#A_2_Available_Executables_44_Configuration_Files_and_their_Basic_Usage"> 2 Available Executables, Configuration Files and their Basic Usage </a> <ul>
<li> <a href="MusrFit.html#A_2.1_musrfit"> 2.1 musrfit </a>
</li> <li> <a href="MusrFit.html#A_2.2_musrview"> 2.2 musrview </a>
</li> <li> <a href="MusrFit.html#A_2.3_musrFT"> 2.3 musrFT </a>
</li> <li> <a href="MusrFit.html#A_2.4_musrt0"> 2.4 musrt0 </a>
</li> <li> <a href="MusrFit.html#A_2.5_musrfit_startup.xml"> 2.5 musrfit_startup.xml </a>
</li> <li> <a href="MusrFit.html#A_2.6_msr2msr"> 2.6 msr2msr </a>
</li> <li> <a href="MusrFit.html#A_2.7_any2many"> 2.7 any2many </a>
</li> <li> <a href="MusrFit.html#A_2.8_dump_header"> 2.8 dump_header </a>
</li></ul>
</li> <li> <a href="MusrFit.html#A_3_Auxiliary_Programs"> 3 Auxiliary Programs </a>
</li> <li> <a href="MusrFit.html#A_4_Description_of_the_msr_File_Format"> 4 Description of the msr File Format </a> <ul>
<li> <a href="MusrFit.html#A_4.1_The_Title"> 4.1 The Title </a>
</li> <li> <a href="MusrFit.html#A_4.2_The_FITPARAMETER_Block"> 4.2 The FITPARAMETER Block </a>
</li> <li> <a href="MusrFit.html#A_4.3_The_THEORY_Block"> 4.3 The THEORY Block </a> <ul>
<li> <a href="MusrFit.html#A_4.3.1_Maps"> 4.3.1 Maps </a>
</li> <li> <a href="MusrFit.html#A_4.3.2_Functions"> 4.3.2 Functions </a>
</li> <li> <a href="MusrFit.html#A_4.3.3_User_Functions"> 4.3.3 User Functions </a>
</li></ul>
</li> <li> <a href="MusrFit.html#A_4.4_The_FUNCTIONS_Block"> 4.4 The FUNCTIONS Block </a>
</li> <li> <a href="MusrFit.html#A_4.5_The_GLOBAL_Block"> 4.5 The GLOBAL Block </a>
</li> <li> <a href="MusrFit.html#A_4.6_The_RUN_Block"> 4.6 The RUN Block </a>
</li> <li> <a href="MusrFit.html#A_4.7_The_COMMANDS_Block"> 4.7 The COMMANDS Block </a>
</li> <li> <a href="MusrFit.html#A_4.8_The_FOURIER_Block"> 4.8 The FOURIER Block </a>
</li> <li> <a href="MusrFit.html#A_4.9_The_PLOT_Block"> 4.9 The PLOT Block </a>
</li> <li> <a href="MusrFit.html#A_4.10_The_STATISTIC_Block"> 4.10 The STATISTIC Block </a>
</li></ul>
</li> <li> <a href="MusrFit.html#A_5_The_Fit_Types"> 5 The Fit Types </a> <ul>
<li> <a href="MusrFit.html#A_5.1_Single_Histogram_Fit"> 5.1 Single Histogram Fit </a>
</li> <li> <a href="MusrFit.html#A_5.2_Single_Histogram_RRF_Fit"> 5.2 Single Histogram RRF Fit </a>
</li> <li> <a href="MusrFit.html#A_5.3_Asymmetry_Fit"> 5.3 Asymmetry Fit </a>
</li> <li> <a href="MusrFit.html#A_5.4_Asymmetry_RRF_Fit"> 5.4 Asymmetry RRF Fit </a>
</li> <li> <a href="MusrFit.html#A_5.5_Negative_Muon_SR_Fit"> 5.5 Negative Muon &mu;SR Fit </a>
</li> <li> <a href="MusrFit.html#A_5.6_Non_45SR_Fit"> 5.6 Non-&mu;SR Fit </a>
</li></ul>
</li> <li> <a href="MusrFit.html#A_6_User_Functions"> 6 User Functions </a> <ul>
<li> <a href="MusrFit.html#A_6.1_User_Function_without_global_user_45function_45object_access"> 6.1 User Function without global user-function-object access </a>
</li> <li> <a href="MusrFit.html#A_6.2_User_Function_with_global_user_45function_45object_access"> 6.2 User Function with global user-function-object access </a>
</li></ul>
</li> <li> <a href="MusrFit.html#A_7_Technical_Description_of_the_musrfit_framework"> 7 Technical Description of the musrfit framework </a>
</li> <li> <a href="MusrFit.html#A_8_Bugtracking"> 8 Bugtracking </a>
</li></ul>
</div>
<span id="IntroDuction"></span>
<h1 id="A_1_Introduction"> 1 Introduction </h1>
<p></p>
<code>musrfit</code> is a software tool for analyzing time-differential &mu;SR data. The program suite is <a href="http://www.gnu.org/philosophy/free-sw.html">free software</a> and licensed under the <a href="http://www.gnu.org/licenses/old-licenses/gpl-2.0.html">GNU GPL version 2</a> or any later version (at your option). It is implemented in <code>C++/<a href="http://root.cern.ch/">ROOT</a></code> and uses the <a href="http://seal.web.cern.ch/seal/MathLibs/Minuit2/html/index.html">MINUIT2</a> libraries developed at <a href="http://www.cern.ch/">CERN</a> for fitting data. Installation instructions for GNU/Linux, MS Windows, and Mac OS X can be found <a href="MusrFitSetup.html">here</a>. For people familiar with the &mu;SR data analysis program <code>WKM</code> there is a short <a href="QuickStart.html">quick start page</a> explaining the major differences between <code>WKM</code> and <code>musrfit</code>. Recent changes of the program are listed in the <a href="http://svn.psi.ch/websvn/filedetails.php?repname=nemu/lem&amp;path=%2Ftrunk%2Fanalysis%2Fmusrfit%2FChangeLog&amp;rev=0&amp;sc=0">ChangeLog</a>.
<p></p>
<h1 id="A_2_Available_Executables_44_Configuration_Files_and_their_Basic_Usage"> 2 Available Executables, Configuration Files and their Basic Usage </h1>
<p></p>
<span id="MusrFit"></span>
<h2 id="A_2.1_musrfit"> 2.1 musrfit </h2>
<code>musrfit</code> is the actual fitting program. It defines the FCN routine passed to <code>MINUIT2</code> and performs &#967;<sup>2</sup> or log-likelihood fitting.
If called from within a shell it accepts several parameters: <dl>
<dt> &lt;msr_file&gt; </dt><dd> filename of the msr input file defining all the details needed for performing a fit to a specified set of data&mdash;the only mandatory parameter
</dd> <dt> -k, --keep-mn2-output </dt><dd> selects the option for keeping the output of <code>MINUIT2</code> including the correlation coefficients between different parameters and renaming the files <code><b>MINUIT2.OUTPUT</b></code> and <code><b>MINUIT2.root</b></code> to <code><b>&lt;msr_file_without_extension&gt;-mn2.output</b></code> and <code><b>&lt;msr_file_without_extension&gt;-mn2.root</b></code>, repectively, e.g. <strong>&lt;msr_file&gt;</strong> = <code><b>8472.msr</b></code> &rarr; <code><b>8472-mn2.output</b></code> , <code><b>8472-mn2.root</b></code>
</dd> <dt> -c, --chisq-only </dt><dd> Instead of fitting the model, <code>musrfit</code> calculates &#967;<sup>2</sup> or max. log-likelihood, maxLH, only once and sends the result to the standard output if called with this option. This is e.g. useful for the adjustment of the initial values of the fit parameters.
</dd> <dt> -t, --title-from-data-file </dt><dd> If this option is given <code>musrfit</code> will replace the title in the <strong>&lt;msr_file&gt;</strong> by the run title in the data file of the first run appearing in a RUN block. In case there is no run title in the data file no substitution is done.
</dd> <dt> -e, --estimateN0 </dt><dd> estimate N0 for single histogram fits.
</dd> <dt> -p, --per-run-block-chisq </dt><dd> will write per run block chisq/maxLH into the msr-file.
</dd> <dt> --dump &lt;type&gt; </dt><dd> is writing a data file with the fit data and the theory; <strong>&lt;type&gt;</strong> can be <strong>ascii</strong> (data in columns) or <strong>root</strong> (data in <code>ROOT</code> histograms)
</dd> <dt> --timeout &lt;timeout_tag&gt; </dt><dd> overwrites the predefined timeout of 3600 sec. &lt;timeout_tag&gt;&lt;=0 means the timeout facility is not enabled. &lt;timeout_tag&gt; &gt; 0, e.g. <code>nn</code> will set the timeout to <code>nn</code> (sec). If during a fit this timeout is reached, <code>musrfit</code> will terminate. This is used to prevent orphan musrfit processes to jam the system.
</dd> <dt> --help </dt><dd> displays a small help notice in the shell explaining the basic usage of the program
</dd> <dt> --version </dt><dd> prints the version number of <code>musrfit</code>
</dd></dl>
<p></p>
If called with a msr input file, e.g.
<pre class="bash">musrfit 8472.msr</pre>
the fit described in the input file will be executed and the results will be written to a mlog output file&mdash;in the example <code><b>8472.mlog</b></code>. When the fitting has terminated the msr file and the mlog file are swapped, so that the resultant parameter values can be found in the msr file and the mlog file contains a copy of the input file. The format of the mlog file is the same as that of the msr file. For a detailed description of the msr file format refer to <a class="foswikiCurrentTopicLink" href="#DescriptionOfTheMsrFileFormat">the corresponding section</a>.
<p></p>
Another example:
<pre class="bash">musrfit -c -e 8472&#95;tf&#95;histo.msr</pre>
This will calculate the chisq/maxLH of the run <code><b>8472</b></code> after estimating the N0.
<p></p>
<span id="MusrView"></span>
<h2 id="A_2.2_musrview"> 2.2 musrview </h2>
<code>musrview</code> is an interactive graphical user interface for the presentation of the analyzed data and the corresponding fits. If called from within a shell it accepts the following parameters: <dl>
<dt> &lt;msr_file&gt; </dt><dd> name of the msr input or output file to be displayed&mdash;this parameter is mandatory
</dd> <dt> --help </dt><dd> displays a small help notice in the shell explaining the basic usage of the program
</dd> <dt> --version </dt><dd> prints the version number of <code>musrview</code>
</dd> <dt> -f, --fourier </dt><dd> will directly present the Fourier transform of the &lt;msr_file&gt; with Fourier options as defined in the &lt;msr_file&gt;.
</dd> <dt> -a, --avg </dt><dd> will directly present the averaged data/Fourier of the &lt;msr_file&gt;.
</dd> <dt> --&lt;graphic_format_extension&gt; </dt><dd> will produce a graphics output file without starting a <code>ROOT</code> session. The filename is based on the name of the <strong>&lt;msr_file&gt;</strong>, e.g. <code><b>8472.msr</b></code> &rarr; <code><b>8472_0.png</b></code> <br> Supported values for <strong>&lt;graphic_format_extension&gt;</strong> are <strong>eps</strong>, <strong>pdf</strong>, <strong>gif</strong>, <strong>jpg</strong>, <strong>png</strong>, <strong>svg</strong>, <strong>xpm</strong>, <strong>root</strong>
</dd> <dt> --ascii </dt><dd> will generate an ascii dump of the data and theory as plotted.
</dd> <dt> --timeout &lt;timeout&gt; </dt><dd> &lt;timeout&gt; given in seconds after which <code>musrview</code> terminates. If &lt;timeout&gt; &lt;= 0, no timeout will take place. Default for &lt;timeout&gt; is 0.
</dd></dl>
<p></p>
If called with a msr file and the <strong>--&lt;graphic_format_extension&gt;</strong> option, e.g.
<pre class="bash">musrview 8472.msr --jpg</pre>
for each PLOT block in the the msr file a file 8472_<b>X</b>.jpg is produced where <b>X</b> counts the PLOT blocks starting from zero.
<p></p>
If called only with a msr file, e.g.
<pre class="bash">musrview 8472.msr</pre>
a <code>ROOT</code> canvas is drawn; it contains all experimental data and fits specified in the PLOT block of the msr file.
For a description of the various plotting types refer to <a class="foswikiCurrentTopicLink" href="#DescriptionOfTheMsrFileFormat">the corresponding section</a>.
<p></p>
Example:
<pre class="bash">musrview 8472&#95;tf&#95;histo.msr -f -a</pre>
will show the averaged Fourier transform of the data of run <code>8472</code>.
<p></p>
Within the drawn canvas all standard actions applicable to <code>ROOT</code> canvases might be performed.
In the menu bar the <strong>Musrfit</strong> menu can be found. From there some <code>musrfit</code>-specific actions might be taken: <dl>
<dt> Fourier </dt><dd> performs the Fourier transformation of the selected data and shows the result
</dd> <dt> Difference </dt><dd> shows the difference between the selected data and the fit
</dd> <dt> Average </dt><dd> toggle between the current view and the averaged data view. Useful if the averaged Fourier power spectrum of lots of detectors shall be shown.
</dd> <dt> Export Data </dt><dd> saves the selected data in a simple multi-column ASCII file
</dd></dl>
<p></p>
Additionally, some functions can be accessed using key-shortcuts: <dl>
<dt> q </dt><dd> quits <code>musrview</code>
</dd> <dt> d </dt><dd> shows the difference between the selected data and the fit
</dd> <dt> f </dt><dd> performs the Fourier transformation of the selected data and shows the result
</dd> <dt> a </dt><dd> show the average of the presented data, e.g. the averaged Fourier power spectra of various detectors.
</dd> <dt> u </dt><dd> reset the plotting range to the area given in the msr file ("unzoom")
</dd> <dt> c </dt><dd> toggles between normal and crosshair cursor
</dd></dl>
<p></p>
<span id="MusrFT"></span>
<h2 id="A_2.3_musrFT"> 2.3 musrFT </h2>
<code>musrFT</code> is an interactive graphical user interface for the presentation of Fourier transforms of raw &#956;SR histograms. It's purpose is to get a quick overview for high TF-field data, as found e.g. at the HAL-9500 instrument at PSI. It Fourier transforms the raw histogram data, i.e. N(t) rather than A(t), and hence shows the lifetime contribution of the muon. This is no problem for large enough fields, but will be a severe problem at very low fields. <code>musrFT</code> is still in its early stage and should be considered a <strong>beta-version</strong>.
<p></p>
If called from within a shell it accepts the following parameters: <dl>
<dt> &lt;msr_files&gt; </dt><dd> msr-file name(s). These msr-files are used for the Fourier transform. It can be a list of msr-files, e.g. <code>musrFT 3110.msr 3111.msr</code>
</dd> <dt> -df, --data-file &lt;data-file&gt; </dt><dd> This allows to feed only &#956;SR data file(s) to perform the Fourier transform. Since the extended &lt;msr-file&gt; information are missing, they will need to be provided by to options, or <code>musrFT</code> tries to guess, based on <code>musrfit_startup.xml</code> settings.
</dd> <dt> --help </dt><dd> display a help and exit
</dd> <dt> --version </dt><dd> output version information and exit
</dd> <dt> -g, --graphic-format &lt;graphic-format-extension&gt; </dt><dd> will produce a graphic-output-file without starting a root session. The name is based either on the &lt;msr-file&gt; or the &lt;data-file&gt;, e.g. 3310.msr -&gt; 3310_0.png. Supported graphic-format-extension: eps, pdf, gif, jpg, png, svg, xpm, root
</dd> <dt> --dump &lt;fln&gt; </dt><dd> rather than starting a root session and showing Fourier graphs of the data, it will output the Fourier data in an ascii file &lt;fln&gt;.
</dd> <dt> -br, --background-range &lt;start&gt; &lt;end&gt; </dt><dd> background interval used to estimate the background to be subtracted before the Fourier transform. &lt;start&gt;, &lt;end&gt; to be given in bins.
</dd> <dt> -bg, --background <list> </dt><dd> gives the background explicit for each histogram.
</dd> <dt> -fo, --fourier-option &lt;fopt&gt; </dt><dd> &lt;fopt&gt; can be 'real', 'imag', 'real+imag', 'power', or 'phase'. If this is not defined (neither on the command line nor in the <code>musrfit_startup.xml</code>). Default will be 'power'.
</dd> <dt> -ap, --apodization &lt;val&gt; </dt><dd> &lt;val&gt; can be either 'none', 'weak', 'medium', 'strong'. Default will be 'none'.
</dd> <dt> -fp, --fourier-power &lt;N&gt; </dt><dd> &lt;N&gt; being the Fourier power, i.e. 2^&lt;N&gt; used for zero padding. Default is -1, i.e. no zero padding will be performed.
</dd> <dt> -u, --units &lt;units&gt; </dt><dd> &lt;units&gt; is used to define the x-axis of the Fourier transform. One may choose between the fields (Gauss) or (Tesla), the frequency (MHz), and the angular-frequency domain (Mc/s). Default will be 'MHz'.
</dd> <dt> -ph, --phase &lt;val&gt; </dt><dd> defines the initial phase &lt;val&gt;. This only is of concern for 'real', 'imag', and 'real+imag'. Default will be 0.0.
</dd> <dt> -fr, --fourier-range &lt;start&gt; &lt;end&gt; </dt><dd> Fourier range. &lt;start&gt;, &lt;end&gt; are interpreted in the units given. Default will be -1.0 for both which means, take the full Fourier range.
</dd> <dt> -tr, --time-range &lt;start&gt; &lt;end&gt; </dt><dd> time domain range to be used for Fourier transform. &lt;start&gt;, &lt;end&gt; are to be given in (&#956;sec). If nothing is given, the full time range found in the data file(s) will be used.
</dd> <dt> --histo &lt;list&gt; </dt><dd> give the &lt;list&gt; of histograms to be used for the Fourier transform. E.g. <code>musrFT -df lem15_his_01234.root --histo 1 3</code>, will only be needed together with the option <code>--data-file</code>. If multiple data file are given, &lt;list&gt; will apply to all data-files given. If <code>--histo</code> is not given, all histos of a data file will be used. &lt;list&gt; can be anything like: 2 3 6, or 2-17, or 1-6 9, etc.
</dd> <dt> -a, --average </dt><dd> show the average of all ALL Fourier transformed data.
</dd> <dt> -ad, --average-per-data-set </dt><dd> show the average of per data set Fourier transformed data.
</dd> <dt> --t0 &lt;list&gt; </dt><dd> A list of t0's can be provided. This in conjunction with <code>--data-file</code> and <code>--fourier-option</code> real allows to get the proper initial phase if t0's are known. If a single t0 for multiple histos is given, it is assume, that this t0 is common to all histos. <strong>Example</strong>: <code>musrFT -df lem15_his_01234.root -fo real --t0 2750 --histo 1 3</code>.
</dd> <dt> -pa, --packing &lt;N&gt; </dt><dd> if &lt;N&gt; (an integer), the time domain data will first be packed/rebinned by &lt;N&gt;.
</dd> <dt> --title &lt;title&gt; </dt><dd> give a global title for the plot.
</dd> <dt> --create-msr-file &lt;fln&gt; </dt><dd> creates a msr-file based on the command line options provided. This will help on the way to a full fitting model.
</dd> <dt> -lc, --lifetimecorrection &lt;fudge&gt; </dt><dd> try to eliminate muon life time decay. Only makes sense for low transverse fields. &lt;fudge&gt; is a tweaking factor (scaling factor for the estimated t0) and should be kept around 1.0.
</dd> <dt> --timeout &lt;timeout&gt; </dt><dd> &lt;timeout&gt; given in seconds after which musrFT terminates. If &lt;timeout&gt; &lt;= 0, no timeout will take place. Default &lt;timeout&gt; is 3600 sec.
</dd></dl>
<p></p> <dl>
<dt> Example 1 </dt><dd> <pre class=bash>musrFT -df tdc&#95;hifi&#95;2014&#95;00153.mdu --title &#34;MnSi&#34; -tr 0 10 -fr 7.0 7.6 -u Tesla --histo 2-17 -a</pre> will take time range from t=0..10&#956;sec, will show the Fourier transform in units of Tesla from B=7.0..7.6 Tesla of the detectors 2-17. Rather than showing the 16 individual Fourier transforms, the average of all Fourier spectra will be shown. t0's will be guessed by the maximum of the time domain histogram (assuming a prompt peak).
</dd> <dt> Example 2 </dt><dd> <pre class=bash>musrFT -df tdc&#95;hifi&#95;2014&#95;00153.mdu -tr 0 10 -fr 7.0 7.6 -u Tesla --histo 2-17 --title &#34;MnSi average, T&#61;50K, B&#61;7.5T&#34; -a -g pdf</pre> as <strong>Example 1</strong> but rather than showing an interactive GUI, the output will be dumped into a pdf-file. The file name will be <code>tdc_hifi_2014_00153.pdf</code>.
</dd> <dt> Example 3 </dt><dd> <pre class=bash>musrFT -df tdc&#95;hifi&#95;2014&#95;00153.mdu -tr 0 10 -fr 7.0 7.6 -u Tesla --histo 2-17 --title &#34;MnSi average, T&#61;50K, B&#61;7.5T&#34; -a --dump MnSi.dat</pre> as <strong>Example 1</strong> but rather than showing an interactive GUI, the output will be dumped into the ascii file <code>MnSi.dat</code>.
</dd></dl>
<p></p>
Within the drawn canvas all standard actions applicable to <code>ROOT</code> canvases might be performed.
In the menu bar the <strong>MusrFT</strong> menu can be found. From there some <code>musrFT</code>-specific actions might be taken: <dl>
<dt> Fourier </dt><dd> allows to switch between different Fourier transform representations 'Power', 'Real', ...
</dd> <dt> Average </dt><dd> toggle between the current view and the averaged data view.
</dd> <dt> Average per Data Set </dt><dd> toggle between the current view and the per data set average view.
</dd> <dt> Export Data </dt><dd> saves the selected data in a simple multi-column ASCII file
</dd></dl>
<p></p>
Additionally, some functions can be accessed using key-shortcuts: <dl>
<dt> q </dt><dd> quits <code>musrFT</code>
</dd> <dt> a </dt><dd> toggle between average of the presented data and single Fourier histos, e.g. the averaged Fourier power spectra of various detectors.
</dd> <dt> d </dt><dd> toggle between average per data set and single Fourier histos, e.g. the averaged Fourier power spectra of various detectors for the different data sets given.
</dd> <dt> u </dt><dd> reset the plotting range to the area given in the msr-file or the form the command line ("unzoom")
</dd> <dt> c </dt><dd> toggles between normal and crosshair cursor
</dd></dl>
<p></p>
<span id="MusrT0"></span>
<h2 id="A_2.4_musrt0"> 2.4 musrt0 </h2>
<code>musrt0</code> is a user interface for the determination of <strong>t0</strong> and the time windows of <strong>data</strong> and <strong>background</strong> needed to be specified in the <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN blocks</a> of the msr file. It can be operated either as an interactive program or in a non-interactive mode. In the non-interactive mode it accepts the following parameters: <dl>
<dt> &lt;msr_file&gt; </dt><dd> name of an msr file
</dd> <dt> -g, --getT0FromPromptPeak [&lt;firstGoodBinOffset&gt;] </dt><dd> tries to estimate <strong>t0</strong> from the <em>prompt peak</em> (maximum entry) in each histogram and writes the corresponding values to the <a class="foswikiCurrentTopicLink" href="#TimeZero">t0 lines</a> in the <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN blocks</a> of the msr file. If an optional number <strong>&lt;firstGoodBinOffset&gt;</strong> is given, the lower limit of the <a class="foswikiCurrentTopicLink" href="#DataRange"><b>data</b> range</a> will be set to <strong>t0 + &lt;firstGoodBinOffset&gt;</strong>.
</dd> <dt> --timeout &lt;timeout&gt; </dt><dd> &lt;timeout&gt; given in seconds after which <code>musrview</code> terminates. If &lt;timeout&gt; &lt;= 0, no timeout will take place. Default for &lt;timeout&gt; is 0.
</dd> <dt> --help </dt><dd> displays a small help notice in the shell explaining the basic usage of the program
</dd> <dt> --version </dt><dd> prints the version number of <code>musrt0</code>
</dd></dl>
<p></p>
The interactive mode of <code>musrt0</code> is started if the program is called with a sole msr-file argument, e.g.
<pre class="bash">musrt0 8472.msr</pre>
Then a <code>ROOT</code> canvas depicting the histogram of the data set mentioned first in the <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN block</a> is drawn in different colors:<br />
<img class='imagePlain imagePlain_center ' src='../pub/MUSR/MusrFit/igp_a66e7f65af64996b805ac54a0eba1f8c_musrt0.png' alt='musrt0' title='musrt0.png' width='626' height='424' style='' /><br />
The colors of the data points represent the choice of the time windows of <strong><span class='foswikiBlueFG'>data (blue)</span></strong> and <strong><span class='foswikiRedFG'>background (red)</span></strong>, as well as <strong><span class='foswikiGreenFG'>t0 (green line)</span></strong>. In order to change these ranges the mouse cross-hair is moved to a channel of choice and one of the following keys is pressed: <dl>
<dt> q </dt><dd> close the currently open histogram and opens the next (see also below)
</dd> <dt> Q </dt><dd> quit <code>musrt0</code> without writing into the msr file
</dd> <dt> z </dt><dd> zoom into the region about the <strong>t0</strong>
</dd> <dt> u </dt><dd> unzoom to the full range
</dd> <dt> t </dt><dd> set <strong>t0</strong>
</dd> <dt> T </dt><dd> automatically set <strong>t0</strong>, i.e. jump to the maximum of the histogram
</dd> <dt> b </dt><dd> set the lower limit of the <strong>background</strong> range
</dd> <dt> B </dt><dd> set the upper limit of the <strong>background</strong> range
</dd> <dt> d </dt><dd> set the lower limit of the <strong>data</strong> range
</dd> <dt> D </dt><dd> set the upper limit of the <strong>data</strong> range
</dd></dl>
When all channels have been set correctly for the first histogram, pressing of the key <strong>q</strong> opens the subsequent histogram listed in a RUN block and the respective channels can be updated there. This procedure is repeated until all histograms given in the RUN blocks are processed.
<p></p>
Using the key <strong>Q</strong>, <code>musrt0</code> can be interrupted. No changes to the msr file are applied in this case.<br>
Closing a window by clicking the <strong>X</strong> button is equivalent to pressing <strong>Q</strong>, i.e. <code>musrt0</code> is simply terminated.
<p></p>
<span id="MusrfitStartupXml"></span>
<h2 id="A_2.5_musrfit_startup.xml"> 2.5 musrfit_startup.xml </h2>
<code><b>musrfit_startup.xml</b></code> is a configuration file located at the <code>musrfit</code> binary path. In this file the following XML tags are allowed to define settings: <dl>
<dt> &lt;data_path&gt;PATH_TO_DATA&lt;/data_path&gt; </dt><dd> add the new path <strong>PATH_TO_DATA</strong> where <code>musrfit</code> and <code>musrview</code> will search for data files
</dd> <dt> &lt;write_per_run_block_chisq&gt;<b>y/n</b>&lt;/write_per_run_block_chisq&gt; </dt><dd> if enabled &chi;<sup>2</sup> for each RUN block will be written to the <a class="foswikiCurrentTopicLink" href="#TheStatisticBlock">STATISTIC block</a> of the resulting <code>msr</code> file. Additionally, in case a &chi;<sup>2</sup> <a class="foswikiCurrentTopicLink" href="#SingleHistogramFit">single-histogram fit</a> is done, also <a href="http://en.wikipedia.org/wiki/Pearson's_chi-square_test">Pearson's &chi;<sup>2</sup></a> will be added.
</dd> <dt> &lt;fourier_settings&gt;&lt;/fourier_settings&gt; </dt><dd> set the default parameters for the Fourier transform in <code>musrview</code>. For further details refer to <a class="foswikiCurrentTopicLink" href="#TheFourierBlock">the description of the msr file</a>. <dl>
<dt> &lt;units&gt;UNITS&lt;/units&gt; </dt><dd> specify the units of the frequency or field-domain. Valid units are <strong>Gauss</strong>, <strong>MHz</strong> and <strong>Mc/s</strong> (inside a &lt;fourier_settings&gt; environment)
</dd> <dt> &lt;fourier_power&gt;<i>n</i>&lt;/fourier_power&gt; </dt><dd> specify the number of points 2<sup><b><i>n</i></b></sup> (<b><i>n</i></b> &lt; 21) to be used for the Fourier transform (inside a &lt;fourier_settings&gt; environment)
</dd> <dt> &lt;apodization&gt;APOD&lt;/apodization&gt; </dt><dd> set the default apodization method. Valid apodizations are <strong>none</strong>, <strong>weak</strong>, <strong>medium</strong> and <strong>strong</strong> (inside a &lt;fourier_settings&gt; environment)
</dd> <dt> &lt;plot&gt;PLOT&lt;/plot&gt; </dt><dd> specify which part of the Fourier transform is plotted by default. You can choose between <strong>real</strong>, <strong>imag</strong>, <strong>real_and_imag</strong>, <strong>power</strong> and <strong>phase</strong> (inside a &lt;fourier_settings&gt; environment)
</dd> <dt> &lt;phase&gt;PH&lt;/phase&gt; </dt><dd> set the initial phase shift <strong>PH</strong> (in degrees) of the data to be Fourier transformed (inside a &lt;fourier_settings&gt; environment)
</dd> <dt> &lt;phase_increment&gt;PHINCR&lt;/phase_increment&gt; </dt><dd> change the default value of the phase increment (in degrees) used for the phase optimization to <strong>PHINCR</strong> (inside a &lt;fourier_settings&gt; environment)
</dd></dl>
</dd> <dt> &lt;root_settings&gt;&lt;/root_settings&gt; </dt><dd> change the default <code>ROOT</code> settings <dl>
<dt> &lt;marker_list&gt;&lt;/marker_list&gt; </dt><dd> specify the order in which <code>musrview</code> should use markers when plotting data (inside a &lt;root_settings&gt; environment) <dl>
<dt> &lt;marker&gt;X&lt;/marker&gt; </dt><dd> use the <code>ROOT</code> marker number <strong>X</strong> (inside a &lt;marker_list&gt; environment)
</dd></dl>
</dd> <dt> &lt;color_list&gt;&lt;/color_list&gt; </dt><dd> specify the order in which <code>musrview</code> should use colors when plotting data (inside a &lt;root_settings&gt; environment) <dl>
<dt> &lt;color&gt;<span class='foswikiRedFG'>R</span>,<span class='foswikiGreenFG'>G</span>,<span class='foswikiBlueFG'>B</span>&lt;/color&gt; </dt><dd> use the RGB coded color (inside a &lt;color_list&gt; environment)
</dd></dl>
</dd></dl>
</dd></dl>
<p></p>
An example would look like:
<pre class="html">
&#60;?xml version&#61;&#34;1.0&#34; encoding&#61;&#34;UTF-8&#34;?&#62;
&#60;musrfit xmlns&#61;&#34;https://intranet.psi.ch/MUSR/MusrFit&#34;&#62;
&#60;data&#95;path&#62;/mnt/data/nemu/his&#60;/data&#95;path&#62;
&#60;write&#95;per&#95;run&#95;block&#95;chisq&#62;y&#60;/write&#95;per&#95;run&#95;block&#95;chisq&#62;
&#60;fourier&#95;settings&#62;
&#60;units&#62;Gauss&#60;/units&#62;
&#60;fourier&#95;power&#62;0&#60;/fourier&#95;power&#62;
&#60;apodization&#62;none&#60;/apodization&#62;
&#60;plot&#62;real&#95;and&#95;imag&#60;/plot&#62;
&#60;phase&#62;0.0&#60;/phase&#62;
&#60;phase&#95;increment&#62;1.0&#60;/phase&#95;increment&#62;
&#60;/fourier&#95;settings&#62;
&#60;root&#95;settings&#62;
&#60;marker&#95;list&#62;
&#60;!-- Root marker numbers --&#62;
&#60;marker&#62;24&#60;/marker&#62;
&#60;marker&#62;25&#60;/marker&#62;
&#60;marker&#62;26&#60;/marker&#62;
&#60;marker&#62;27&#60;/marker&#62;
&#60;/marker&#95;list&#62;
&#60;color&#95;list&#62;
&#60;!-- Color as RGB coded string --&#62;
&#60;color&#62;0,0,0&#60;/color&#62;
&#60;color&#62;255,0,0&#60;/color&#62;
&#60;color&#62;0,255,0&#60;/color&#62;
&#60;color&#62;0,0,255&#60;/color&#62;
&#60;/color&#95;list&#62;
&#60;/root&#95;settings&#62;
&#60;/musrfit&#62;
</pre>
<p></p>
<span id="Msr2Msr"></span>
<h2 id="A_2.6_msr2msr"> 2.6 msr2msr </h2>
<code>msr2msr</code> is a small utility for converting existing <code>WKM</code> msr files into <code>musrfit</code> msr files. It accepts the following parameters: <dl>
<dt> &lt;msr_file_in&gt; </dt><dd> input <code>WKM</code> msr file (mandatory first parameter)
</dd> <dt> &lt;msr_file_out&gt; </dt><dd> converted output <code>musrfit</code> msr file (mandatory second parameter)
</dd> <dt> --help </dt><dd> displays a small help notice in the shell explaining the basic usage of the program
</dd></dl>
<p></p>
A typical example then looks like:
<pre class="bash">msr2msr 8472-WKM.msr 8472-musrfit.msr</pre>
If the input file has already the <code>musrfit</code> msr file structure, the output file will be just a copy of the input file.
<p></p>
<span id="Any2Many"></span>
<h2 id="A_2.7_any2many"> 2.7 any2many </h2>
<code>any2many</code> is a muSR data file converter. Currently different facilities (PSI, TRIUMF, ISIS, J-PARC) are saving their muSR data files in different formats, or even worse some instruments are using other muSR data formats than others. The aim of <code>any2many</code> is that these files can be converted into each other. Of course only a subset of header information can be converted.
<p></p>
Currently <code>any2many</code> can convert the following muSR data file formats: <ul>
<li> <strong>input formats:</strong> <code>MusrRoot</code>, <code>PSI-BIN</code> (PSI bulk), <code>ROOT</code> (PSI LEM), <code>MUD</code> (TRIUMF), <code>NeXus IDF1</code> and <code>NeXus IDF2</code> (ISIS), PSI-MDU (PSI bulk <em>internal only</em>), <code>WKM</code> (outdated ascii file format).
</li> <li> <strong>output formats:</strong> <code>MusrRoot</code>, <code>PSI-BIN</code>, <code>ROOT</code>, <code>MUD</code>, <code>NeXus1-HDF4</code>, <code>NeXus1-HDF5</code>, <code>NeXus1-XML</code>, <code>NeXus2-HDF4</code>, <code>NeXus2-HDF5</code>, <code>NeXus2-XML</code>, <code>WKM</code>, <code>ASCII</code>
</li></ul>
<p></p>
Since the goal was to create a very flexible converter tool, it has ample of options which will listed below, followed by many examples showing how to use it. The options: <dl>
<dt> -f &lt;filenameList-input&gt; </dt><dd> where <code>&lt;filenameList-input&gt;</code> is a space separated list of file names (not starting with a '-'), e.g. <code>2010/lem10_his_0111.root 2010/lem10_his_0113.root</code>.
</dd> <dt> -o &lt;outputFileName&gt; </dt><dd> this option allows to given an output-file-name for the converted file. This option <em>only</em> makes sense if <code>&lt;filenameList-input&gt;</code> is a single input-file-name!
</dd> <dt> -r &lt;runList-input&gt; </dt><dd> where <code>&lt;runList-input&gt;</code> is a list of run numbers separated by spaces of the form: <code>&lt;run1&gt; &lt;run2&gt; &lt;run3&gt;</code> etc., or a sequence of runs <code>&lt;runStart&gt;-&lt;runEnd&gt;</code>, e.g. <code>111-123</code>. This option cannot be combined with <code>-f</code> and vice versa.
</dd> <dt> -t &lt;in-template&gt; &lt;out-template&gt; </dt><dd> where <code>&lt;in-/out-template&gt;</code> are templates to generate real file names from run numbers. The following template tags can be used: <code>[yy]</code> for year, and <code>[rrrr]</code> for the run number. If the run number tag is used, the number of <code>'r'</code> will give the number of digits used with leading zeros, e.g. <code>[rrrrrr]</code> and run <code>123</code> will result in <code>000123</code>. Similarly <code>[yyyy]</code> will result in something like <code>1999</code>, whereas <code>[yy]</code> into something like <code>99</code>. For more details best check the examples below.
</dd> <dt> -c &lt;in-Format&gt; &lt;out-Format&gt; </dt><dd> this is used to tell <code>any2many</code> what is the input-file-format and into which output-file-format the data shall be converted. The possible input-/output-file-formats are listed above.
</dd> <dt> -h <histo-group-list> </dt><dd> This option is for <a href="MusrRoot.html">MusrRoot</a> input files only! Select the the histo groups to be exported. <histo-group-list> is a space separated list of the histo group, e.g. -h 0, 20 will try to export the histo 0 (NPP) and 20 (PPC). A histo-group is defined via the <code>RedGreen</code> offset in the <code>MusrRoot</code> file format. It is used e.g. in red/green mode measurements. If this option is omitted in a conversion from <code>MusrRoot</code> to something, the first group will exported only!
</dd> <dt> -p &lt;output-path&gt; </dt><dd> where <code>&lt;output-path&gt;</code> is the output path for the converted files. If no <code>&lt;output-path&gt;</code> is given, the current directory will be used, unless the option <code>-s</code> is used.
</dd> <dt> -y &lt;year&gt; </dt><dd> here a <code>&lt;year&gt;</code> in the form <code>yy</code> or <code>yyyy</code> can be given. If this is the case, any automatic file name generation which needs a year will use this given one.
</dd> <dt> -s </dt><dd> with this option the output data file will be sent to the stdout. It is intended to be used together with web applications.
</dd> <dt> -rebin &lt;n&gt; </dt><dd> where <code>&lt;n&gt;</code> is the number of bins to be packed/rebinned.
</dd> <dt> -z [g|b] &lt;compressed&gt; </dt><dd> where <code>&lt;compressed&gt;</code> is the output file name (without extension) of the compressed data collection, and <code>'g'</code> will result in <code>.tar.gz</code>, and <code>'b'</code> in <code>.tar.bz2</code> files.
</dd> <dt> --help </dt><dd> displays a help notice in the shell explaining the basic usage of the program.
</dd> <dt> --version </dt><dd> shows the current <code>SVN</code> version of <code>any2many</code>.
</dd></dl>
<p></p>
If the template option <code>'-t'</code> is absent, the output file name will be generated according to the input data file name (not possible with <code>&lt;runList-input&gt;</code>), and the output data format.
<p></p>
Here now a couple of examples which should help to understand the switches.
<p></p>
<pre class="bash">any2many -f 2010/lem10&#95;his&#95;0123.root -c ROOT ASCII -rebin 25</pre>
Will take the LEM ROOT file <code>'2010/lem10_his_0123.root'</code> rebin it by 25 and convert it to ASCII. The output file name will be <code>lem10_his_0123.ascii</code>, and the file will be saved in the current directory. The data in <code>lem10_his_0123.ascii</code> are written in columns.
<p></p>
<pre class="bash">any2many -f 2010/lem10&#95;his&#95;0123.root -c ROOT NEXUS2-HDF5 -o 2010/lem10&#95;his&#95;0123&#95;v2.nxs</pre>
Will take the LEM ROOT file <code>'2010/lem10_his_0123.root'</code> and convert it to <a href="https://intranet.psi.ch/wiki/bin/edit/MUSR/NeXus?topicparent=MUSR.MusrFit" rel="nofollow" title="Create this topic" class="newlink">NeXus</a> IDF V2. The output file name will be <code>lem10_his_0123_v2.nxs</code>, and will be saved in the current directory.
<p></p>
<pre class="bash">any2many -r 123 137 -c PSI-BIN MUD -t d&#91;yyyy&#93;/deltat&#95;tdc&#95;gps&#95;&#91;rrrr&#93;.bin &#91;rrrrrr&#93;.msr -y 2001</pre>
Will take the run 123 and 137, will generate the input file names: <code>d2001/deltat_tdc_gps_0123.bin</code> and <code>d2001/deltat_tdc_gps_0137.bin</code>, read these files, and convert them to the output files with names <code>000123.msr</code> and <code>000137.msr</code>, respectively.
<p></p>
<pre class="bash">any2many -r 100-117 -c PSI-MDU ASCII -t d&#91;yyyy&#93;/deltat&#95;tdc&#95;alc&#95;&#91;rrrr&#93;.mdu &#91;rrr&#93;.ascii -y 2011 -s</pre>
Will take the runs 100 through 117 and convert the <code>PSI-MDU</code> input files to <code>ASCII</code> output and instead of saving them into a file, they will be spit to the standard output.
<p></p>
<pre class="bash">any2many -r 100-117 -c NEXUS ROOT -t d&#91;yyyy&#93;/psi&#95;gps&#95;&#91;rrrr&#93;.NXS psi&#95;&#91;yyyy&#93;&#95;gps&#95;&#91;rrrr&#93;.root -z b psi&#95;gps&#95;run&#95;100to117</pre>
Will take the runs 100 through 117 and convert the <code>NeXus</code> input files to <code>ROOT</code> output. Afterwards these new files will be collected in a compressed archive <code>psi_gps_run_100to117.tar.bz2</code>.
<p></p>
<pre class="bash">any2many -f 2010/lem10&#95;his&#95;0123.root 2010/lem10&#95;his&#95;0012.root -c ROOT ROOT -rebin 25</pre>
Will read the two files <code>'2010/lem10_his_0123.root'</code> and <code>'2010/lem10_his_0012.root'</code>, rebin them with 25 and export them as <code>LEM ROOT</code> files with adding <code>rebin25</code> to the name, e.g. <code>2010/lem10_his_0123_rebin25.root</code>.
<p></p>
<span id="DumpHeader"></span>
<h2 id="A_2.8_dump_header"> 2.8 dump_header </h2>
<code>dump_header</code> is a little program which tries to read a &#956;SR data file and sends the relevant information (required header info, start of the histos, etc.) to the standard output. Currently the following &#956;SR data file formats are supported: <code>MusrROOT</code>, <code>ROOT</code> (old LEM format), <code>PSI-BIN</code>, <code>PSI-MDU</code>, <code>NeXus</code> (IDF1 and IDF2), <code>MUD</code>, and <code>WKM</code>.
<p></p> <dl>
<dt> -rn, --runNo &lt;runNo&gt; </dt><dd> run number of the header to be dumped.
</dd> <dt> -fn, --fileName &lt;fileName&gt; </dt><dd> muSR data file name.
</dd> <dt> -ff, --fileFormat &lt;fileFormat&gt; </dt><dd> where &lt;fileFormat&gt; is one of the above listed ones.
</dd> <dt> -y, --year &lt;year&gt; </dt><dd> &lt;year&gt; has to be a 4 digit value, e.g. 2005, if provided it is used to generate the file name for the given &lt;runNo&gt;, otherwise the current year is used. If a file name is given, this option has no effect.
</dd> <dt> -s, --summary </dt><dd> this option is used for LE-muSR data sets only. It will, additionally to the header information, print the summary file content.
</dd> <dt> --psi-bulk &lt;opt&gt; </dt><dd> where &lt;opt&gt; consists of two items: (i) <code>pta</code> or <code>tdc</code>, (ii) the instrument name, i.e. <code>gps</code>, <code>ltf</code>, <code>dolly</code>, <code>gpd</code>, or <code>hifi</code>. This is needed in combination with the file formats <code>PSI-BIN</code> and <code>PSI-MDU</code> when providing a run number.
</dd> <dt> -h, --help </dt><dd> will show a short help.
</dd> <dt> -v, --version </dt><dd> will print the current version.
</dd></dl>
<p></p>
Examples:
<pre class="bash">dump&#95;header -fn tdc&#95;hifi&#95;2015&#95;00123.mdu -y 2015</pre>
will dump the header information for the run <code>123</code> of the <code>HAL-9500</code> instrument of the year <code>2015</code>.
<p></p>
<pre class="bash">dump&#95;header -rn 123 -ff PSI-MDU --psi-bulk tdc hifi -y 2015</pre>
the same as the previous example, except that the file name is constructed via the number and the additionally provided information.
<p></p>
<pre class="bash">dump&#95;header -rn 3456 -s</pre>
Will dump the <code>LEM</code> header information of run <code>3456</code> including the content of the run summary file.
<p></p>
<span id="AuxiliaryPrograms"></span>
<h1 id="A_3_Auxiliary_Programs"> 3 Auxiliary Programs </h1>
Additionally to the programs mentioned above editor front ends called <code><a href="MusrGui.html">musrgui/musredit</a></code> and another tool named <code><a href="Msr2Data.html">msr2data</a></code> are available. The purpose of <code>msr2data</code> is to process multiple msr files with the same parameters and to summarize the fitting results either in a <strong>DB</strong> or a <strong>column ASCII</strong> file. Also, new msr files can be generated from a template. For details refer to its <a href="Msr2Data.html">manual</a>.
<p></p>
<strong><span class='foswikiRedFG'>Before going to use <code>musrgui</code> / <code>musredit</code> it is strongly recommended to read this manual first!</span></strong>
<p></p>
<span id="DescriptionOfTheMsrFileFormat"></span>
<h1 id="A_4_Description_of_the_msr_File_Format"> 4 Description of the msr File Format </h1>
The programs are using an input file to control their action. This input file has the extension .msr (msr file). The msr file is built up from different blocks. Each block starts with a keyword and is&mdash;with the exception of the title&mdash;terminated by an empty line. Comments start with the character <strong>#</strong>. The various input blocks are described below.
<p></p>
<span id="TheTitle"></span>
<h2 id="A_4.1_The_Title"> 4.1 The Title </h2>
The first line of the msr file is the title line. Unlike all the other input blocks, it does not start with a block keyword. It is just a simple text line, in which any information can be placed. The title text will be used in the graphical representation of the data as a headline.
<p></p>
<span id="TheFitparameterBlock"></span>
<h2 id="A_4.2_The_FITPARAMETER_Block"> 4.2 The FITPARAMETER Block </h2>
The FITPARAMETER block is used to define the fit parameters in a <code>MINUIT</code> typical style. There
are various possible parameter definitions which are listed here:
<pre>
1. &#60;no&#62; &#60;name&#62; &#60;value&#62; &#60;step&#62;
2. &#60;no&#62; &#60;name&#62; &#60;value&#62; &#60;step&#62; &#60;lower&#95;boundary&#62; &#60;upper&#95;boundary&#62;
3. &#60;no&#62; &#60;name&#62; &#60;value&#62; &#60;step&#62; &#60;pos&#95;error&#62; &#60;lower&#95;boundary&#62; &#60;upper&#95;boundary&#62;
</pre>
where <strong>&lt;no&gt;</strong> is the parameter number, <strong>&lt;name&gt;</strong> is the parameter name <a name="FootNote1text"></a><span class="FootNoteTextLink" title=" a standard string without whitespace "><a class="foswikiCurrentTopicLink" href="#FootNote1note">(1)</a></span>, <strong>&lt;value&gt;</strong> is the initial guess of the parameter, <strong>&lt;step&gt;</strong> the inital step width, <strong>&lt;lower/upper_boundary&gt;</strong> is the lower/upper boundary for the parameter <a name="FootNote2text"></a><span class="FootNoteTextLink" title=" According to the &#61;MINUIT&#61; manual this should be avoided whenever possible&#33; "><a class="foswikiCurrentTopicLink" href="#FootNote2note">(2)</a></span>.
<p></p>
In the output file, <strong>&lt;value&gt;</strong> will be the <code>MINUIT</code> fit value, <strong>&lt;step&gt;</strong> will contain the error estimate (or the negative error estimate if <code>MINOS</code> was successfully used), <strong>&lt;pos_error&gt;</strong> will have the value <strong>none</strong> if <code>MINOS</code> has not been used, otherwise it will show the positive error estimate.
<p></p>
A typical example looks like this:
<pre>
FITPARAMETER
# No Name Value Step Pos&#95;Error Boundaries
1 alpha 1 0.02 none 0 1.8
2 asy 0.1042 0.004713 none 0 0.33
3 phase 15 1.0 none
4 freq 0.9 0.0379 none
5 rate 0.03 0.00579 none
</pre>
<p></p>
There is also the possibility to constrain the parameters to semi-defined intervals (like par &gt; a or par &lt; b). The syntax is as follows:
<pre>
FITPARAMETER
# No Name Value Step Pos&#95;Error Boundaries
# Specify only a lower boundary for the parameter
1 Asy1 0.04501 -0.00208 0.00211 0 none
# Specify only an upper boundary for the parameter
2 Rate1 0.14245 -0.02501 0.02279 none 10
# Specify lower and upper boundaries for the parameter
3 Asy2 0.14501 -0.00208 0.00211 0 0.33
# Do not specify boundaries at all
4 Field2 343.212 -2.27960 2.27885
5 Rate2 0.42045 -0.02501 0.02279 none none
</pre>
<p></p>
<p></p>
<p></p>
Notes
<p></p>
<a name="FootNote1note"></a><span class="FootNoteLabel"><a href="#FootNote1text"><b>1</b></a></span>: <span class="FootNote"> a standard string without whitespace </span>
<p></p>
<a name="FootNote2note"></a><span class="FootNoteLabel"><a href="#FootNote2text"><b>2</b></a></span>: <span class="FootNote"> According to the <code>MINUIT</code> manual this should be avoided whenever possible! </span>
<p></p>
<p></p>
<p></p>
<hr />
<p></p>
<span id="TheTheoryBlock"></span>
<h2 id="A_4.3_The_THEORY_Block"> 4.3 The THEORY Block </h2>
The THEORY block is used to define the fit function. There is a set of predefined functions available. It is also possible to use externally defined functions. How to use them will be explained afterwards, here only the predefined functions are described.
<p></p>
<span id="TheoryTable"></span>
<table border="1" class="foswikiTable" rules="none">
<thead>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<th class="foswikiTableCol0 foswikiFirstCol"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=0;table=1;up=0#sorted_table" rel="nofollow" title="Sort by this column">name</a> </th>
<th class="foswikiTableCol1"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=1;table=1;up=0#sorted_table" rel="nofollow" title="Sort by this column">abbreviation</a> </th>
<th class="foswikiTableCol2"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=2;table=1;up=0#sorted_table" rel="nofollow" title="Sort by this column">parameters</a> </th>
<th class="foswikiTableCol3"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=3;table=1;up=0#sorted_table" rel="nofollow" title="Sort by this column">mathematical expression</a> </th>
<th class="foswikiTableCol4 foswikiLastCol" rowspan="6"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=4;table=1;up=0#sorted_table" rel="nofollow" title="Sort by this column">reference</a> </th>
</tr>
</thead>
<tbody>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> const </td>
<td class="foswikiTableCol1"> c </td>
<td class="foswikiTableCol2"> <img alt="\mathrm{const}\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_819a4fe998dacad865a00b643564873e.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\mathrm{const}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b2a023c64c8d8b460f929d404730ec8a.png" /> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> asymmetry </td>
<td class="foswikiTableCol1"> a </td>
<td class="foswikiTableCol2"> <img alt="A\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_facd1d42ae8b62aa1043316d525d3af4.png" /> </td>
<td class="foswikiTableCol3"> <img alt="A" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_be8817308ad9fe2fa99fe00abdaba828.png" /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> simplExpo </td>
<td class="foswikiTableCol1"> se </td>
<td class="foswikiTableCol2"> <img alt="\lambda\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_020e973cf5b1293c76cb3ecef5a269f8.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\exp\left(-\lambda t\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6a34fe0c88c79d8a90defad81f36da6d.png" /> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> generExpo </td>
<td class="foswikiTableCol1"> ge </td>
<td class="foswikiTableCol2"> <img alt="\lambda\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_020e973cf5b1293c76cb3ecef5a269f8.png" />, <img alt="\beta\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_aad467dd15ac57481f24ada5fbe5d85f.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\exp\left&#91;-\left(\lambda t\right)^{\beta}\right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_8b46c96933bc8a754fde5aa613d0e806.png" /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> simpleGss </td>
<td class="foswikiTableCol1"> sg </td>
<td class="foswikiTableCol2"> <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\exp\left&#91;-\frac{1}{2}\left(\sigma t\right)^2\right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_d284ec460bdb1abb64e7f9156d87d659.png" /> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> statGssKT </td>
<td class="foswikiTableCol1"> stg </td>
<td class="foswikiTableCol2"> <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{3} + \frac{2}{3} \left&#91;1-(\sigma t)^2\right] \exp\left&#91;-\frac{1}{2}\left(\sigma t\right)^2\right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_1f1b2becd9ba1bee3b5d7f897bd8db7e.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> statGssKTLF </td>
<td class="foswikiTableCol1"> sgktlf </td>
<td class="foswikiTableCol2"> <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" /> </td>
<td class="foswikiTableCol3"> <img alt="G&#95;{\mathrm{G,LF}}(t) \equiv 1-\frac{2\sigma^2}{(2\pi\nu)^2}\left&#91;1-\exp\left(-\frac{1}{2}\sigma^2t^2\right)\cos(2\pi\nu t)\right]+\frac{2\sigma^4}{(2\pi\nu)^3}\int^t&#95;0 \exp\left(-\frac{1}{2}\sigma^2\tau^2\right)\sin(2\pi\nu\tau)\mathrm{d}\tau" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e9a0c0aa5d84cb4ea67265a3b06b9af5.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote3text"></a><span class="FootNoteTextLink" title=" R&#46; S&#46; Hayano _et al&#46;_&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;20&#46;850&#93;&#91;Phys&#46; Rev&#46; B &#42;20&#42; &#40;1979&#41; 850&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote3note">(4)</a></span> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> dynGssKTLF </td>
<td class="foswikiTableCol1"> dgktlf </td>
<td class="foswikiTableCol2"> <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" />, <img alt="\Gamma\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f87b1352f663a35bf263bc7e9a214ca3.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{2\pi \imath}\int&#95;{\gamma-\imath\infty}^{\gamma+\imath\infty} \frac{f&#95;{\mathrm{G}}(s+\Gamma)}{1-\Gamma f&#95;{\mathrm{G}}(s+\Gamma)} \exp(s t) \mathrm{d}s,\mathrm{where}\,f&#95;{\mathrm{G}}(s)\equiv \int&#95;0^{\infty}G&#95;{\mathrm{G,LF}}(t)\exp(-s t) \mathrm{d}t" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_cb688f85a062f09bfaff5cf9144860a9.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote4text"></a><span class="FootNoteTextLink" title=" R&#46; S&#46; Hayano _et al&#46;_&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;20&#46;850&#93;&#91;Phys&#46; Rev&#46; B &#42;20&#42; &#40;1979&#41; 850&#93;&#93;&#59; P&#46; Dalmas de R&#38;eacute&#59;otier and A&#46; Yaouanc&#44; &#91;&#91;http&#58;&#47;&#47;dx&#46;doi&#46;org&#47;10&#46;1088&#47;0953&#45;8984&#47;4&#47;18&#47;020&#93;&#91;J&#46; Phys&#46;&#58; Condens&#46; Matter &#42;4&#42; &#40;1992&#41; 4533&#93;&#93;&#59; A&#46; Keren&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;50&#46;10039&#93;&#91;Phys&#46; Rev&#46; B &#42;50&#42; &#40;1994&#41; 10039&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote4note">(5)</a></span> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> statExpKT </td>
<td class="foswikiTableCol1"> sekt </td>
<td class="foswikiTableCol2"> <img alt="\lambda\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_020e973cf5b1293c76cb3ecef5a269f8.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{3} + \frac{2}{3} \left&#91;1-\lambda t\right] \exp\left(-\lambda t\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6466a97e4b7c510909bffce51d31c4b9.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote5text"></a><span class="FootNoteTextLink" title=" Y&#46; J&#46; Uemura _et al&#46;_&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;31&#46;546&#93;&#91;Phys&#46; Rev&#46; B &#42;31&#42; &#40;1985&#41; 546&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote5note">(6)</a></span> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> statExpKTLF </td>
<td class="foswikiTableCol1"> sektlf </td>
<td class="foswikiTableCol2"> <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="a\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_26a5ae8799badcc3bcbe1823265a9053.png" /> </td>
<td class="foswikiTableCol3"> <img alt="1-\frac{a}{2\pi\nu}j&#95;1(2\pi\nu t)\exp\left(-at\right)-\left(\frac{a}{2\pi\nu}\right)^2 \left&#91;j&#95;0(2\pi\nu t)\exp\left(-at\right)-1\right]-a\left&#91;1+\left(\frac{a}{2\pi\nu}\right)^2\right]\int^t&#95;0 \exp\left(-a\tau\right)j&#95;0(2\pi\nu\tau)\mathrm{d}\tau \equiv G&#95;{\mathrm{L,LF}}(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_df4770dd7b14577f14410b4f7ab59721.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote6text"></a><span class="FootNoteTextLink" title=" Y&#46; J&#46; Uemura _et al&#46;_&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;31&#46;546&#93;&#91;Phys&#46; Rev&#46; B &#42;31&#42; &#40;1985&#41; 546&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote6note">(7)</a></span> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> dynExpKTLF </td>
<td class="foswikiTableCol1"> dektlf </td>
<td class="foswikiTableCol2"> <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="a\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_26a5ae8799badcc3bcbe1823265a9053.png" />, <img alt="\Gamma\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f87b1352f663a35bf263bc7e9a214ca3.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{2\pi \imath}\int&#95;{\gamma-\imath\infty}^{\gamma+\imath\infty} \frac{f&#95;{\mathrm{L}}(s+\Gamma)}{1-\Gamma f&#95;{\mathrm{L}}(s+\Gamma)} \exp(s t) \mathrm{d}s,\mathrm{where}\,f&#95;{\mathrm{L}}(s)\equiv \int&#95;0^{\infty}G&#95;{\mathrm{L,LF}}(t)\exp(-s t) \mathrm{d}t" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c5c6dea10611dae1d470a5615869073a.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote7text"></a><span class="FootNoteTextLink" title=" R&#46; S&#46; Hayano _et al&#46;_&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;20&#46;850&#93;&#91;Phys&#46; Rev&#46; B &#42;20&#42; &#40;1979&#41; 850&#93;&#93;&#59; P&#46; Dalmas de R&#38;eacute&#59;otier and A&#46; Yaouanc&#44; &#91;&#91;http&#58;&#47;&#47;dx&#46;doi&#46;org&#47;10&#46;1088&#47;0953&#45;8984&#47;4&#47;18&#47;020&#93;&#91;J&#46; Phys&#46;&#58; Condens&#46; Matter &#42;4&#42; &#40;1992&#41; 4533&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote7note">(8)</a></span> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> combiLGKT </td>
<td class="foswikiTableCol1"> lgkt </td>
<td class="foswikiTableCol2"> <img alt="\lambda\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_020e973cf5b1293c76cb3ecef5a269f8.png" />, <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{3}+\frac{2}{3}\left(1-\sigma^2 t^2-\lambda t\right)\exp\left(-\frac{\sigma^2t^2}{2}-\lambda t\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_95da508ef32b516260a14999eaf14f46.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> strKT </td>
<td class="foswikiTableCol1"> skt </td>
<td class="foswikiTableCol2"> <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" />, <img alt="\beta\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_aad467dd15ac57481f24ada5fbe5d85f.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{3}+\frac{2}{3}\left&#91;1-(\sigma t)^\beta\right] \exp\left&#91;-(\sigma t)^\beta / \beta \right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_63b1658426cdac24a0730149c3b5ea80.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote8text"></a><span class="FootNoteTextLink" title=" M&#46;R&#46; Crook and R&#46; Cywinski&#44; &#91;&#91;http&#58;&#47;&#47;dx&#46;doi&#46;org&#47;10&#46;1088&#47;0953&#45;8984&#47;9&#47;5&#47;018&#93;&#91;J&#46; Phys&#46;&#58; Condens&#46; Matter &#42;9&#42; &#40;1997&#41; 1149&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote8note">(9)</a></span> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> spinGlass </td>
<td class="foswikiTableCol1"> spg </td>
<td class="foswikiTableCol2"> <img alt="\lambda\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_020e973cf5b1293c76cb3ecef5a269f8.png" />, <img alt="\gamma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_8aad0e0c2c1f20995c483933a896ca0d.png" />, <img alt="q\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_16b8c518c1e529e6c963929287ef3a56.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{3}\exp\left(-\sqrt{\frac{4\lambda^2(1-q)t}{\gamma}}\right)+\frac{2}{3}\left(1-\frac{q\lambda^2t^2}{\sqrt{\frac{4\lambda^2(1-q)t}{\gamma}+q\lambda^2t^2}}\right)\exp\left(-\sqrt{\frac{4\lambda^2(1-q)t}{\gamma}+q\lambda^2t^2}\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e35c4217aa50607f25e6eadf9f27f874.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> rdAnisoHf </td>
<td class="foswikiTableCol1"> rahf </td>
<td class="foswikiTableCol2"> <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\lambda\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_020e973cf5b1293c76cb3ecef5a269f8.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{6}\left(1-\frac{\nu t}{2}\right)\exp\left(-\frac{\nu t}{2}\right)+\frac{1}{3}\left(1-\frac{\nu t}{4}\right)\exp\left(-\frac{\nu t + 2.44949\lambda t}{4}\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f91ff8255a7b8a99c5eefcb2c29f9262.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote9text"></a><span class="FootNoteTextLink" title=" R&#46; E&#46; Turner and D&#46; R&#46; Harshman&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;34&#46;4467&#93;&#91;Phys&#46; Rev&#46; B &#42;34&#42; &#40;1986&#41; 4467&#93;&#93; "><a class="foswikiCurrentTopicLink" href="#FootNote9note">(9)</a></span> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> TFieldCos </td>
<td class="foswikiTableCol1"> tf </td>
<td class="foswikiTableCol2"> <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\cos\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_51757d805f7111ffe6e0b430b6d137c7.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> internFld </td>
<td class="foswikiTableCol1"> if </td>
<td class="foswikiTableCol2"> <img alt="\alpha\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f266f29ff7212b8d77bf67567eac1fd3.png" />, <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\lambda&#95;{\mathrm{T}}\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_49046b617890ffeaca8bc16ae66d0dc5.png" />, <img alt="\lambda&#95;{\mathrm{L}}\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b0c4a8cbbcf4189b64418b381939a979.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\alpha\,\cos\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)\exp\left(-\lambda&#95;{\mathrm{T}}t\right)+(1-\alpha)\,\exp\left(-\lambda&#95;{\mathrm{L}}t\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_1582d158c5651581ca9e800ee698ce9f.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> Bessel </td>
<td class="foswikiTableCol1"> b </td>
<td class="foswikiTableCol2"> <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" /> </td>
<td class="foswikiTableCol3"> <img alt="j&#95;0\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_cff60a46de8608e97a33bbae7c4e566d.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> internBsl </td>
<td class="foswikiTableCol1"> ib </td>
<td class="foswikiTableCol2"> <img alt="\alpha\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f266f29ff7212b8d77bf67567eac1fd3.png" />, <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\lambda&#95;{\mathrm{T}}\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_49046b617890ffeaca8bc16ae66d0dc5.png" />, <img alt="\lambda&#95;{\mathrm{L}}\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b0c4a8cbbcf4189b64418b381939a979.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\alpha\,j&#95;0\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)\exp\left(-\lambda&#95;{\mathrm{T}}t\right)+(1-\alpha)\,\exp\left(-\lambda&#95;{\mathrm{L}}t\right)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_23ec8fc398b4e415b86bbd2b65f9a63c.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> abragam </td>
<td class="foswikiTableCol1"> ab </td>
<td class="foswikiTableCol2"> <img alt="\sigma\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6b6bbc4add4da0bde8220c54594658f3.png" />, <img alt="\gamma\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_ebef6cda2881306e993839c1b4bcaa4c.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\exp\left&#91;-\frac{\sigma^2}{\gamma^2}\left(e^{-\gamma t}-1+\gamma t\right)\right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e56be15b7e230ec52a9f6632e552ca4b.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/skull.gif' alt='dead!' title='dead!' /> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> skewedGss </td>
<td class="foswikiTableCol1"> skg </td>
<td class="foswikiTableCol2"> <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\sigma&#95;{-}\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_bd5c765027d46aa1433dda03f540c17e.png" />, <img alt="\sigma&#95;{+}\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_82adbab00b6a057f04037b44746e33eb.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{\sigma&#95;{-}}{\sigma&#95;{+}+\sigma&#95;{-}}\exp\left&#91;-\frac{\sigma&#95;{-}^2t^2}{2}\right]\left\lbrace\cos\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)+\sin\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)\mathrm{Erfi}\left(\frac{\sigma&#95;{-}t}{\sqrt{2}}\right)\right\rbrace+ \frac{\sigma&#95;{+}}{\sigma&#95;{+}+\sigma&#95;{-}}\exp\left&#91;-\frac{\sigma&#95;{+}^2t^2}{2}\right]\left\lbrace\cos\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)-\sin\left(2\pi\nu t+\frac{\pi\varphi}{180}\right)\mathrm{Erfi}\left(\frac{\sigma&#95;{+}t}{\sqrt{2}}\right)\right\rbrace" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7f4cd42199fbf712ad5a86f9d94bd698.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a href="http://lmu.web.psi.ch/musrfit/memos/skewedGaussian.pdf">memo</a> <span class='foswikiIcon'><img src='../pub/System/DocumentGraphics/pdf.png' width='16' height='16' alt='pdf' /></span> </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> staticNKZF </td>
<td class="foswikiTableCol1"> snkzf </td>
<td class="foswikiTableCol2"> <img alt="\Delta&#95;0\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_30b87ca180341a9f8f9a15c1082f7f29.png" />, <img alt="R&#95;b &#61; \Delta&#95;{\mathrm{GbG}}/\Delta&#95;0 \,(\text{1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_5563541e58443a8d18e5bd40d2746e9a.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\frac{1}{3}+\frac{2}{3}\left(\frac{1}{1+R&#95;b^2\Delta&#95;0^2 t^2}\right)^{3/2} \left(1-\frac{\Delta&#95;0^2 t^2}{1+R&#95;b^2\Delta&#95;0^2 t^2}\right)\,\exp\left&#91;-\frac{\Delta&#95;0^2 t^2}{2(1+R&#95;b^2\Delta&#95;0^2 t^2)}\right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_d5edc50e5c0ce856d632a5a682e0347f.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote10text"></a><span class="FootNoteTextLink" title=" D&#46;R&#46; Noakes and G&#46;M&#46; Kalvius&#44; &#91;&#91;http&#58;&#47;&#47;link&#46;aps&#46;org&#47;doi&#47;10&#46;1103&#47;PhysRevB&#46;56&#46;2352&#93;&#91;Phys&#46; Rev&#46; B &#42;56&#42; &#40;1997&#41; 2352&#93;&#93;&#59; A&#46; Yaouanc and P&#46; Dalmas de R&#38;eacute&#59;otier &#34;Muon Spin Rotation&#44; Relaxation&#44; and Resonance&#34; Oxford Scientific Publication&#59; simplifying the original formulae by eliminating &#60;latex&#62;&#92;Delta_&#123;&#92;rm eff&#125;&#60;&#47;latex&#62; via the identity &#60;latex&#62;&#92;Delta_&#123;&#92;rm eff&#125;&#94;2 &#61; &#40;1&#43;R_b&#94;2&#41; &#92;Delta_0&#60;&#47;latex&#62; "><a class="foswikiCurrentTopicLink" href="#FootNote10note">(10)</a></span> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> staticNKTF </td>
<td class="foswikiTableCol1"> snktf </td>
<td class="foswikiTableCol2"> <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\Delta&#95;0\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_30b87ca180341a9f8f9a15c1082f7f29.png" />, <img alt="R&#95;b &#61; \Delta&#95;{\mathrm{GbG}}/\Delta&#95;0\,(\text{1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b7d61ac387fd12b956816be1c6c9a577.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\sqrt{\frac{1}{1+R&#95;b^2\Delta&#95;0^2 t^2}}\,\exp\left&#91;-\frac{\Delta&#95;0^2 t^2}{2(1+R&#95;b^2\Delta&#95;0^2 t^2)}\right]\,\cos(\nu t+\varphi)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_a08362729d5fcf782e28a536cc3a9e85.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> see note 10 </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> dynamicNKZF </td>
<td class="foswikiTableCol1"> dnkzf </td>
<td class="foswikiTableCol2"> <img alt="\Delta&#95;0\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_30b87ca180341a9f8f9a15c1082f7f29.png" />, <img alt="R&#95;b &#61; \Delta&#95;{\mathrm{GbG}}/\Delta&#95;0\,(\text{1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b7d61ac387fd12b956816be1c6c9a577.png" />, <img alt="\nu&#95;c\,(\text{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c4bdea6bbc03bcca6d713519e7bab071.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\sqrt{\frac{1}{1+4 R&#95;b^2\Delta&#95;0^2 \Theta(t)}}\,\exp\left&#91;-\frac{2 \Delta&#95;0^2 \Theta(t)}{1+4 R&#95;b^2\Delta&#95;0^2 \Theta(t)}\right]\quad,\, \Theta(t) &#61; \frac{\exp(-\nu&#95;c t) - 1 - \nu&#95;c t}{\nu&#95;c^2}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_af36b27f661f5b8a569f5672d18f8844.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> see note 10 </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> dynamicNKTF </td>
<td class="foswikiTableCol1"> dnktf </td>
<td class="foswikiTableCol2"> <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" />, <img alt="\Delta&#95;0\,(\mu\text{s}^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_30b87ca180341a9f8f9a15c1082f7f29.png" />, <img alt="R&#95;b &#61; \Delta&#95;{\mathrm{GbG}}/\Delta&#95;0\,(\text{1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b7d61ac387fd12b956816be1c6c9a577.png" />, <img alt="\nu&#95;c\,(\text{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c4bdea6bbc03bcca6d713519e7bab071.png" /> </td>
<td class="foswikiTableCol3"> <img alt="\sqrt{\frac{1}{1+2 R&#95;b^2\Delta&#95;0^2 \Theta(t)}}\,\exp\left&#91;-\frac{\Delta&#95;0^2 \Theta(t)}{1+2 R&#95;b^2\Delta&#95;0^2 \Theta(t)}\right]\, \cos(2\pi \nu t + \varphi) \quad,\, \Theta(t) &#61; \frac{\exp(-\nu&#95;c t) - 1 - \nu&#95;c t}{\nu&#95;c^2}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_466fcb53c3da4f84fb2d12e03eef9439.png" /> </td>
<td class="foswikiTableCol4"> see note 10 </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> muMinusExpTF </td>
<td class="foswikiTableCol1"> mmsetf </td>
<td class="foswikiTableCol2"> <img alt="N&#95;0\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_fcadee367bc447abe1119778b6fa1a14.png" />, <img alt="\tau\,(\mu s)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_545dca52882440763fc3ac973a36852a.png" />, <img alt="A\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_facd1d42ae8b62aa1043316d525d3af4.png" />, <img alt="\lambda\,(\mu s^{-1})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_319772b46bc6861fbe24a28e59530ade.png" />, <img alt="\varphi\,(^{\circ})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_61136f20673ad20f955c43e43b8cec9d.png" />, <img alt="\nu\,(\mathrm{MHz})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7188605a647615e4fb92cc89274b22a0.png" /> </td>
<td class="foswikiTableCol3"> <img alt="N&#95;0 \exp(-t/\tau) \left&#91; 1 + A \exp(-\lambda t) \cos(2\pi \nu t + \varphi) \right]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_57316547e3b34dd9d537b722e4a0e176.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol"> <a name="FootNote11text"></a><span class="FootNoteTextLink" title=" This function is explicit for &#60;latex&#62;&#92;mu&#94;&#45;&#60;&#47;latex&#62;&#33; Do not try to use it for &#60;latex&#62;&#92;mu&#94;&#43;&#60;&#47;latex&#62;&#46; "><a class="foswikiCurrentTopicLink" href="#FootNote11note">(11)</a></span> </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol foswikiLast"> polynom </td>
<td class="foswikiTableCol1 foswikiLast"> p </td>
<td class="foswikiTableCol2 foswikiLast"> <img alt="t&#95;0\,(&#91;t])" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_20651e8230c7eb66c452bb1f01dc4633.png" />, <img alt="a&#95;0\,(1),\,a&#95;1\,(1),\,\dots,\,a&#95;{n}\,(1)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_03095d51eca2bcb1dda113e995238fc0.png" /> </td>
<td class="foswikiTableCol3 foswikiLast"> <img alt="\sum\limits&#95;{i&#61;0}^{n}a&#95;i \left(t-t&#95;0\right)^i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_6355c4cb1ccffc332963726dd3077985.png" /> </td>
<td class="foswikiTableCol4 foswikiLastCol foswikiLast"> &nbsp; </td>
</tr>
</tbody></table>
<p></p>
<p></p>
Every theory function has to be written on a single line. It starts with the theory function name or its abbreviation followed by the parameters. Consecutive lines of theory functions will be multiplied. If theory functions need to be added, a line with a <strong>+</strong> has to separate them. The parameters are given as the numbers assigned to them in the <a class="foswikiCurrentTopicLink" href="#TheFitparameterBlock">FITPARAMETER block</a>. The order of the parameters is given in the <a class="foswikiCurrentTopicLink" href="#TheoryTable">table above</a>. As an example
<pre>
simplExpo 4
</pre>
defines an exponential function with a depolarization rate &lambda; given by the parameter 4 of the FITPARAMETER-block. A full fetched THEORY block could be
<pre>
THEORY
asymmetry 2
simplExpo 3
TFieldCos 4 5
+
asymmetry 6
simplExpo 7
</pre>
which means <i>A</i>(<i>t</i>) = <i>p</i><sub>2</sub> e<sup>-<i>p</i><sub>3</sub><i>t</i></sup> cos(2&pi; <i>p</i><sub>5</sub><i>t</i> + <i>p</i><sub>4</sub> &pi;/180) + <i>p</i><sub>6</sub> e<sup>-<i>p</i><sub>7</sub><i>t</i></sup>, where <i>p</i><sub>&alpha;</sub> is the parameter &alpha;.
<p></p>
<p></p>
<p></p>
Notes
<p></p>
<a name="FootNote3note"></a><span class="FootNoteLabel"><a href="#FootNote3text"><b>4</b></a></span>: <span class="FootNote"> R. S. Hayano <em>et al.</em>, <a href="http://link.aps.org/doi/10.1103/PhysRevB.20.850">Phys. Rev. B <strong>20</strong> (1979) 850</a> </span>
<p></p>
<a name="FootNote4note"></a><span class="FootNoteLabel"><a href="#FootNote4text"><b>5</b></a></span>: <span class="FootNote"> R. S. Hayano <em>et al.</em>, <a href="http://link.aps.org/doi/10.1103/PhysRevB.20.850">Phys. Rev. B <strong>20</strong> (1979) 850</a>; P. Dalmas de R&eacute;otier and A. Yaouanc, <a href="http://dx.doi.org/10.1088/0953-8984/4/18/020">J. Phys.: Condens. Matter <strong>4</strong> (1992) 4533</a>; A. Keren, <a href="http://link.aps.org/doi/10.1103/PhysRevB.50.10039">Phys. Rev. B <strong>50</strong> (1994) 10039</a> </span>
<p></p>
<a name="FootNote5note"></a><span class="FootNoteLabel"><a href="#FootNote5text"><b>6</b></a></span>,<a name="FootNote6note"></a><span class="FootNoteLabel"><a href="#FootNote6text"><b>7</b></a></span>: <span class="FootNote"> Y. J. Uemura <em>et al.</em>, <a href="http://link.aps.org/doi/10.1103/PhysRevB.31.546">Phys. Rev. B <strong>31</strong> (1985) 546</a> </span>
<p></p>
<a name="FootNote7note"></a><span class="FootNoteLabel"><a href="#FootNote7text"><b>8</b></a></span>: <span class="FootNote"> R. S. Hayano <em>et al.</em>, <a href="http://link.aps.org/doi/10.1103/PhysRevB.20.850">Phys. Rev. B <strong>20</strong> (1979) 850</a>; P. Dalmas de R&eacute;otier and A. Yaouanc, <a href="http://dx.doi.org/10.1088/0953-8984/4/18/020">J. Phys.: Condens. Matter <strong>4</strong> (1992) 4533</a> </span>
<p></p>
<a name="FootNote8note"></a><span class="FootNoteLabel"><a href="#FootNote8text"><b>9</b></a></span>: <span class="FootNote"> M.R. Crook and R. Cywinski, <a href="http://dx.doi.org/10.1088/0953-8984/9/5/018">J. Phys.: Condens. Matter <strong>9</strong> (1997) 1149</a> </span>
<p></p>
<a name="FootNote9note"></a><span class="FootNoteLabel"><a href="#FootNote9text"><b>9</b></a></span>: <span class="FootNote"> R. E. Turner and D. R. Harshman, <a href="http://link.aps.org/doi/10.1103/PhysRevB.34.4467">Phys. Rev. B <strong>34</strong> (1986) 4467</a> </span>
<p></p>
<a name="FootNote10note"></a><span class="FootNoteLabel"><a href="#FootNote10text"><b>10</b></a></span>: <span class="FootNote"> D.R. Noakes and G.M. Kalvius, <a href="http://link.aps.org/doi/10.1103/PhysRevB.56.2352">Phys. Rev. B <strong>56</strong> (1997) 2352</a>; A. Yaouanc and P. Dalmas de R&eacute;otier "Muon Spin Rotation, Relaxation, and Resonance" Oxford Scientific Publication; simplifying the original formulae by eliminating <img alt="\Delta&#95;{\rm eff}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_663c0beda820045042826686eaeefb6a.png" /> via the identity <img alt="\Delta&#95;{\rm eff}^2 &#61; (1+R&#95;b^2) \Delta&#95;0" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_81abadaf16877e78e8bb9317a16cd704.png" /> </span>
<p></p>
<a name="FootNote11note"></a><span class="FootNoteLabel"><a href="#FootNote11text"><b>11</b></a></span>: <span class="FootNote"> This function is explicit for <img alt="\mu^-" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_d65298a2553c29f00e58481f3465086a.png" />! Do not try to use it for <img alt="\mu^+" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_8eb55dc360ede9ff12fa65dc47046bc0.png" />. </span>
<p></p>
<p></p>
<p></p>
<hr />
<p></p>
<span id="MaPs"></span>
<h3 id="A_4.3.1_Maps"> 4.3.1 Maps </h3>
In case different runs are fitted simultaneously, it is very often necessary that for a given theory function, some parameters are run-dependent. An example could be a temperature scan, where the parameters (asymmetry, depolarization rates, etc.) will depend on the temperature. In order to handle such situations, a mapping of parameters in the THEORY block is possible. That means, instead of a parameter number, the mapping of the parameter is given. The definition of the mapping block is part of the <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN block</a> and will be described there. For example
<pre>
THEORY
asymmetry 2
simplExpo 3
TFieldCos 4 5
+
asymmetry map1
simplExpo map2
</pre>
means that the first part of this theory function is common to all runs, as for instance the background, and the second part is changing from run to run, i.e. <code><b>map1/2</b></code> will point to different parameters depending on the run.
<p></p>
<span id="FuncTions"></span>
<h3 id="A_4.3.2_Functions"> 4.3.2 Functions </h3>
Yet another useful feature is the possibility to define functions in the <a class="foswikiCurrentTopicLink" href="#TheFunctionsBlock">FUNCTIONS block</a>. Within the THEORY block these functions can be addressed as <code><b>fun&alpha;</b></code>, where &alpha; is the function number, e.g. <code><b>fun2</b></code>.
<p></p>
<span id="UserFunctions"></span>
<h3 id="A_4.3.3_User_Functions"> 4.3.3 User Functions </h3>
In the case complicated and not predefined functions are needed to fit data, <code>musrfit</code> offers the possibility to implement external functions and introduce them to <code>musrfit</code> through the <code>ROOT</code> dictionary mechanism. The detailed rules these user-defined functions have to obey will be discussed in the according <a class="foswikiCurrentTopicLink" href="#UserFunctions1">section</a>. Here only the syntax for the msr file is provided.
To call a user function in the THEORY block the keyword <code><b>userFcn</b></code> is used. It is followed by the name of the shared library which holds the <code>C++</code> class where the function is implemented and the name of the class. Finally, all parameters are given in the order needed by the class. Of course it is also possible to use mapped parameters or functions instead of specifying the parameters directly.
<p></p>
A THEORY block including a user function may then look like
<pre>
THEORY
asymmetry 1
userFcn libMyLibrary.so TMyFunction 2 3 4 map1 fun1
+
...
</pre>
<p></p>
<span id="TheFunctionsBlock"></span>
<h2 id="A_4.4_The_FUNCTIONS_Block"> 4.4 The FUNCTIONS Block </h2>
<code>musrfit</code> utilizes a <a href="http://boost-spirit.com/home/">powerful parser</a>. Therefore, it is possible to define even rather complicated functional relations between the fit parameters and use these in the THEORY block (and <a class="foswikiCurrentTopicLink" href="#NormFun">in one exceptional case</a> also in the RUN-block). Supported is the use of basic arithmetics: <dl>
<dt> + </dt><dd> Addition
</dd> <dt> - </dt><dd> Subtraction
</dd> <dt> * </dt><dd> Multiplication
</dd> <dt> / </dt><dd> Division
</dd> <dt> () </dt><dd> Parentheses
</dd></dl>
<p></p>
The following functions are built-in and can be used in a function definition: <strong>cos()</strong>, <strong>sin()</strong>, <strong>tan()</strong>, <strong>acos()</strong>, <strong>asin()</strong>, <strong>atan()</strong>, <strong>cosh()</strong>, <strong>sinh()</strong>, <strong>tanh()</strong>, <strong>acosh()</strong>, <strong>asinh()</strong>, <strong>atanh()</strong>, <strong>exp()</strong>, <strong>log()</strong>, <strong>ln()</strong>, <strong>sqrt()</strong>, <strong>pow(base, exponent)</strong>
<p></p>
Furthermore, some constants are predefined and might also be used: <ul>
<li> <strong>gamma_mu</strong> = &#947;<sub>&#956;</sub>/2&#960; = 0.0135538817 MHz/G
</li> <li> <strong>pi</strong> = &#960; = 3.14159265358979323846
</li></ul>
<p></p>
The fit parameters are accessed either directly through <code><b>par&alpha;</b></code>, where &alpha; is the number of the parameter in the FITPARAMETER block, e.g. <code><b>par5</b></code> or through a mapping with <code><b>map&delta;</b></code>, where &delta; specifies the mapping number in the RUN block as explained <a class="foswikiCurrentTopicLink" href="#TheRunBlock">below</a>.
<p></p>
The defined functions are denoted as <code><b>fun&alpha;</b></code>, where &alpha; is the function number, i.e. <code><b>fun1</b></code>, <code><b>fun2</b></code>, etc. and have to be placed separately on one line each. Afterwards they might be used in the <a class="foswikiCurrentTopicLink" href="#TheTheoryBlock">THEORY block</a>.
<p></p>
It follows an example to illustrate the usage of functions in the THEORY block. The total asymmetry of a signal consisting of two parts should be a fit parameter. The fraction of each of the parts will then be expressed as a function of the total asymmetry.
<p></p>
<pre>
FITPARAMETER
# No Name Value Step Pos&#95;Error Boundaries
1 alpha 1 0.02 none 0 1.8
2 phase 15 1.0 none
3 asy 0.2542 0.004713 none 0 0.33
4 rate1 15 1.0 none 0 none
5 frac1 0.33 0.0379 none 0 1
6 rate2 0.13 0.00579 none 0 10
###############################################################
THEORY
asymmetry fun1
simplExpo 4 (rate)
+
asymmetry fun2
simplExpo 6 (rate)
###############################################################
FUNCTIONS
fun1 &#61; par3 &#42; par5
fun2 &#61; par3 &#42; ( 1.0 - par5 )
</pre>
<p></p>
In the case that functions have to be fitted which cannot be defined in the FUNCTIONS block, the functions can be implemented externally and made usable through the <a class="foswikiCurrentTopicLink" href="#UserFunctions">userFunc mechanism</a>.
<p></p>
<span id="TheGlobalBlock"></span>
<h2 id="A_4.5_The_GLOBAL_Block"> 4.5 The GLOBAL Block </h2>
The GLOBAL block is used to collect data which otherwise need to be specified in every single run entry of the RUN block. Therefore, this block is only present to potential shorten the msr-file and to ease the handling for the user.
The logic will by like that: <ol>
<li> check it the property is found in the RUN block.
</li> <li> if not present in the RUN block, check whether it is present in the GLOBAL block
</li> <li> if still not found, try the data file
</li> <li> if still not found, either try to estimate it, or fire an error message
</li></ol>
This means that an entry in the RUN block will <strong>overwrite</strong> a setting from the GLOBAL block.
<p></p>
The currently supported GLOBAL block entries are: <ul>
<li> <code>fittype</code>
</li> <li> <code>data</code>
</li> <li> <code>t0</code>
</li> <li> <code>addt0</code>
</li> <li> <code>fit</code>
</li> <li> <code>rrf_freq</code> (for fittype 1, 3)
</li> <li> <code>rrf_packing</code> (for fittype 1, 3)
</li> <li> <code>rrf_phase</code> (for fittype 1, 3)
</li> <li> <code>packing</code> (for fittype 0, 2, 4)
</li></ul>
<p></p>
For a detailed discussion of these entries see Sec <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN block</a>.
<p></p>
The <code>single histo RRF fit</code> and <code>asymmetry RRF fit</code> related entries (fittype 1 and 3 <strong>only</strong>) have the following syntax:
<p></p> <dl>
<dt> rrf_freq </dt><dd> Defines the RRF frequency. The exact syntax is <code>rrf_freq &lt;value&gt; &lt;unit&gt;</code> where <code>&lt;value&gt;</code> is the value, and <code>&lt;unit&gt;</code> can be <code>MHz</code>, <code>Mc</code>, and <code>T</code>. An example: <pre>
rrf&#95;freq 7.2 T
</pre>
</dd> <dt> rrf_packing </dt><dd> for <strong>fittype 1</strong> and <strong>fittype 3</strong> rather than giving <code>packing</code>, <code>rrf_packing &lt;pack&gt;</code> has to be provided, e.g. <pre>
rrf&#95;packing 150
</pre>
</dd> <dt> rrf_phase </dt><dd> an optional additional RRF phase can be provided (if not provided, the RRF phase will be 0.0). Syntax: <code>rrf_phase &lt;phase&gt;</code>, where the value <code>&lt;phase&gt;</code> is given in degree. Example:<pre>
rrf&#95;phase 45
</pre>
</dd></dl>
<p></p>
An example snippet with, and without GLOBAL section:
With GLOBAL block:
<pre>
...
###############################################################
GLOBAL
fittype 0 (single histogram fit)
fit 0.0005 10
packing 5
###############################################################
RUN data/tdc&#95;hifi&#95;2014&#95;00153 PIE3 PSI PSI-MDU (name beamline institute data-file-format)
map 5 6 7 0 0 0 0 0 0 0 0
norm 8
backgr.fit 9
forward 2
data 20120 409500
t0 20108.0
#--------------------------------------------------------------
RUN data/tdc&#95;hifi&#95;2014&#95;00153 PIE3 PSI PSI-MDU (name beamline institute data-file-format)
map 10 11 12 0 0 0 0 0 0 0 0
norm 13
backgr.fit 14
forward 3
data 20111 409500
t0 20088.0
#--------------------------------------------------------------
RUN data/tdc&#95;hifi&#95;2014&#95;00153 PIE3 PSI PSI-MDU (name beamline institute data-file-format)
...
</pre>
Without GLOBAL block:
<pre>
...
###############################################################
RUN data/tdc&#95;hifi&#95;2014&#95;00153 PIE3 PSI PSI-MDU (name beamline institute data-file-format)
fittype 0 (single histogram fit)
map 5 6 7 0 0 0 0 0 0 0 0
norm 8
backgr.fit 9
forward 2
data 20120 409500
t0 20108.0
fit 0.0005 10
packing 5
#--------------------------------------------------------------
RUN data/tdc&#95;hifi&#95;2014&#95;00153 PIE3 PSI PSI-MDU (name beamline institute data-file-format)
fittype 0 (single histogram fit)
map 10 11 12 0 0 0 0 0 0 0 0
norm 13
backgr.fit 14
forward 3
data 20111 409500
t0 20088.0
fit 0.0005 10
packing 5
#--------------------------------------------------------------
RUN data/tdc&#95;hifi&#95;2014&#95;00153 PIE3 PSI PSI-MDU (name beamline institute data-file-format)
fittype 0 (single histogram fit)
... and many more detectors here ...
</pre>
<p></p>
<span id="TheRunBlock"></span>
<h2 id="A_4.6_The_RUN_Block"> 4.6 The RUN Block </h2>
The RUN block is used to collect the data needed for a particular run to be fitted. This includes the run name, fit type, data format, etc. The RUN block is slightly differently organized than the other blocks. The information is collected via labels followed by the information. Each run to be fitted has its own RUN block. A RUN block starts with a run-file line which has the structure
<pre>
RUN &#60;run&#95;file&#95;name&#62; &#60;beamline&#62; &#60;facility&#62; &#60;file&#95;format&#62;
</pre>
<p></p>
<table border="1" class="foswikiTable" rules="none">
<thead>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<th class="foswikiTableCol0 foswikiFirstCol"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=0;table=2;up=0#sorted_table" rel="nofollow" title="Sort by this column">RUN-block tag</a> </th>
<th class="foswikiTableCol1 foswikiLastCol"> <a href="https://intranet.psi.ch/MUSR/MusrFit?cover=print;sortcol=1;table=2;up=0#sorted_table" rel="nofollow" title="Sort by this column">comment</a> </th>
</tr>
</thead>
<tbody>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> &lt;run_file_name&gt; </td>
<td class="foswikiTableCol1 foswikiLastCol"> sub path and filename without extension </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol"> &lt;beamline&gt; </td>
<td class="foswikiTableCol1 foswikiLastCol"> name of the beamline where the data were taken, e.g. MUE4. Used to generate a default path. </td>
</tr>
<tr class="foswikiTableEven foswikiTableRowdataBgSorted0 foswikiTableRowdataBg0">
<td class="foswikiTableCol0 foswikiFirstCol"> &lt;facility&gt; </td>
<td class="foswikiTableCol1 foswikiLastCol"> name of the facility where the data were recorded, e.g. PSI. Used to generate a default path. </td>
</tr>
<tr class="foswikiTableOdd foswikiTableRowdataBgSorted1 foswikiTableRowdataBg1">
<td class="foswikiTableCol0 foswikiFirstCol foswikiLast"> &lt;file_format&gt; </td>
<td class="foswikiTableCol1 foswikiLastCol foswikiLast"> file format: MUSR-ROOT, NEXUS, ROOT-NPP, ROOT-PPC, PSI-BIN, PSI-MDU, WKM, MUD, MDU-ASCII, ASCII, DB </td>
</tr>
</tbody></table>
<p></p>
The tokens following the RUN statement are used to identify the run, the potential location where the run might be found, and the file format in which the run data has been saved. In order to understand the meaning of all the above tokens, a short digression is needed.
<p></p>
<span id="PathToDataFiles"></span>
Where is <code>musrfit</code> looking for data files? There is a specific order how this is done: <ol>
<li> Check if the file is found in the current directory
</li> <li> Check if the path (or multiple paths) was (were) given in the <a class="foswikiCurrentTopicLink" href="#MusrfitStartupXml">XML startup file</a>.
</li> <li> Check if there is a system variable MUSRFULLDATAPATH. This system variable can contain multiple search paths separated by colons, e.g. <pre>
export MUSRFULLDATAPATH&#61;/mnt/data/nemu/wkm/:/mnt/data/nemu/his/:/afs/psi.ch/user/s/smith/
</pre>
</li> <li> Construct the search path from the RUN-block information in the following way: Based on the RUN line in the RUN block, default paths will be generated, e.g. for <pre>
RUN 2007/lem07&#95;his&#95;2018 MUE4 PSI ROOT-NPP
</pre> the generated search path will look like <pre>
musrFullDataPathToken/DATA/Facility/Beamline/runName.ext
</pre> where <strong>musrFullDataPathToken</strong> is extracted from the MUSRFULLDATAPATH token by token, for the above example this might lead to the path <pre>
/afs/psi.ch/user/s/smith/DATA/PSI/MUE4/2007/lem07&#95;his&#95;2018.root
</pre>
</li></ol>
<p></p>
Here are some valid examples for the first line of a RUN block:<pre>
RUN 2007/lem07&#95;his&#95;2018 MUE4 PSI ROOT-NPP
RUN 2007/lem07&#95;2018&#95;rb1&#95;npp MUE4 PSI WKM
RUN d2007/deltat&#95;pta&#95;gps&#95;2650 PIM3 PSI PSI-BIN
RUN d2010/tdc/deltat&#95;tdc&#95;gpd&#95;8472 MUE1 PSI PSI-BIN
RUN beautiful-data MUE4 PSI DB
</pre>
<p></p>
After this short digression back to the RUN-block description.
<p></p>
In order to describe the operations needed for fitting and plotting, quite some information are needed. These information are following the RUN statement and are listed below. Depending on the fit type these information vary and hence it is indicated for which fit/plot type the information is applicable.
<span id="AddRun"></span> <dl>
<dt> ADDRUN &lt;run_file_name&gt; &lt;beamline&gt; &lt;facility&gt; &lt;file_format&gt; (optional) </dt><dd> If an ADDRUN is just following after a RUN statement, these runs will be added. More than one ADDRUN statements are possible, i.e. adding up as many runs as wished. It is also possible to add runs with different file formats. If the t0's are given in the data files, the ADDRUN statement is all what is needed, otherwise just add the t0's with the <a class="foswikiCurrentTopicLink" href="#AddTimeZero">addt0</a> statement.<br>
</dd></dl>
For a 'Single Histogram Fit' or a 'MuMinus Fit' it will be <pre>
addt0 t0AddRun1
addt0 t0AddRun2
etc.
</pre> For an 'Asymmetry Fit' this reads <pre>
addt0 t0AddRun1Forward t0AddRun1Backward
addt0 t0AddRun2Forward t0AddRun2Backward
etc.
</pre> How will the background and data ranges be handled in this situation? First, the ADDRUN's will be shifted in time such that all the t0's have the same channel/bin number. Subsequently, the runs will be added. The background/data range is applied to this summed up new histogram. ADDRUN is not available for the fit type 'Non-&mu;SR Fit' (sorry <img class='smily' src='../pub/Main/SmiliesPluginPSI_/no.gif' alt='no' title='no' /> ).
<p></p>
<span id="FitTypes"></span> <dl>
<dt> fittype (required if not already defined in the GLOBAL block) </dt><dd> This tag is used to indicate which type of fit is wished. The supported fit types are: <dl>
<dt> 0 </dt><dd> Single Histogram Fit
</dd> <dt> 1 </dt><dd> Single Histogram RRF Fit (only for online analysis<a name="FootNote12text"></a><span class="FootNoteTextLink" title="for a more detailed discussion about the shortcomings of RRF fits see the RRF memo found under &#38;lt&#59;musrfit&#38;gt&#59;&#47;doc&#47;memo&#47;rrf"><a class="foswikiCurrentTopicLink" href="#FootNote12note">(l)</a></span> )
</dd> <dt> 2 </dt><dd> Asymmetry Fit
</dd> <dt> 3 </dt><dd> Asymmetry RRF Fit (only for online analysis. See comment added for Single Histogram RRF Fit)
</dd> <dt> 4 </dt><dd> MuMinus Fit. This is a single histogram fit especially for negative muon &mu;SR
</dd> <dt> 8 </dt><dd> Non-&mu;SR Fit
</dd></dl>
</dd></dl>
<p></p>
The description of these fit types can be found in <a class="foswikiCurrentTopicLink" href="#TheFitTypes">the corresponding section</a>.
Example:<pre>
fittype 0
</pre>
<p></p> <dl>
<dt> alpha, beta (fit types 2) </dt><dd> These parameters are used to correct the asymmetry for different detector efficiencies, solid angles and initial asymmetries. They are defined as &#945;&#8801;<i>N</i><sub>0,b</sub>/<i>N</i><sub>0,f</sub> and &#946;&#8801;&#124;<i>A</i><sub>0,b</sub>/<i>A</i><sub>0,f</sub>&#124;. If the parameters are not specified in the RUN block, for each one the value of 1 is assumed. Example for <code>alpha</code> is fit parameter number 1:<pre>
alpha 1
</pre>
</dd></dl>
<p></p>
<span id="NormFun"></span> <dl>
<dt> norm (fit type 0) </dt><dd> Number of the fit parameter that represents the normalization constant <i>N</i><sub>0</sub> of the histogram; the value of this parameter is given either per nanosecond or per bin (see <a class="foswikiCurrentTopicLink" href="#ScaleNzero">below</a>). It is possible to substitute the parameter number by a function here (<u>and only here in a RUN block</u>), for instance to relate <i>N</i><sub>0</sub>s of different histograms through an &alpha; parameter. Example for a norm defined by fit parameter number 12:<pre>
norm 12
</pre> Example for a norm defined in function number 3:<pre>
norm fun3
</pre>
</dd></dl>
<p></p> <dl>
<dt> backgr.fit (fit type 0) </dt><dd> Parameter number specifying the constant background in a histogram. Its value is given either per nanosecond or per bin (see <a class="foswikiCurrentTopicLink" href="#ScaleNzero">below</a>). If this keyword is present, any information on a <strong>background</strong> line are ignored.
</dd></dl>
<p></p> <dl>
<dt> lifetime (fit type 0) </dt><dd> Fit parameter representing the lifetime of the muon. If it is not specified the value &#964;<sub>&#956;</sub>=2.197019 &#956;s is used in the calculations.
</dd></dl>
<p></p> <dl>
<dt> lifetimecorrection (fit type 0) <img class='smily' src='../pub/Main/SmiliesPluginPSI_/eek.gif' alt='eek!' title='eek!' /> <strong>obsolete</strong> <img class='smily' src='../pub/Main/SmiliesPluginPSI_/eek.gif' alt='eek!' title='eek!' /> </dt><dd> Does not accept any arguments. If present, the output in <code>musrview</code> is corrected for the exponential decay of the muon. This item is <strong>obsolete</strong> in the RUN block and will be transferred to the <a class="foswikiCurrentTopicLink" href="#ThePlotBlock">PLOT block</a>, which allows switching between histogram view and asymmetry view much quicker.
</dd></dl>
<p></p> <dl>
<dt> map </dt><dd> On this line the mapping of run-dependent parameters is done. Parameter numbers given here may be accessed through <code><b>map1</b></code>, <code><b>map2</b></code>, etc. in the THEORY and FUNCTIONS blocks (see also <a class="foswikiCurrentTopicLink" href="#MaPs">here</a>). The first ten maps are always present and have the value 0 if not used; however, the total number of maps is not restricted!
</dd></dl>
<p></p>
<span id="ForwardHisto"></span> <dl>
<dt> forward (fit type 0, 1, 4) </dt><dd> Number of the histogram in the data file to be processed. If histograms shall be grouped, all the numbers which shall be grouped. Examples: <pre>
forward 3 # no grouping, take histogram number 3
forward 1 2 # group histogram number 1 and 2
forward 1-10 12 # group histograms with numbers from 1 to 10 and additionally histogram 12
</pre>
</dd></dl>
<p></p> <dl>
<dt> forward, backward (fit types 2) </dt><dd> Numbers of the histograms in the data file that should be taken to calculate the asymmetry. If histograms shall be grouped, all the numbers which shall be grouped. Examples: <pre>
# build forward/backward asymmetry with histogram 1 and 3
forward 1
backward 3
# build forward/backward asymmetry with groupings 1+2+3 and 7+8+9
forward 1 2 3
backward 7 8 9
# build forward/backward asymmetry with groupings 1+2+3 and 7+8+9 (alternative notation)
forward 1-3
backward 7-9
</pre>
</dd></dl>
<p></p> <dl>
<dt> backgr.fix (fit types 0, 1, 2) </dt><dd> A fixed constant background in counts per nanosecond or per bin (see <a class="foswikiCurrentTopicLink" href="#ScaleNzero">below</a>) may be given at this point. The background is specified for all histograms in the order <i>B</i><sub>f</sub> <i>B</i><sub>b</sub> [<i>B</i><sub>r</sub> <i>B</i><sub>l</sub>]. If this keyword is present, any information on a <strong>background</strong> line is ignored.
</dd></dl>
<p></p> <dl>
<dt> background (fit type 0, 1) </dt><dd> The numbers of the first and the last channel of an interval from which the constant background should be calculated are specified here. In case histograms are being grouped, the specified channels are interpreted with respect to the first histogram. Example:<pre>
background 100 18000
</pre>
</dd></dl>
<p></p> <dl>
<dt> background (fit types 2) </dt><dd> The numbers of the first and the last channel of an interval from which the constant background should be calculated are specified here. For all the histograms this is done together in the following order: <i>k</i><sub>f,first</sub> <i>k</i><sub>f,last</sub> <i>k</i><sub>b,first</sub> <i>k</i><sub>b,last</sub> [<i>k</i><sub>r,first</sub> <i>k</i><sub>r,last</sub> <i>k</i><sub>l,first</sub> <i>k</i><sub>l,last</sub>]. In case histograms are being grouped, the specified channels are interpreted with respect to the first histograms. Example:<pre>
background 61 184 57 145
</pre>
</dd></dl>
<p></p>
<span id="DataRange"></span> <dl>
<dt> data (fit type 0, 1, 4) </dt><dd> The numbers of the first and the last channel of an interval from which the data is taken are specified here. In case histograms are being grouped, the specified channels are interpreted with respect to the first histogram. Typically these channels are referred to as <code>first good bin</code> / <code>last good bin</code> (fgb/lgb). Example:<pre>
data 165 7965
</pre>
</dd></dl>
<p></p> <dl>
<dt> data (fit types 2) </dt><dd> The numbers of the first and the last channel of an interval from which the data is taken are specified here. Typically these channels are referred to as <code>first good bin</code> / <code>last good bin</code> (fgb/lgb). For all the histograms this is done together in the following order: <i>k</i><sub>f,first</sub> <i>k</i><sub>f,last</sub> <i>k</i><sub>b,first</sub> <i>k</i><sub>b,last</sub> [<i>k</i><sub>r,first</sub> <i>k</i><sub>r,last</sub> <i>k</i><sub>l,first</sub> <i>k</i><sub>l,last</sub>]. In case histograms are being grouped, the specified channels are interpreted with respect to the first histograms. Example:<pre>
data 207 7994 167 8009
</pre>
</dd></dl>
<p></p>
<span id="TimeZero"></span> <dl>
<dt> t0 (fit type 0, 1, 4) </dt><dd> The number of the time-zero channel of the histogram. Example: <pre>
t0 3419 # t0 channel &#61; 3419
t0 3419 3434 # t0 channels for groupings: forward f1 f2. 3419 t0 for f1, 3434 t0 for f2.
</pre>
</dd></dl>
<p></p> <dl>
<dt> t0 (fit types 2) </dt><dd> The numbers of time-zero channels of the histograms in the order <i>t</i><sub>0,f</sub> <i>t</i><sub>0,b</sub>. Example: <pre>
t0 3419 3418 # t0 channels: forward (3419), backward (3418)
t0 3419 3418 3417 3416 # t0 channels (assuming forward f1 f2, backward b1 b2): forward (3419, f1), backward (3418, b1); forward (3417, f2), backward (3416, b2)
</pre>
</dd></dl>
<p></p>
<span id="AddTimeZero"></span> <dl>
<dt> addt0 (fit type 0, 1, 4) </dt><dd> The number of the time-zero channel of the histogram. If grouping of histograms is present (see <a class="foswikiCurrentTopicLink" href="#ForwardHisto">forward</a>) the same syntax as for <a class="foswikiCurrentTopicLink" href="#TimeZero">t0</a> applies. If one addt0 is given, the total number of addt0's needs to be equal to the total number of ADDRUN's!
</dd></dl>
<p></p> <dl>
<dt> addt0 (fit types 2) </dt><dd> The numbers of time-zero channels of the histograms in the order <i>t</i><sub>0,f</sub> <i>t</i><sub>0,b</sub> [<i>t</i><sub>0,r</sub> <i>t</i><sub>0,l</sub>]. If grouping of histograms is present (see <a class="foswikiCurrentTopicLink" href="#ForwardHisto">forward</a>) the same syntax as for <a class="foswikiCurrentTopicLink" href="#TimeZero">t0</a> applies. If one addt0 is given, the total number of addt0's needs to be equal to the total number of ADDRUN's!
</dd></dl>
<p></p> <dl>
<dt> xy-data (fit type 8) </dt><dd> Specification of the data from an ASCII or DB file which should be used as <i>x</i> and <i>y</i> data (in this order). For a simple ASCII file the column numbers are used, in the case of a DB file one can either specify the variable numbers or the name of the variables as given in the DB header.
</dd></dl>
<p></p> <dl>
<dt> fit </dt><dd> The range of data that should be considered when the fitting is done. For the &mu;SR fit types <strong>0</strong>, <strong>2</strong>, and <strong>4</strong> here the starting and end times are given in microseconds. For the non-&mu;SR fit type <strong>8</strong> the starting and end points of the fitting range are given in the units of the <i>x</i> data.<br><span class='foswikiRedFG'>In case the fit range specified here is larger than the <a class="foswikiCurrentTopicLink" href="#DataRange">data range</a> (in any direction), eventually the <a class="foswikiCurrentTopicLink" href="#DataRange">data range</a> will be used as fit range.</span> An example for a &mu;SR fit:<pre>
fit 0.2 8.5
</pre>Which means that the fitting window will span from 0.2 to 8.5 microseconds.<br> Another possibility for the &mu;SR fits is to give the fit range in bins, rather than time. The syntax is then: <pre>fit fgb+&#60;n0&#62; lgb-&#60;n1&#62;,</pre> where <strong>fgb</strong> and <strong>lgb</strong> are label tags which refer to the 'first good bin' and the 'last good bin' defined either in the <code><b>data</b></code> tag of the run block, data file, are estimated based on T0. &lt;n0&gt; and &lt;n1&gt; are offsets (given in bins) allowing to change the fit window compared to the data window. An example: <pre>fit fgb+150 lgb-1332</pre>
</dd></dl>
<p></p> <dl>
<dt> packing </dt><dd> Number of data channels to be binned together. For the non-&mu;SR fit type <strong>8</strong> the binning is supposed to be 1. For the <code>single histogram RRF fit</code> (<code>fittype 1</code>) and <code>asymmetry RRF fit</code> (<code>fittype 3</code>) this parameter is meaningless.
</dd></dl>
<p></p>
<span id="TheCommandsBlock"></span>
<h2 id="A_4.7_The_COMMANDS_Block"> 4.7 The COMMANDS Block </h2>
The COMMANDS block is used to specify the commands which are passed from <code>musrfit</code> to <code>MINUIT2</code>. The supported commands after the COMMANDS keyword are <strong>STRATEGY</strong>, <strong>MIGRAD</strong>, <strong>SIMPLEX</strong>, <strong>MINIMIZE</strong>, <strong>MINOS</strong>, <strong>HESSE</strong>, <strong>SAVE</strong>, some additional commands described below, and for compatibility reasons <strong>SET BATCH</strong> and <strong>END RETURN</strong>. The last two commands may appear in the COMMANDS block but are simply ignored.
A detailed description of all of these commands can be found in the <a href="http://seal.web.cern.ch/seal/documents/minuit/mnusersguide.pdf">MINUIT2 users guide</a> <span class='foswikiIcon'><img src='../pub/System/DocumentGraphics/pdf.png' width='16' height='16' alt='pdf' /></span>.
<p></p>
A standard COMMANDS block then looks like this:<pre>
COMMANDS
MINIMIZE
MINOS
SAVE
</pre>
<p></p>
Additional to the commands listed above also the command <strong>MAX_LIKELIHOOD</strong> is valid. This keyword can be placed anywhere in the block and switches from the default &#967;<sup>2</sup> minimization to the log-likelihood maximization which can be advantageous if one is dealing with low-statistics data.
<p></p>
Furthermore, it is possible to call the <code>MINUIT2</code> methods <strong>SCAN</strong> and <strong>CONTOURS</strong>. Exemplary invocations are as follows:<pre>
COMMANDS
SCAN 7
MNPLOT
</pre>
<p></p>
<pre>
COMMANDS
MINIMIZE
CONTOURS 8 9
MNPLOT
SAVE
</pre>
<p></p>
Sometimes it is necessary to guide <code>MINUIT2</code> to the global optimum. For this purpose it is useful to have the commands <strong>FIX list_of_param_to_be_fixed</strong>, <strong>RELEASE list_of_param_to_be_fixed</strong>, and <strong>RESTORE</strong> at hand. <strong>list_of_param_to_be_fixed</strong> is a list of the parameters to be fixed/released. It is a space- or comma-separated list of either parameter numbers and/or parameter names. <strong>RESTORE</strong> releases all the fixed parameters. A typical example could look like:<pre>
COMMANDS
FIX Freq1, Freq2
MINIMIZE
RESTORE
MINIMIZE
MINOS
SAVE
</pre>
<p></p>
It is important to understand that before <strong>MINOS</strong> is called, all the fixed parameters need to be released and another minimizer command (<strong>MINIMIZE</strong>, <strong>MIGRAD</strong>, or <strong>SIMPLEX</strong>) needs to be in place, otherwise <code>musrfit</code> will assume that the still fixed parameters have to be handled as constant parameters, i.e. setting the &lt;step&gt; value of the parameter to zero.
<p></p>
For even more complex fitting the additional command <strong>FIT_RANGE RESET | <i>t</i><sub>start</sub> <i>t</i><sub>end</sub> | <i>t</i><sub>s1</sub> <i>t</i><sub>e1</sub> <i>t</i><sub>s2</sub> <i>t</i><sub>e2</sub> ... <i>t</i><sub>s<i>n</i></sub> <i>t</i><sub>e<i>n</i></sub></strong> is provided. It allows to change the fit range during different iterations. The command <strong>FIT_RANGE <i>t</i><sub>start</sub> <i>t</i><sub>end</sub></strong> changes the current fit range for <code>all</code> the runs present in the msr file. <strong>FIT_RANGE RESET</strong> will restore to the original fit ranges as provided in the <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN block</a>. If for each run of the msr file an individual fit range should be used, the third option applies. Here <strong><i>n</i></strong> has to correspond to the number of runs in the RUN block.
<p></p>
As for the run block, there is a 2nd flavor how the <strong>FIT_RANGE</strong> can be changed, namely giving the fit range in bins, i.e. <strong>FIT_RANGE RESET | fgb+&lt;n0&gt; lgb-&lt;n1&gt; | fgb+&lt;n00&gt; lgb-&lt;n01&gt; fgb+&lt;n10&gt; lgb-&lt;n11&gt; ... fgb+&lt;nN0&gt; lgb-&lt;nN1&gt;</strong> where <strong>N</strong> is the number of available run blocks. The idea is inline with the above syntax and the syntax describe for the fit range (<strong>fit</strong>) of the <a class="foswikiCurrentTopicLink" href="#TheRunBlock">RUN block</a>.
<p></p>
A typical example could look like:<pre>
COMMANDS
FIT&#95;RANGE 0.0 0.8
MINIMIZE
FIT&#95;RANGE RESET
MINIMIZE
MINOS
SAVE
</pre> or
<pre>
COMMANDS
FIT&#95;RANGE fgb+15 lgb-1332 fgb+17 lgb-1330
MINIMIZE
FIT&#95;RANGE RESET
MINIMIZE
MINOS
SAVE
</pre>
<p></p>
<span id="ScaleNzero"></span>
The last accepted command in the COMMAND block is <strong>SCALE_N0_BKG TRUE | FALSE</strong>. This command is only used in conjunction with single-histogram fits. The default is <strong>SCALE_N0_BKG TRUE</strong> which will result in a scaling of <i>N</i>(<i>t</i>) such that it is given in ns<sup>-1</sup>, whereas with <strong>SCALE_N0_BKG FALSE</strong> no scaling is performed and <i>N</i>(<i>t</i>) will be given in bin<sup>-1</sup>. If the command is not present at all, it will be interpreted as if <strong>SCALE_N0_BKG TRUE</strong> was present.
<p></p>
<span id="PrintLevel"></span>
For debug purposes it is possible to force MINUIT2 to print out additional informations. The COMMAND block command is <strong>PRINT_LEVEL &lt;n&gt;</strong>, where <strong>&lt;n&gt;</strong> can have the values 0,1,2, or 3. A typical example could look like:<pre>
COMMANDS
MIGRAD
SAVE
PRINT&#95;LEVEL 3
MINOS
SAVE
</pre>
Here the <code>MINOS</code> command will print out lot of additional information to the standard output. Notice there are 2 <code>SAVE</code> commands here. This will write the result of <code>MIGRAD</code> to the <code>MINUIT2.OUTPUT</code> file and at the end <em>append</em> the <code>MINOS</code> results to this file.
<p></p>
<span id="TheFourierBlock"></span>
<h2 id="A_4.8_The_FOURIER_Block"> 4.8 The FOURIER Block </h2>
The Fourier transform is done and the results are plotted within <code>musrview</code> &mdash;as input data the actual data shown in <code>musrview</code> is used. In the FOURIER block of the msr file all necessary parameters for calculating and presenting the Fourier transform of the data specified in the <a class="foswikiCurrentTopicLink" href="#ThePlotBlock">PLOT block</a> is given. If the FOURIER block is not present in the msr file, either the parameters set in the <a class="foswikiCurrentTopicLink" href="#MusrfitStartupXml">XML startup file</a> or the system defaults are taken when the Fourier transform is performed. The block starts with the FOURIER keyword and may contain the following entries on the successive lines: <dl>
<dt> units </dt><dd> Here is specified in which domain the Fourier-transformed data is presented. One may choose between the fields (<strong>Gauss</strong>) or (<strong>Tesla</strong>), the frequency (<strong>MHz</strong>), and the angular-frequency domain (<strong>Mc/s</strong>).
</dd> <dt> fourier_power </dt><dd> It is possible (but not necessary) to set the number of data points used for the Fourier transform here. As argument the exponent <i>n</i>&lt;21 of a power of 2 is accepted. The number of data points is then 2<sup><i>n</i></sup>. <strong>Attention:</strong> If the number of points given here is bigger than the actual number of available data points, the input data vector is filled with zeros until the number of requested points is reached (zero padding)!
</dd> <dt> dc-corrected </dt><dd> a flag to remove a potential DC-offset of the signal. Allowed entries are <code>dc-corrected true | 1 | false | 0</code>.
</dd> <dt> apodization </dt><dd> Here is decided if the data should be apodized before the Fourier transform is done and if yes, which apodization should be used (for further details about apodization of &mu;SR data refer to <a href="https://dspace.library.ubc.ca/bitstream/handle/2429/2004/ubc_1993_spring_phd_riseman_tanya.pdf?sequence=1">the PhD thesis of T.M. Riseman</a>). The argument to be put after the keyword is therefore one of the following: <strong>NONE</strong>, <strong>WEAK</strong>, <strong>MEDIUM</strong> or <strong>STRONG</strong>. If the data should be apodized, they are manipulated as follows: each data value is multiplied by the function <img alt="\sum&#95;{j&#61;0}^4 c&#95;j \left(\frac{i}{n}\right)^{2j}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_cf09f406a2bf16c5f0c20c11d502f3b6.png" size="footnotesize" />, where <img alt="i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c465118a8d86d5f25bba37cc1dcb38a0.png" /> is the data-point index and <img alt="n" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_2be9dcd7bf20bd9b6ae1aae11ded7c43.png" /> is the total number of data points. The coefficients <img alt="c&#95;j" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_efe7e111043faa761548a2e4bfa741ca.png" /> for the different apodizations are given by: <dl>
<dt> WEAK </dt><dd> <img alt="c&#95;0 &#61; 1,\, c&#95;1 &#61; -1.319391,\, c&#95;2 &#61; 0.703484,\, c&#95;3&#61;c&#95;4&#61;0" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_ab5be67e3c585fe71d839ada9222b051.png" />
</dd> <dt> MEDIUM </dt><dd> <img alt="c&#95;0 &#61; 1,\, c&#95;1 &#61; -1.831292,\, c&#95;2 &#61; 0.983734,\, c&#95;3&#61;c&#95;4&#61;0" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f2ef2223eea8b06da51ecb20c450fa4a.png" />
</dd> <dt> STRONG </dt><dd> <img alt="c&#95;0 &#61; 1,\, c&#95;1 &#61; -2.708894,\, c&#95;2 &#61; 2.953575,\, c&#95;3&#61;-1.599128,\, c&#95;4&#61;0.399782" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b8a915ef0eb8aa8e117519d01dfb10c1.png" />
</dd></dl>
</dd> <dt> plot </dt><dd> At this point it is possible to set the part of the Fourier-transformed data which should be plotted by default if the Fourier transform is done by pressing the <b>f</b>-key in <code>musrview</code>. The argument may be one of the following: <dl>
<dt> real </dt><dd> The real part of the (complex) Fourier transform is plotted.
</dd> <dt> imag </dt><dd> The imaginary part of the Fourier transform is plotted.
</dd> <dt> real_and_imag </dt><dd> Both the real and the imaginary parts of the Fourier transform are shown.
</dd> <dt> power </dt><dd> The absolute value of the Fourier transform is depicted.
</dd> <dt> phase </dt><dd> The phase of the Fourier transform is plotted.
</dd></dl>
</dd> <dt> phase </dt><dd> The initial phase of the input data is given here in degrees. Optionally the phase parameter from the FITPARAMETER block can be given, e.g. <code><b>par3</b></code>, which would take the value of parameter number 3.
</dd> <dt> range_for_phase_correction </dt><dd> An interval in Fourier space given in units as define with the 'units' tag, or the tag 'all' in which case the range given under 'range' will be used. The given interval will be used for an automatic phasing of the real Fourier transform. This will allow to add real Fourier spectra coherently.
</dd> <dt> range </dt><dd> The plotting range is set here. The interval is specified through its start and end points given in the units set after the <strong>units</strong> tag.
</dd></dl>
<p></p>
Altogether, a possible FOURIER block might look like that:
<pre>
FOURIER
units Mc/s
fourier&#95;power 12
apodization NONE
plot real&#95;and&#95;imag
phase 22.6 # par3
range&#95;for&#95;phase&#95;correction all
range 0.0 17.03
</pre>
<p></p>
<p></p>
<p></p>
Notes
<p></p>
<a name="FootNote12note"></a><span class="FootNoteLabel"><a href="#FootNote12text"><b>l</b></a></span>: <span class="FootNote">for a more detailed discussion about the shortcomings of RRF fits see the RRF memo found under &lt;musrfit&gt;/doc/memo/rrf</span>
<p></p>
<p></p>
<p></p>
<hr />
<p></p>
<span id="ThePlotBlock"></span>
<h2 id="A_4.9_The_PLOT_Block"> 4.9 The PLOT Block </h2>
The PLOT block is intended to collect all the information needed for the graphical presentation of the data and fits using <code>musrview</code>. The PLOT keyword at the beginning of the block is followed by a number which indicates the plot type. The plot types match the <a class="foswikiCurrentTopicLink" href="#FitTypes">fit types</a>. Additionally, it is possible to provide information using the following keywords: <dl>
<dt> lifetimecorrection </dt><dd> Does not accept any arguments. If present, the output in <code>musrview</code> is corrected for the exponential decay of the muon. Only relevant for (type 0).
</dd> <dt> runs </dt><dd> The numbers of the runs to be plotted have to be put here. The runs are numbered according to their appearance in the RUN block.
</dd> <dt> range </dt><dd> Here it is possible to define the plotting range explicitly. Depending on the plot type the following settings are allowed where the times are given in microseconds and the <i>N</i> in counts (type 0, 4) or in counts/nsec (type 0): <dl>
<dt> 0 without lifetimecorrection, 4 </dt><dd> <i>t</i><sub>min</sub> <i>t</i><sub>max</sub> [ <i>N</i><sub>min</sub> <i>N</i><sub>max</sub> ]
</dd> <dt> 0 with lifetimecorrection, 2 </dt><dd> <i>t</i><sub>min</sub> <i>t</i><sub>max</sub> [ <i>A</i><sub>min</sub> <i>A</i><sub>max</sub> ]
</dd> <dt> 8 </dt><dd> <i>x</i><sub>min</sub> <i>x</i><sub>max</sub> [ <i>y</i><sub>min</sub> <i>y</i><sub>max</sub> ]
</dd></dl>
</dd> <dt> sub_ranges </dt><dd> Here it is possible to define the plotting range for each run individually. For the different plot types the command has the structure <dl>
<dt> 0 without lifetimecorrection, 4 </dt><dd> <i>t</i><sub>min</sub><sup>1</sup> <i>t</i><sub>max</sub><sup>1</sup> <i>t</i><sub>min</sub><sup>2</sup> <i>t</i><sub>max</sub><sup>2</sup> ... <i>t</i><sub>min</sub><sup><i>n</i></sup> <i>t</i><sub>max</sub><sup><i>n</i></sup> [ <i>N</i><sub>min</sub> <i>N</i><sub>max</sub> ] (<i>n</i> = the number of runs to be plotted)
</dd> <dt> 0 with lifetimecorrection, 2 </dt><dd> <i>t</i><sub>min</sub><sup>1</sup> <i>t</i><sub>max</sub><sup>1</sup> <i>t</i><sub>min</sub><sup>2</sup> <i>t</i><sub>max</sub><sup>2</sup> ... <i>t</i><sub>min</sub><sup><i>n</i></sup> <i>t</i><sub>max</sub><sup><i>n</i></sup> [ <i>A</i><sub>min</sub> <i>A</i><sub>max</sub> ] (<i>n</i> = the number of runs to be plotted)
</dd> <dt> 8 </dt><dd> not yet implemented.
</dd></dl>
</dd> <dt> use_fit_ranges [ <i>y</i><sub>min</sub> <i>y</i><sub>max</sub>] </dt><dd> The fit ranges of the individual runs are used to present the data. Optionally, an ordinate range can be provided.
</dd> <dt> view_packing </dt><dd> The data are presented in the packing given here rather than the binning used for the fit. <strong>WARNING</strong>: This is a global option and applies to <strong>all</strong> PLOT-blocks.
</dd> <dt> logx </dt><dd> Will present the time axis in a logarithmic scale. So far no checking of negative and zero-valued data is performed <img class='smily' src='../pub/Main/SmiliesPluginPSI_/wink.gif' alt='wink' title='wink' />
</dd> <dt> logy </dt><dd> Will present the axis of ordinates in a logarithmic scale. So far no checking of negative and zero-valued data is performed <img class='smily' src='../pub/Main/SmiliesPluginPSI_/wink.gif' alt='wink' title='wink' />
</dd> <dt> rrf_packing <code>value</code> </dt><dd> In the rotating-reference-frame (RRF) representation, this will be the value for the packing. <strong>WARNING</strong>: For the time being, this is a global option and applies to <strong>all</strong> PLOT blocks.
</dd> <dt> rrf_freq <code>value</code> <code>unit</code> </dt><dd> This entry provides the RRF "frequency" given by the <code>value</code> and the <code>unit</code> which can be: <code>kHz</code>, <code>MHz</code>, <code>Mc/s</code>, <code>G</code>, or <code>T</code>.
</dd> <dt> rrf_phase <code>value</code> </dt><dd> A phase of the RRF can be provided, either as a value in degrees, or as a <code>parX</code>, e.g. <code>par4</code>, where <code>X</code> is supposed to be the phase parameter number in the FITPARAMETER block.
</dd></dl>
<p></p>
If no plot range is given at all, the fit range of the first run also serves as time window for the plot. In the case no information on the axis of ordinates is available, the plotting range is chosen so that all data can be presented.
<p></p>
It is possible to define multiple PLOT blocks. Each PLOT block generates its own <code>ROOT</code> canvas.
<p></p>
A few comments concerning the rotating reference frame (rrf) plot option: the idea of the rrf is to transform a high frequency &mu;SR spectrum into a low frequency spectrum. This is essentially done by multiplying the original asymmetry <img alt="A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_125ae4b9a7d16163023ce9cb3043aa0a.png" /> by <img alt="\cos(\omega&#95;{\rm rrf} t + \phi&#95;{\rm rrf})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_edb200aa0d625d2d5cebb519d8d1f838.png" />. This leads to two frequency shifted copies of the original <img alt="A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_125ae4b9a7d16163023ce9cb3043aa0a.png" />, one shifted downwards in frequency by <img alt="\omega&#95;{\rm rrf}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_89458ff127e694cf28c0cdc314de62d1.png" /> (to wanted one) and one upwards (unwanted one). In order to get rid of the upward shifted spectrum, the <code>rrf_packing</code> is used, we just over-bin the high frequency copy (for now. In the future this will be dealt with FIR filtering)! The theory, however, is filtered via Kaiser filter. Here a short example:
<p></p>
<pre>
###############################################################
PLOT 0 (single histo plot)
runs 1
range 0 10 -0.3 0.3
rrf&#95;freq 13900 G
rrf&#95;packing 75
</pre>
<p></p>
<span id="TheStatisticBlock"></span>
<h2 id="A_4.10_The_STATISTIC_Block"> 4.10 The STATISTIC Block </h2>
The STATISTIC block is the last block of a msr file. It contains some information on the fit: the date and time as well as the absolute and normalized values of &#967;<sup>2</sup> and the number of degrees of freedom in the fit.<br>
If enabled in the <a class="foswikiCurrentTopicLink" href="#MusrfitStartupXml">XML file</a> for &chi;<sup>2</sup>-<a class="foswikiCurrentTopicLink" href="#SingleHistogramFit">single-histogram fits</a> also <a href="http://en.wikipedia.org/wiki/Pearson's_chi-square_test">Pearson's &chi;<sup>2</sup></a> will be written to the STATISTIC block.<br>
These information only have a meaning if the fitting procedure has been executed at least once and the fit has converged!
<p></p>
<span id="TheFitTypes"></span>
<h1 id="A_5_The_Fit_Types"> 5 The Fit Types </h1>
<p></p>
<span id="SingleHistogramFit"></span>
<h2 id="A_5.1_Single_Histogram_Fit"> 5.1 Single Histogram Fit </h2>
The single-histogram fit (fit type <strong>0</strong>) is used to fit a function directly to the raw data using
<div style="text-align:center">
<img alt="N(t)&#61;N&#95;0\,\mathrm{e}^{-t/\tau&#95;{\mu}} \left&#91;1+A(t)\right]+N&#95;{\rm bkg}." class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_f19fedf2f7c0c0d4c869d0c7c0070aeb.png" />
</div>
The parameters are given by: <dl>
<dt> <img alt="N(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_014e8cd7847b5402573b3292b2569731.png" /> </dt><dd> rebinned decay histogram
</dd> <dt> <img alt="N&#95;0" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_d2ada4d93e287ac42a3681e58c96b105.png" /> </dt><dd> normalization constant of the histogram (RUN block: <strong>norm</strong>)
</dd> <dt> <img alt="\tau&#95;{\mu}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_568ee751220d0e7d171a7ebb6da328b9.png" /> </dt><dd> lifetime of the muon (RUN block: <strong>lifetime</strong>)
</dd> <dt> <img alt="N&#95;{\rm bkg}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_8024ece95f6c092834e35ca64920583a.png" /> </dt><dd> constant background (RUN block: <strong>backgr.fit</strong> or <strong>background</strong>)
</dd> <dt> <img alt="A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_125ae4b9a7d16163023ce9cb3043aa0a.png" /> </dt><dd> decay asymmetry/depolarization function as given in the THEORY block
</dd></dl>
<p></p>
In the plot type <strong>0 without lifetimecorrection</strong> the rebinned histogram and the function <img alt="N(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_014e8cd7847b5402573b3292b2569731.png" /> written above are presented.
If the option <strong>lifetimecorrection</strong> is set in the PLOT block the asymmetry is plotted:
<div style="text-align:center">
<img alt="A(t)&#61;\frac{N(t)-N&#95;{\rm bkg}}{N&#95;0\,\mathrm{e}^{-t/\tau&#95;{\mu}}}-1" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_1f6a4872a5556d809b896252d177f297.png" />
</div>
<p></p>
<span id="SingleHistogramRrfFit"></span>
<h2 id="A_5.2_Single_Histogram_RRF_Fit"> 5.2 Single Histogram RRF Fit </h2>
The single-histogram RRF fit (fit type <strong>1</strong>) is used to fit the rotating reference frame asymmetry <img alt="A&#95;{\rm rrf}(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_409b6ae604705cd9a31d089bcfba146b.png" /> extracted from the raw data. The currently implemented version will <strong>fail</strong> at low fields/frequencies (for about &lt; 1 Tesla). The same is true, if multiple frequencies with large enough separation are present, e.g. when dealing with muonium. <img alt="A&#95;{\rm rrf}(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_409b6ae604705cd9a31d089bcfba146b.png" /> is estimated the following way (for more details see the RRF memo): <ol>
<li> define the background <img alt="N&#95;{\rm bkg}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_8024ece95f6c092834e35ca64920583a.png" />, and subtract it from the raw histogram.
</li> <li> calculate the property <img alt="M(t) &#61; &#91;N(t)-N&#95;{\rm bkg}] \exp(+t/\tau)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e8298362de8db0a5a1d74d409427e7d2.png" />.
</li> <li> estimate <img alt="N&#95;0" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_d2ada4d93e287ac42a3681e58c96b105.png" />. This is the most tricky part. From this calculate <img alt="A(t) &#61; M(t)/N&#95;0 -1" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_eec594f64bc6a88c4e6ff8ae6fae8816.png" />.
</li> <li> now the RRF transformation takes place: <img alt="A&#95;{\rm rrf}(t) &#61; 2 \cos(\omega&#95;{\rm rrf} t + \phi&#95;{\rm rrf}) A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_7cd3c4b24d4a0c837964ae6b635f9ee0.png" />. In Fourier space this is leading to <img alt="&#91;A(\omega-\omega&#95;{\rm rrf})+A(\omega+\omega&#95;{\rm rrf})]" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_9c7fbcfa6252ecf134381d9921d16bbc.png" />.
</li> <li> in order to get rid if the <img alt="A(\omega+\omega&#95;{\rm rrf})" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_5c718f2fbcec7dd36986d69a28eda3db.png" /> component, <img alt="A&#95;{\rm rrf}(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_409b6ae604705cd9a31d089bcfba146b.png" /> is over-binned by the <code>rrf_packing</code>. This results in a signal <img alt="\langle A&#95;{\rm rrf}(t) \rangle&#95;{p}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_3ee4cdd2dc2829c9d29c0f213de51785.png" /> which ideally is <img alt="A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_125ae4b9a7d16163023ce9cb3043aa0a.png" /> shifted down in frequency by <img alt="\omega&#95;{\rm rrf}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_89458ff127e694cf28c0cdc314de62d1.png" />.
</li></ol>
<p></p>
The <code>single histogram RRF fit</code> was introduced for online analysis <strong>only</strong>. It is leading to many uncontrolled effects like ghost lines due to imperfection of the <img alt="N&#95;0" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_d2ada4d93e287ac42a3681e58c96b105.png" /> estimate, line shape distortion due to dispersive filtering originating from the packing, back folding problems if <img alt="\omega&#95;{\rm rrf}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_89458ff127e694cf28c0cdc314de62d1.png" /> is not properly chosen, etc. <strong>In summary: if you not urgently need it: do not use it! There are better ways to deal with the analysis of high frequency data!</strong>
<p></p>
<span id="AsymmetryFit"></span>
<h2 id="A_5.3_Asymmetry_Fit"> 5.3 Asymmetry Fit </h2>
For an asymmetry fit (fit type <strong>2</strong>) two histograms are needed. These are given by the <strong>forward</strong> and <strong>backward</strong> keywords in the RUN block.
Additionally, the parameters <strong>alpha</strong> and <strong>beta</strong> which relate the detector efficiencies, solid angles and initial asymmetries of the two detectors can be supplied.
The constant background for the two histograms is either given by <b>background</b>-determined intervals or specified through <strong>backgr.fix</strong> in the RUN-block.
<p></p>
The experimental asymmetry <img alt="a(k)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_3285744b1914390b321f67f390129f79.png" /> then is inferred from the two histograms:
<div style="text-align:center">
<img alt="a(k)&#61;\frac{\left&#91;N&#95;{\mathrm{f}}(k)-B&#95;{\mathrm{f}}\right]-\left&#91;N&#95;{\mathrm{b}}(k)-B&#95;{\mathrm{b}}\right]}{\left&#91;N&#95;{\mathrm{f}}(k)-B&#95;{\mathrm{f}}\right]+\left&#91;N&#95;{\mathrm{b}}(k)-B&#95;{\mathrm{b}}\right]}," class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_82fec90aa9e6eeaba9267ad46f426909.png" />
</div>
with <dl>
<dt> <img alt="N&#95;{\mathrm{f}}(k)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_24c06da56000c5aba89b43d3d082d566.png" /> </dt><dd> counts in the <strong>forward</strong> histogram channel <img alt="k" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_022741828ce174efdb6387e198d4d174.png" />
</dd> <dt> <img alt="N&#95;{\mathrm{b}}(k)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_50ba40cfb1308d024ff074655f531705.png" /> </dt><dd> counts in the <strong>backward</strong> histogram channel <img alt="k" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_022741828ce174efdb6387e198d4d174.png" />
</dd> <dt> <img alt="B&#95;{\mathrm{f}}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_b10bf8314f158b72e1e3462ba2d23fcc.png" /> </dt><dd> constant background in the <strong>forward</strong> histogram (RUN block: <strong>backgr.fix</strong> or <strong>background</strong>)
</dd> <dt> <img alt="B&#95;{\mathrm{b}}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_984f3a1c5d0c04f9471fa518f6f4ab22.png" /> </dt><dd> constant background in the <strong>backward</strong> histogram (RUN block: <strong>backgr.fix</strong> or <strong>background</strong>).
</dd></dl>
<p></p>
This asymmetry <img alt="a(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e214a7f954b15a31e60dd40d50c4ad27.png" /> is used to fit the function
<div style="text-align:center">
<img alt="a(t)&#61;\frac{(\alpha\beta +1)A(t)-(\alpha -1)}{(\alpha +1)-(\alpha\beta -1)A(t)}," class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_08b9deccddc142bcb30845cad4579dd1.png" />
</div>
where <dl>
<dt> <img alt="\alpha" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_3e7298348ee1858b6fe4147c47afb5e3.png" /> </dt><dd> accounts for the different detector efficiencies and solid angles (RUN block: <strong>alpha</strong>)
</dd> <dt> <img alt="\beta" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_db3bf440f0c0846df16574e72743d947.png" /> </dt><dd> accounts for the different detector asymmetries (RUN block: <strong>beta</strong>)
</dd> <dt> <img alt="A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_125ae4b9a7d16163023ce9cb3043aa0a.png" /> </dt><dd> is the depolarization function as given in the THEORY block.
</dd></dl>
<p></p>
For the graphical representation in plot type <strong>2</strong> the equation above is rearranged to get <img alt="A(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_125ae4b9a7d16163023ce9cb3043aa0a.png" />:
<div style="text-align:center">
<img alt="A(t)&#61;\frac{(\alpha -1)+(\alpha +1)a(t)}{(\alpha\beta +1)+(\alpha\beta -1)a(t)}&#61;\frac{\alpha\left&#91;N&#95;{\mathrm{f}}(t)-B&#95;{\mathrm{f}}\right]-\left&#91;N&#95;{\mathrm{b}}(t)-B&#95;{\mathrm{b}}\right]}{\alpha\beta\left&#91;N&#95;{\mathrm{f}}(t)-B&#95;{\mathrm{f}}\right]+\left&#91;N&#95;{\mathrm{b}}(t)-B&#95;{\mathrm{b}}\right]}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_fb83ec4be8b40d398fd520ee8a09f36d.png" />
</div>
and plotted together with the function given in the THEORY block.
<p></p>
<span id="AsymmetryRrfFit"></span>
<h2 id="A_5.4_Asymmetry_RRF_Fit"> 5.4 Asymmetry RRF Fit </h2>
For asymmetry RRF Fit (fit type <strong>3</strong>) two histograms are needed. In a first step, the unbinned asymmetry is formed as described for the asymmetry fit. Afterwards the RRF transformation is carried out, i.e. point 4. and 5. as sketched in the single histogramm RRF fit. The same reservations as for the single histogram RRF fit apply: <strong>if you not urgently need it: do not use it! There are better ways to deal with the analysis of high frequency data!</strong>
<p></p>
<span id="MuMinusFit"></span>
<h2 id="A_5.5_Negative_Muon_SR_Fit"> 5.5 Negative Muon &mu;SR Fit </h2>
The negative muon &mu;SR fit (fit type <strong>4</strong>) is used for single histogram fits of MuMinus, i.e.
<div style="text-align:center">
<img alt="N(t) &#61; \sum&#95;i N&#95;i\,\mathrm{e}^{-t/\tau&#95;i} \left&#91; 1 + A&#95;i(t)\right] + N&#95;{\rm bkg}(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_a6e7fae88607100e780df97caf1683cf.png" />
</div>
where <img alt="i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c465118a8d86d5f25bba37cc1dcb38a0.png" /> runs over the different lifetime channels of <img alt="\mu^{-}" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e5709fc3ddb272adeaa7258d3d25ab22.png" />, and <dl>
<dt> <img alt="N&#95;i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e52a515ef5edcb18f7f96aedab4af26e.png" /> </dt><dd> counts of lifetime channel <img alt="i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c465118a8d86d5f25bba37cc1dcb38a0.png" />
</dd> <dt> <img alt="\tau&#95;i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_65bea57ac8fb766c4f93ca77947937f5.png" /> </dt><dd> lifetime of lifetime channel <img alt="i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c465118a8d86d5f25bba37cc1dcb38a0.png" />
</dd> <dt> <img alt="A&#95;i(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_a57c0747dc272c95ffb683f35359ecf9.png" /> </dt><dd> depolarization function of lifetime channel <img alt="i" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_c465118a8d86d5f25bba37cc1dcb38a0.png" />
</dd> <dt> <img alt="N&#95;{\rm bkg}(t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_5e07a020de661906573e8fed8eff32bf.png" /> </dt><dd> <img alt="N&#95;{\rm bkg}(t)&#61; N&#95;{\rm bkg,0} + \sum&#95;k N&#95;{\rm bkg,k} \cos(k \omega&#95;{\rm cyclotron} t)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_53e41adf70ef506cc7668f8593a1b501.png" /> the background
</dd></dl>
<p></p>
Since MuMinus is quite generic, the full functional depends has to be written in the <a class="foswikiCurrentTopicLink" href="#TheTheoryBlock">THEORY Block</a>.
<p></p>
<span id="NonMusrFit"></span>
<h2 id="A_5.6_Non_45SR_Fit"> 5.6 Non-&mu;SR Fit </h2>
In the case of a non-&mu;SR fit (fit type <strong>8</strong>) the fitting function is
<div style="text-align:center">
<img alt="y&#61;f(x)," class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e46e9694bce68e1d38783e4cc8328e31.png" />
</div>
where <dl>
<dt> <img alt="x,\,y" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_e1a48f3da2196769b40a2a6183f83891.png" /> </dt><dd> are given by <strong>xy-data</strong> in the RUN block
</dd> <dt> <img alt="f(x)" class="mmpImage" src="../pub/MUSR/MusrFit/_MathModePlugin_2508962dd22d85bdaebb0d6a483c4b3f.png" /> </dt><dd> is the function defined in the THEORY block.
</dd></dl>
<p></p>
The same is valid for the plot with plot type <strong>8</strong>.
<p></p>
<span id="UserFunctions1"></span>
<h1 id="A_6_User_Functions"> 6 User Functions </h1>
<code>musrfit</code> offers the possibility to plug-in user-defined functions implemented in <code>C++</code> classes to the fitting and plotting routines. In order to do so, basically two things are needed: <ol>
<li> a shared library containing the compiled class with the defined function
</li> <li> a <a href="http://root.cern.ch/drupal/content/interacting-shared-libraries-rootcint">ROOT dictionary</a> that contains information about the functions in the shared library
</li></ol>
<p></p>
There are two possible ways to implement user functions and both will be explained below: <ol>
<li> a user function <strong>without</strong> global user-function-object access
</li> <li> a user function <strong>with</strong> global user-function-object access
</li></ol>
<p></p>
Since the first is simpler this will be explained using an explicit example, before it is discussed why the second option is needed and how it can be used.
<p></p>
<span id="UserFcnWithoutGlobal"></span>
<h2 id="A_6.1_User_Function_without_global_user_45function_45object_access"> 6.1 User Function without global user-function-object access </h2>
<p></p>
In the following it is explained in detail how the implementation of a user function is done using the simple example of <i>f</i><sub><i>a</i></sub>(<i>x</i>) = sin(<i>ax</i>)/<i>ax</i>, where the parameter <i>a</i> should be determined by the fit. Although not necessary for this simple example, the source code is split into two parts, namely a header file <strong>TMyFunction.h</strong> containing the class declaration and a second file <strong>TMyFunction.cpp</strong> including the function implementation.
<p></p>
To plug in the class to <code>musrfit</code>, it is necessary that the class derives from the base class <strong>PUserFcnBase</strong> defined in the header file <strong>PUserFcnBase.h</strong>. In this abstract base class a function operator is defined that takes two arguments: the point where the function should be evaluated and a reference to a vector with all parameters of the function. Therefore, the user's header file could look like the following:
<pre class="cplusplus">
/&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;
TMyFunction.h
&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;/
#include &#34;PUserFcnBase.h&#34;
#include &#60;cassert&#62;
#include &#60;cmath&#62;
#include &#60;vector&#62;
using namespace std;
class TMyFunction : public PUserFcnBase {
public:
// default constructor and destructor
TMyFunction(){}
~TMyFunction(){}
// global user-function-access functions, here without any functionality
Bool&#95;t NeedGlobalPart() const { return false; }
void SetGlobalPart(vector&#60;void&#42;&#62; &#38;globalPart, UInt&#95;t idx) { }
Bool&#95;t GlobalPartIsValid() const { return true; }
// function operator
Double&#95;t operator()(Double&#95;t, const vector&#60;Double&#95;t&#62;&#38;) const;
// definition of the class for the ROOT dictionary
ClassDef(TMyFunction,1)
};
</pre>
<p></p>
In the header file above the constructor (destructor) of the class is empty. This is not necessary. Any code that should be executed when the RUN block is read and the class object is created (destroyed) may be implemented in the constructor (destructor). Another peculiarity is the ClassDef statement at the end of the class definition. It is needed for the <code>ROOT</code> dictionary generation and has as arguments the class name and a revision number.
<p></p>
Please also be aware of the const-ness of the operator(). For an introductory discussion on that topic look for example <a href="http://en.wikipedia.org/wiki/Const_correctness">here</a> and the links herein.
<p></p>
The actual implementation of the user function is done in the second source file. In this example it only contains the definition of the function operator() declared in the header file and might look like:
<p></p>
<pre class="cplusplus">
/&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;
TMyFunction.cpp
&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;/
#include &#34;TMyFunction.h&#34;
ClassImp(TMyFunction) // for the ROOT dictionary
Double&#95;t TMyFunction::operator()(Double&#95;t x, const vector&#60;Double&#95;t&#62; &#38;par) const {
assert(par.size()&#61;&#61;1); // make sure the number of parameters handed to the function is correct
Double&#95;t arg(par&#91;0&#93;&#42;x);
if(!arg)
return 1.0;
return sin(arg)/arg;
}
</pre>
<p></p>
Also this file contains a special statement for the <code>ROOT</code> dictionary generation (ClassImp), which is placed before the definition of the function. If functions of more than one class are defined in the file, the ClassImp statements for the other classes follow right after the first one.
<p></p>
What is further needed for the <code>ROOT</code> dictionary is a so-called LinkDef file which again contains the class names of all classes that should be accessible through the dictionary and has the following structure, where the "LinkDef.h" (or "linkdef.h" or "Linkdef.h") at the end of the file name is mandatory:
<p></p>
<pre class="cplusplus">
/&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;
TMyLibraryLinkDef.h
&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;/
#ifdef &#95;&#95;CINT&#95;&#95;
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class TMyFunction+;
#endif //&#95;&#95;CINT&#95;&#95;
</pre>
<p></p>
For compiling and linking it is wise to use a Makefile as for example the attached <a href="../pub/MUSR/MusrFit/Makefile.html">Makefile.TMyLibrary</a>. It assumes standard <code>ROOT</code> and <code>musrfit</code> installations and defines rules for the generation of the shared library <strong>libTMyLibrary.so</strong> including the class and the <code>ROOT</code> dictionary.
In order to get the library built and installed on the standard <code>ROOT</code> path just call:
<pre>
make -f Makefile.TMyLibrary
make -f Makefile.TMyLibrary install
</pre>
In case of a custom installation some paths in the Makefile might have to be changed. For further information about the <code>ROOT</code> dictionary mechanism please refer to the <a href="http://root.cern.ch/drupal/content/interacting-shared-libraries-rootcint">documentation</a>.
<p></p>
After installing the shared library the defined user function might be used in <code>musrfit</code> as described <a class="foswikiCurrentTopicLink" href="#UserFunctions">above</a>.
<p></p>
Good luck! <img class='smily' src='../pub/Main/SmiliesPluginPSI_/wink.gif' alt='wink' title='wink' />
<p></p>
Finally, please be aware of the <a class="foswikiCurrentTopicLink" href="#UserFunctionRemark">remark</a> at the end of this section.
<p></p>
<span id="UserFcnWithGlobal"></span>
<h2 id="A_6.2_User_Function_with_global_user_45function_45object_access"> 6.2 User Function with global user-function-object access </h2>
<p></p>
Before explaining how to use global objects within user functions, it will be shortly explained where is problem and why this might be a sensible approach.
In <code>musrfit</code> each RUN block (histogram, asymmetry, ...) is owning its own theory-function tree. An example is shown in the figure below. The bluish nodes are
default <code>musrfit</code> functions, whereas the red nodes represent user functions (here labeled by <code>uF1</code> and <code>uF2</code>). Without global user-function object, these nodes
are independent entities. This means if the msr file contains <em>n</em> run blocks, the user function <code>uF1</code> will be called <em>n</em> times for each step in the calculation.
If the user function is performing CPU-demanding calculations this is rather inefficient.
<p></p>
<span id="GlobalUserFunctionFigure"></span>
<img class='imagePlain imagePlain_none ' src='../pub/MUSR/MusrFit/igp_96bafe0a153bdf59fbc40ada0300f686_Theory-Tree-with-UserFcn.png' alt='theory tree with user function and global user function objects' title='Theory-Tree-with-UserFcn.png' width='800' height='566' style='' />
<p></p>
Therefore, it is possible to associate to each user function (<code>uFx</code>) a global user-function object (<code>g_uFx</code>). The idea is the following: If <code>uFx</code> needs to
perform very time-consuming calculations (e.g. calculate an Abrikosov vortex lattice or the nonlocal response of a superconductor in the Meissner state) this can be
transferred to the <strong>global</strong> user-function object (<code>g_uFx</code>) and hence the time-consuming calculation is only performed once per cycle (compared to <em>n</em> times
without <code>g_uFx</code>), thus speeding up the fit.
<p></p>
After explaining the purpose of the global user-function-object approach, some explanations how to interface it follow here. Since the interface is very close to
the <a class="foswikiCurrentTopicLink" href="#UserFcnWithoutGlobal">user function <strong>without</strong> global objects</a>, only the additionally necessary overhead is explained here.
<p></p>
The user's header file could look like the following:
<pre class="cplusplus">
/&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;
TMyFunction.h
&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;&#42;/
#include &#34;PUserFcnBase.h&#34;
#include &#60;cassert&#62;
#include &#60;cmath&#62;
#include &#60;vector&#62;
using namespace std;
class TMyGlobalFunction {
public:
// default constructor and destructor
TMyGlobalFunction(){}
~TMyGlobalFunction(){}
Bool&#95;t IsValid() { return fValid; }
// the following function will check if something needs to be calculated, which
// is the case if param !&#61; fPrevParam
void CalcSomethingCPUExpensive(const vector&#60;Double&#95;t&#62; &#38;param);
// this routine will return the calculated values, e.g. B(z,E) for TMyFunction::operator()()
// (...) here sketches only that some parameters are likley to be fed
Double&#95;t GetWhatIsNeeded(...);
private:
Bool&#95;t fValid;
vector&#60;Double&#95;t&#62; fPrevParam;
// definition of the class for the ROOT-dictionary
ClassDef(TMyGlobalFunction,1)
};
class TMyFunction : public PUserFcnBase {
public:
// default constructor and destructor
TMyFunction(){}
~TMyFunction(){}
// global user-function-access functions, here with some functionality
Bool&#95;t NeedGlobalPart() const { return true; }
void SetGlobalPart(vector&#60;void&#42;&#62; &#38;globalPart, UInt&#95;t idx);
Bool&#95;t GlobalPartIsValid() const;
// function operator
Double&#95;t operator()(Double&#95;t, const vector&#60;Double&#95;t&#62;&#38;) const;
private:
Bool&#95;t fValid;
Bool&#95;t fInvokedGlobal;
Int&#95;t fIdxGlobal;
TMyGlobalFunction &#42; fGlobalUserFcn;
// definition of the class for the ROOT dictionary
ClassDef(TMyFunction,1)
};
</pre>
<p></p>
Compared to the <a class="foswikiCurrentTopicLink" href="#UserFcnWithoutGlobal">user function <strong>without</strong> global objects</a>, here the <code>NeedGlobalPart()</code> method returns <code>true</code> meaning that a global user-function object will be needed. Furthermore, the methods <code>SetGlobalPart(vector&lt;void*&gt; &amp;globalPart, UInt_t idx)</code> and <code>GlobalPartIsValid()</code> now need to be implemented.
The method <code>SetGlobalPart(vector&lt;void*&gt; &amp;globalPart, UInt_t idx)</code> is used to link the <code>fGlobalUserFcn</code> to the global user object. This routine will look like:
<p></p>
<pre class="cplusplus">
void TMyFunction::SetGlobalPart(vector&#60;void &#42;&#62; &#38;globalPart, UInt&#95;t idx)
{
fIdxGlobal &#61; static&#95;cast&#60;Int&#95;t&#62;(idx);
if ((Int&#95;t)globalPart.size() &#60;&#61; fIdxGlobal) { // global user function not present, invoke it
fGlobalUserFcn &#61; new TMyGlobalFunction();
if (fGlobalUserFcn &#61;&#61; 0) { // global user function object couldn&#39;t be invoked -&#62; error
fValid &#61; false;
cerr &#60;&#60; endl &#60;&#60; &#34;&#62;&#62; TMyFunction::SetGlobalPart(): &#42;&#42;ERROR&#42;&#42; Couldn&#39;t invoke global user function object, sorry ...&#34; &#60;&#60; endl;
} else { // global user function object could be invoked -&#62; resize to global user function vector and keep the pointer to the corresponding object
globalPart.resize(fIdxGlobal+1);
globalPart&#91;fIdxGlobal&#93; &#61; dynamic&#95;cast&#60;TMyGlobalFunction&#42;&#62;(fGlobalUserFcn);
fValid &#61; true;
fInvokedGlobal &#61; true;
}
} else { // global user function already present hence just retrieve a pointer to it
fValid &#61; true;
fGlobalUserFcn &#61; (TMyGlobalFunction&#42;)globalPart&#91;fIdxGlobal&#93;;
}
}
</pre>
<p></p>
What it does is the following: it first checks if the object is already present in the global user-function-object vector and if not creates it. If it is already present, the pointer to the global object vector is just kept (see <a class="foswikiCurrentTopicLink" href="#GlobalUserFunctionFigure">figure above</a>).
<p></p>
A sketch of the method <code>operator()(Double_t, const vector<Double_t>&amp;) const</code> will then look like (pseudo-code snippet):
<p></p>
<pre class="cplusplus">
Double&#95;t TMyFunction::operator()(Double&#95;t t, const vector&#60;Double&#95;t&#62; &#38;param) const
{
Double&#95;t result &#61; 0.0;
// do something, checking, etc.
...
// call the global user function object (which will calculate something
// if param has changed). Hence it will only be done once in a iteration,
// and therefore only once for all run blocks.
fGlobalUserFcn-&#62;CalcSomethingCPUExpensive(param);
// extract the needed values from the global object
value(s) &#61; fGlobalUserFcn-&#62;GetWhatIsNeeded(...);
// use &#39;value(s)&#39; to do some run block specific calculations (not/less CPU demanding)
...
return result;
}
</pre>
<p></p>
This way the efficiency of the user function can be increased by almost a factor of <em>n</em> (where <em>n</em> is the number of RUN blocks).
<p></p>
<hr />
<span id="UserFunctionRemark"></span>
<span class='foswikiRedFG'><b>Important remark:</b></span> If <code>musrfit</code> <a href="MusrFitSetup.html#MusrFitInstallation">has been built</a> with parallelization support (default for <code>GCC</code> &ge; 4.2) it should be taken care of the thread safety of the user-function <strong>operator()</strong>. During the function optimization of <code>musrfit</code> the <strong>operator()</strong> is called once for any given set of parameters in order to allow the safe execution of any calculation. Within the <a class="foswikiCurrentTopicLink" href="#SingleHistogramFit">single-histogram</a> and <a class="foswikiCurrentTopicLink" href="#AsymmetryFit">asymmetry</a> fits the calculation of &chi;<sup>2</sup> or the log-likelihood is parallelized and the <strong>operator()</strong> is expected to evaluate to reasonable values for a fixed set of parameters (but changing <i>t</i>) beginning with the second function call.
In case this cannot be ensured, the parallelization can be disabled by <strong>--disable-omp</strong> on the <a href="MusrFitSetup.html#MusrFitInstallation">configure level</a> of the program installation.
<hr />
<p></p>
<span id="TechnicalDescription"></span>
<h1 id="A_7_Technical_Description_of_the_musrfit_framework"> 7 Technical Description of the musrfit framework </h1>
<p></p>
A technical description of the musrfit framework can be found <a href="http://lmu.web.psi.ch/facilities/software/musrfit/technical/">here</a>.
<p></p>
<span id="BugTracking"></span>
<h1 id="A_8_Bugtracking"> 8 Bugtracking </h1>
<p></p>
For reporting bugs or requesting new features and improvements please use the <a href="https://bitbucket.org/muonspin/musrfit/issues">bitbucket-repo</a> (preferred), <a href="https://tracker.psi.ch/jira/browse/MUSR">PSI Tracker</a> or send an e-mail to A. Suter.
<p></p>
-- <a href="http://lmu.web.psi.ch/lem/group.html">AS</a> &amp; <a href="http://www.fsf.org/register_form?referrer=8369">BMW</a></div>
<p></p>
<p></p>
</div>
<div class="patternInfo">This topic: MUSR<span class='foswikiSeparator'>&nbsp;&gt;&nbsp;</span><a class="foswikiCurrentWebHomeLink" href="WebHome.html">WebHome</a><span class='foswikiSeparator'>&nbsp;&gt;&nbsp;</span>MusrFit <br />
Topic revision: <span class='patternRevInfo'>16 Dec 2016, <a href="https://intranet.psi.ch/Main/AndreasSuter">AndreasSuter</a></span></div>
</div>
</div>
</div>
</div><div id="patternBottomBar"><div id="patternBottomBarContents"><div id="patternWebBottomBar"><span class="foswikiRight"> <a href="http://foswiki.org/"><img src="../pub/System/ProjectLogos/foswiki-badge.png" alt="This site is powered by Foswiki" title="This site is powered by Foswiki" /></a></span>Copyright &copy; by the contributing authors. All material on this collaboration platform is the property of the contributing authors. <br /> Ideas, requests, problems regarding PSI Wiki? <a href='mailto:thomas.buecklers@psi.ch?subject=PSI Wiki %20Feedback%20on%20MUSR.MusrFit'>Send feedback</a></div></div></div>
</div>
</div>
</div>
</div></div><!-- /endWrap -->
<p></p>
<!-- Piwik -->
<noscript><p><img src="../piwik/piwikf832.gif?idsite=7" style="border:0" alt=""></p></noscript>
<!-- End Piwik Tag -->
</body>
<!-- Mirrored from intranet.psi.ch/MUSR/MusrFit?cover=print by HTTrack Website Copier/3.x [XR&CO'2010], Fri, 16 Dec 2016 16:01:25 GMT -->
<!-- Added by HTTrack --><meta http-equiv="content-type" content="text/html;charset=utf-8"><!-- /Added by HTTrack -->
</html>