/*************************************************************************** PRunMuMinus.cpp Author: Andreas Suter e-mail: andreas.suter@psi.ch ***************************************************************************/ /*************************************************************************** * Copyright (C) 2007-2016 by Andreas Suter * * andreas.suter@psi.ch * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_GOMP #include #endif #include using namespace std; #include #include #include #include "PRunMuMinus.h" //-------------------------------------------------------------------------- // Constructor //-------------------------------------------------------------------------- /** *

Constructor */ PRunMuMinus::PRunMuMinus() : PRunBase() { fNoOfFitBins = 0; fPacking = -1; // the 2 following variables are need in case fit range is given in bins, and since // the fit range can be changed in the command block, these variables need to be accessible fGoodBins[0] = -1; fGoodBins[1] = -1; fStartTimeBin = -1; fEndTimeBin = -1; fHandleTag = kEmpty; } //-------------------------------------------------------------------------- // Constructor //-------------------------------------------------------------------------- /** *

Constructor * * \param msrInfo pointer to the msr-file handler * \param rawData raw run data * \param runNo number of the run within the msr-file * \param tag tag showing what shall be done: kFit == fitting, kView == viewing */ PRunMuMinus::PRunMuMinus(PMsrHandler *msrInfo, PRunDataHandler *rawData, UInt_t runNo, EPMusrHandleTag tag) : PRunBase(msrInfo, rawData, runNo, tag) { fNoOfFitBins = 0; fPacking = fRunInfo->GetPacking(); if (fPacking == -1) { // i.e. packing is NOT given in the RUN-block, it must be given in the GLOBAL-block fPacking = fMsrInfo->GetMsrGlobal()->GetPacking(); } if (fPacking == -1) { // this should NOT happen, somethin is severely wrong cerr << endl << ">> PRunMuMinus::PRunMuMinus: **SEVERE ERROR**: Couldn't find any packing information!"; cerr << endl << ">> This is very bad :-(, will quit ..."; cerr << endl; fValid = false; return; } // the 2 following variables are need in case fit range is given in bins, and since // the fit range can be changed in the command block, these variables need to be accessible fGoodBins[0] = -1; fGoodBins[1] = -1; fStartTimeBin = -1; fEndTimeBin = -1; if (!PrepareData()) { cerr << endl << ">> PRunMuMinus::PRunMuMinus: **SEVERE ERROR**: Couldn't prepare data for fitting!"; cerr << endl << ">> This is very bad :-(, will quit ..."; cerr << endl; fValid = false; } } //-------------------------------------------------------------------------- // Destructor //-------------------------------------------------------------------------- /** *

Destructor */ PRunMuMinus::~PRunMuMinus() { fForward.clear(); } //-------------------------------------------------------------------------- // CalcChiSquare //-------------------------------------------------------------------------- /** *

Calculate chi-square. * * return: * - chisq value * * \param par parameter vector iterated by minuit2 */ Double_t PRunMuMinus::CalcChiSquare(const std::vector& par) { Double_t chisq = 0.0; Double_t diff = 0.0; // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { Int_t funcNo = fMsrInfo->GetFuncNo(i); fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par); } // calculate chi square Double_t time(1.0); Int_t i; // Calculate the theory function once to ensure one function evaluation for the current set of parameters. // This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once // for a given set of parameters---which should be done outside of the parallelized loop. // For all other functions it means a tiny and acceptable overhead. time = fTheory->Func(time, par, fFuncValues); #ifdef HAVE_GOMP Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs(); if (chunk < 10) chunk = 10; #pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq) #endif for (i=fStartTimeBin; i < fEndTimeBin; ++i) { time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep(); diff = fData.GetValue()->at(i) - fTheory->Func(time, par, fFuncValues); chisq += diff*diff / (fData.GetError()->at(i)*fData.GetError()->at(i)); } return chisq; } //-------------------------------------------------------------------------- // CalcChiSquareExpected (public) //-------------------------------------------------------------------------- /** *

Calculate expected chi-square. * * return: * - chisq value == 0.0 * * \param par parameter vector iterated by minuit2 */ Double_t PRunMuMinus::CalcChiSquareExpected(const std::vector& par) { Double_t chisq = 0.0; Double_t diff = 0.0; Double_t theo = 0.0; // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { Int_t funcNo = fMsrInfo->GetFuncNo(i); fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par); } // calculate chi square Double_t time(1.0); Int_t i; // Calculate the theory function once to ensure one function evaluation for the current set of parameters. // This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once // for a given set of parameters---which should be done outside of the parallelized loop. // For all other functions it means a tiny and acceptable overhead. time = fTheory->Func(time, par, fFuncValues); #ifdef HAVE_GOMP Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs(); if (chunk < 10) chunk = 10; #pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq) #endif for (i=fStartTimeBin; i < fEndTimeBin; ++i) { time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep(); theo = fTheory->Func(time, par, fFuncValues); diff = fData.GetValue()->at(i) - theo; chisq += diff*diff / theo; } return 0.0; } //-------------------------------------------------------------------------- // CalcMaxLikelihood //-------------------------------------------------------------------------- /** *

Calculate log max-likelihood. See http://pdg.lbl.gov/index.html * * return: * - log max-likelihood value * * \param par parameter vector iterated by minuit2 */ Double_t PRunMuMinus::CalcMaxLikelihood(const std::vector& par) { Double_t mllh = 0.0; // maximum log likelihood assuming poisson distribution for the single bin // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { Int_t funcNo = fMsrInfo->GetFuncNo(i); fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par); } // calculate maximum log likelihood Double_t theo; Double_t data; Double_t time(1.0); Int_t i; // Calculate the theory function once to ensure one function evaluation for the current set of parameters. // This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once // for a given set of parameters---which should be done outside of the parallelized loop. // For all other functions it means a tiny and acceptable overhead. time = fTheory->Func(time, par, fFuncValues); #ifdef HAVE_GOMP Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs(); if (chunk < 10) chunk = 10; #pragma omp parallel for default(shared) private(i,time,theo,data) schedule(dynamic,chunk) reduction(-:mllh) #endif for (i=fStartTimeBin; i < fEndTimeBin; ++i) { time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep(); // calculate theory for the given parameter set theo = fTheory->Func(time, par, fFuncValues); data = fData.GetValue()->at(i); if (theo <= 0.0) { cerr << ">> PRunMuMinus::CalcMaxLikelihood: **WARNING** NEGATIVE theory!!" << endl; continue; } if (data > 1.0e-9) { mllh += (theo-data) + data*log(data/theo); } else { mllh += (theo-data); } } return 2.0*mllh; } //-------------------------------------------------------------------------- // GetNoOfFitBins (public) //-------------------------------------------------------------------------- /** *

Calculate the number of fitted bins for the current fit range. * * return: number of fitted bins. */ UInt_t PRunMuMinus::GetNoOfFitBins() { CalcNoOfFitBins(); return fNoOfFitBins; } //-------------------------------------------------------------------------- // SetFitRangeBin (public) //-------------------------------------------------------------------------- /** *

Allows to change the fit range on the fly. Used in the COMMAND block. * The syntax of the string is: FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]]. * If only one pair of fgb/lgb is given, it is used for all runs in the RUN block section. * If multiple fgb/lgb's are given, the number N has to be the number of RUN blocks in * the msr-file. * *

nXY are offsets which can be used to shift, limit the fit range. * * \param fitRange string containing the necessary information. */ void PRunMuMinus::SetFitRangeBin(const TString fitRange) { TObjArray *tok = 0; TObjString *ostr = 0; TString str; Ssiz_t idx = -1; Int_t offset = 0; tok = fitRange.Tokenize(" \t"); if (tok->GetEntries() == 3) { // structure FIT_RANGE fgb+n0 lgb-n1 // handle fgb+n0 entry ostr = (TObjString*) tok->At(1); str = ostr->GetString(); // check if there is an offset present idx = str.First("+"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution; // handle lgb-n1 entry ostr = (TObjString*) tok->At(2); str = ostr->GetString(); // check if there is an offset present idx = str.First("-"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution; } else if ((tok->GetEntries() > 3) && (tok->GetEntries() % 2 == 1)) { // structure FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]] Int_t pos = 2*(fRunNo+1)-1; if (pos + 1 >= tok->GetEntries()) { cerr << endl << ">> PRunMuMinus::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'"; cerr << endl << ">> will ignore it. Sorry ..." << endl; } else { // handle fgb+n0 entry ostr = (TObjString*) tok->At(pos); str = ostr->GetString(); // check if there is an offset present idx = str.First("+"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution; // handle lgb-n1 entry ostr = (TObjString*) tok->At(pos+1); str = ostr->GetString(); // check if there is an offset present idx = str.First("-"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution; } } else { // error cerr << endl << ">> PRunMuMinus::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'"; cerr << endl << ">> will ignore it. Sorry ..." << endl; } // clean up if (tok) { delete tok; } } //-------------------------------------------------------------------------- // CalcNoOfFitBins (private) //-------------------------------------------------------------------------- /** *

Calculate the number of fitted bins for the current fit range. */ void PRunMuMinus::CalcNoOfFitBins() { // In order not having to loop over all bins and to stay consistent with the chisq method, calculate the start and end bins explicitly fStartTimeBin = static_cast(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())); if (fStartTimeBin < 0) fStartTimeBin = 0; fEndTimeBin = static_cast(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1; if (fEndTimeBin > static_cast(fData.GetValue()->size())) fEndTimeBin = fData.GetValue()->size(); if (fEndTimeBin > fStartTimeBin) fNoOfFitBins = fEndTimeBin - fStartTimeBin; else fNoOfFitBins = 0; } //-------------------------------------------------------------------------- // CalcTheory //-------------------------------------------------------------------------- /** *

Calculate theory for a given set of fit-parameters. */ void PRunMuMinus::CalcTheory() { // feed the parameter vector std::vector par; PMsrParamList *paramList = fMsrInfo->GetMsrParamList(); for (UInt_t i=0; isize(); i++) par.push_back((*paramList)[i].fValue); // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par); } // calculate theory UInt_t size = fData.GetValue()->size(); Double_t start = fData.GetDataTimeStart(); Double_t resolution = fData.GetDataTimeStep(); Double_t time; for (UInt_t i=0; iFunc(time, par, fFuncValues)); } // clean up par.clear(); } //-------------------------------------------------------------------------- // PrepareData //-------------------------------------------------------------------------- /** *

Prepare data for fitting or viewing. What is already processed at this stage: * -# get proper raw run data * -# get all needed forward histograms * -# get time resolution * -# get t0's and perform necessary cross checks (e.g. if t0 of msr-file (if present) are consistent with t0 of the data files, etc.) * -# add runs (if addruns are present) * -# group histograms (if grouping is present) * * return: * - true if everthing went smooth * - false, otherwise. */ Bool_t PRunMuMinus::PrepareData() { Bool_t success = true; // keep the Global block info PMsrGlobalBlock *globalBlock = fMsrInfo->GetMsrGlobal(); // get the proper run PRawRunData* runData = fRawData->GetRunData(*fRunInfo->GetRunName()); if (!runData) { // couldn't get run cerr << endl << ">> PRunMuMinus::PrepareData(): **ERROR** Couldn't get run " << fRunInfo->GetRunName()->Data() << "!"; cerr << endl; return false; } // collect histogram numbers PUIntVector histoNo; // histoNo = msr-file forward + redGreen_offset - 1 for (UInt_t i=0; iGetForwardHistoNoSize(); i++) { histoNo.push_back(fRunInfo->GetForwardHistoNo(i)); if (!runData->IsPresent(histoNo[i])) { cerr << endl << ">> PRunMuMinus::PrepareData(): **PANIC ERROR**:"; cerr << endl << ">> histoNo found = " << histoNo[i] << ", which is NOT present in the data file!?!?"; cerr << endl << ">> Will quit :-("; cerr << endl; histoNo.clear(); return false; } } // keep the time resolution in (us) fTimeResolution = runData->GetTimeResolution()/1.0e3; cout.precision(10); cout << endl << ">> PRunMuMinus::PrepareData(): time resolution=" << fixed << runData->GetTimeResolution() << "(ns)" << endl; // get all the proper t0's and addt0's for the current RUN block if (!GetProperT0(runData, globalBlock, histoNo)) { return false; } // keep the histo of each group at this point (addruns handled below) vector forward; forward.resize(histoNo.size()); // resize to number of groups for (UInt_t i=0; iGetDataBin(histoNo[i])->size()); forward[i] = *runData->GetDataBin(histoNo[i]); } // check if there are runs to be added to the current one if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present PRawRunData *addRunData; for (UInt_t i=1; iGetRunNameSize(); i++) { // get run to be added to the main one addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i)); if (addRunData == 0) { // couldn't get run cerr << endl << ">> PRunMuMinus::PrepareData(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!"; cerr << endl; return false; } // add forward run UInt_t addRunSize; for (UInt_t k=0; kGetDataBin(histoNo[k])->size(); for (UInt_t j=0; jGetDataBin(histoNo[k])->size(); j++) { // loop over the bin indices // make sure that the index stays in the proper range if ((j+(Int_t)fAddT0s[i-1][k]-(Int_t)fT0s[k] >= 0) && (j+(Int_t)fAddT0s[i-1][k]-(Int_t)fT0s[k] < addRunSize)) { forward[k][j] += addRunData->GetDataBin(histoNo[k])->at(j+(Int_t)fAddT0s[i-1][k]-(Int_t)fT0s[k]); } } } } } // set forward/backward histo data of the first group fForward.resize(forward[0].size()); for (UInt_t i=0; iGetDataBin(histoNo[i])->size(); j++) { // loop over the bin indices // make sure that the index stays within proper range if ((j+fT0s[i]-fT0s[0] >= 0) && (j+fT0s[i]-fT0s[0] < runData->GetDataBin(histoNo[i])->size())) { fForward[j] += forward[i][j+(Int_t)fT0s[i]-(Int_t)fT0s[0]]; } } } // get the data range (fgb/lgb) for the current RUN block if (!GetProperDataRange()) { return false; } // get the fit range for the current RUN block GetProperFitRange(globalBlock); // do the more fit/view specific stuff if (fHandleTag == kFit) success = PrepareFitData(runData, histoNo[0]); else if (fHandleTag == kView) success = PrepareRawViewData(runData, histoNo[0]); else success = false; // cleanup histoNo.clear(); return success; } //-------------------------------------------------------------------------- // PrepareFitData (private) //-------------------------------------------------------------------------- /** *

Take the pre-processed data (i.e. grouping and addrun are preformed) and form the histogram for fitting. * The following steps are preformed: * -# get fit start/stop time * -# check that 'first good data bin', 'last good data bin', and 't0' make any sense * -# packing (i.e rebinning) * * return: * - true, if everything went smooth * - false, otherwise * * \param runData raw run data handler * \param histoNo forward histogram number */ Bool_t PRunMuMinus::PrepareFitData(PRawRunData* runData, const UInt_t histoNo) { // transform raw histo data. This is done the following way (for details see the manual): // for the single histo fit, just the rebinned raw data are copied // fill data set Int_t t0 = (Int_t)fT0s[0]; Double_t value = 0.0; // data start at data_start-t0 // time shifted so that packing is included correctly, i.e. t0 == t0 after packing fData.SetDataTimeStart(fTimeResolution*((Double_t)fGoodBins[0]-(Double_t)t0+(Double_t)(fPacking-1)/2.0)); fData.SetDataTimeStep(fTimeResolution*fPacking); for (Int_t i=fGoodBins[0]; i 1 if (((i-fGoodBins[0]) % fPacking == 0) && (i != fGoodBins[0])) { // fill data fData.AppendValue(value); if (value == 0.0) fData.AppendErrorValue(1.0); else fData.AppendErrorValue(TMath::Sqrt(value)); // reset values value = 0.0; } value += fForward[i]; } } CalcNoOfFitBins(); return true; } //-------------------------------------------------------------------------- // PrepareRawViewData (private) //-------------------------------------------------------------------------- /** *

Take the pre-processed data (i.e. grouping and addrun are preformed) and form the histogram for viewing * without any life time correction. *

The following steps are preformed: * -# check if view packing is whished. * -# check that 'first good data bin', 'last good data bin', and 't0' makes any sense * -# packing (i.e. rebinnig) * -# calculate theory * * return: * - true, if everything went smooth * - false, otherwise. * * \param runData raw run data handler * \param histoNo forward histogram number */ Bool_t PRunMuMinus::PrepareRawViewData(PRawRunData* runData, const UInt_t histoNo) { // check if view_packing is wished Int_t packing = fPacking; if (fMsrInfo->GetMsrPlotList()->at(0).fViewPacking > 0) { packing = fMsrInfo->GetMsrPlotList()->at(0).fViewPacking; } // calculate necessary norms Double_t theoryNorm = 1.0; if (fMsrInfo->GetMsrPlotList()->at(0).fViewPacking > 0) { theoryNorm = (Double_t)fMsrInfo->GetMsrPlotList()->at(0).fViewPacking/(Double_t)fPacking; } // raw data, since PMusrCanvas is doing ranging etc. // start = the first bin which is a multiple of packing backward from first good data bin Int_t start = fGoodBins[0] - (fGoodBins[0]/packing)*packing; // end = last bin starting from start which is a multipl of packing and still within the data Int_t end = start + ((fForward.size()-start)/packing)*packing; // check if data range has been provided, and if not try to estimate them if (start < 0) { Int_t offset = (Int_t)(10.0e-3/fTimeResolution); start = ((Int_t)fT0s[0]+offset) - (((Int_t)fT0s[0]+offset)/packing)*packing; end = start + ((fForward.size()-start)/packing)*packing; cerr << endl << ">> PRunMuMinus::PrepareData(): **WARNING** data range was not provided, will try data range start = " << start << "."; cerr << endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE."; cerr << endl; } // check if start, end, and t0 make any sense // 1st check if start and end are in proper order if (end < start) { // need to swap them Int_t keep = end; end = start; start = keep; } // 2nd check if start is within proper bounds if ((start < 0) || (start > (Int_t)fForward.size())) { cerr << endl << ">> PRunMuMinus::PrepareRawViewData(): **ERROR** start data bin doesn't make any sense!"; cerr << endl; return false; } // 3rd check if end is within proper bounds if ((end < 0) || (end > (Int_t)fForward.size())) { cerr << endl << ">> PRunMuMinus::PrepareRawViewData(): **ERROR** end data bin doesn't make any sense!"; cerr << endl; return false; } // if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now if (fRunInfo->IsFitRangeInBin()) { fFitStartTime = (fRunInfo->GetDataRange(0) + fRunInfo->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt fFitEndTime = (fRunInfo->GetDataRange(1) - fRunInfo->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt } // everything looks fine, hence fill data set Int_t t0 = (Int_t)fT0s[0]; Double_t value = 0.0; // data start at data_start-t0 // time shifted so that packing is included correctly, i.e. t0 == t0 after packing fData.SetDataTimeStart(fTimeResolution*((Double_t)start-(Double_t)t0+(Double_t)(packing-1)/2.0)); fData.SetDataTimeStep(fTimeResolution*packing); for (Int_t i=start; i par; PMsrParamList *paramList = fMsrInfo->GetMsrParamList(); for (UInt_t i=0; isize(); i++) par.push_back((*paramList)[i].fValue); // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par); } // calculate theory UInt_t size = fForward.size(); Double_t factor = 1.0; if (fData.GetValue()->size() * 10 > fForward.size()) { size = fData.GetValue()->size() * 10; factor = (Double_t)fForward.size() / (Double_t)size; } Double_t time; Double_t theoryValue; fData.SetTheoryTimeStart(fData.GetDataTimeStart()); fData.SetTheoryTimeStep(fTimeResolution*factor); for (UInt_t i=0; iFunc(time, par, fFuncValues); if (fabs(theoryValue) > 1.0e10) { // dirty hack needs to be fixed!! theoryValue = 0.0; } fData.AppendTheoryValue(theoryNorm*theoryValue); } // clean up par.clear(); return true; } //-------------------------------------------------------------------------- // GetProperT0 (private) //-------------------------------------------------------------------------- /** *

Get the proper t0 for the single histogram run. * -# the t0 vector size = number of detectors (grouping) for forward. * -# initialize t0's with -1 * -# fill t0's from RUN block * -# if t0's are missing (i.e. t0 == -1), try to fill from the GLOBAL block. * -# if t0's are missing, try t0's from the data file * -# if t0's are missing, try to estimate them * * \param histoNo histogram number vector of forward; histoNo = msr-file forward + redGreen_offset - 1 * * return: * - true if everthing went smooth * - false, otherwise. */ Bool_t PRunMuMinus::GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalBlock, PUIntVector &histoNo) { // feed all T0's // first init T0's, T0's are stored as (forward T0, backward T0, etc.) fT0s.clear(); fT0s.resize(histoNo.size()); for (UInt_t i=0; iGetT0BinSize(); i++) { fT0s[i] = fRunInfo->GetT0Bin(i); } // fill in the T0's from the GLOBAL block section (if present) for (UInt_t i=0; iGetT0BinSize(); i++) { if (fT0s[i] == -1) { // i.e. not given in the RUN block section fT0s[i] = globalBlock->GetT0Bin(i); } } // fill in the T0's from the data file, if not already present in the msr-file for (UInt_t i=0; iGetT0Bin(histoNo[i]) > 0.0) { fT0s[i] = runData->GetT0Bin(histoNo[i]); fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file } } } // fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file for (UInt_t i=0; iGetT0BinEstimated(histoNo[i]); fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file cerr << endl << ">> PRunMuMinus::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!"; cerr << endl << ">> run: " << fRunInfo->GetRunName()->Data(); cerr << endl << ">> will try the estimated one: forward t0 = " << runData->GetT0BinEstimated(histoNo[i]); cerr << endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!"; cerr << endl; } } // check if t0 is within proper bounds for (UInt_t i=0; iGetForwardHistoNoSize(); i++) { if ((fT0s[i] < 0) || (fT0s[i] > (Int_t)runData->GetDataBin(histoNo[i])->size())) { cerr << endl << ">> PRunMuMinus::GetProperT0(): **ERROR** t0 data bin (" << fT0s[i] << ") doesn't make any sense!"; cerr << endl; return false; } } // check if there are runs to be added to the current one if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present PRawRunData *addRunData; fAddT0s.resize(fRunInfo->GetRunNameSize()-1); // resize to the number of addruns for (UInt_t i=1; iGetRunNameSize(); i++) { // get run to be added to the main one addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i)); if (addRunData == 0) { // couldn't get run cerr << endl << ">> PRunMuMinus::GetProperT0(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!"; cerr << endl; return false; } // feed all T0's // first init T0's, T0's are stored as (forward T0, backward T0, etc.) fAddT0s[i-1].resize(histoNo.size()); for (UInt_t j=0; jGetT0BinSize(); j++) { fAddT0s[i-1][j] = fRunInfo->GetAddT0Bin(i-1,j); // addRunIdx starts at 0 } // fill in the T0's from the data file, if not already present in the msr-file for (UInt_t j=0; jGetT0Bin(histoNo[j]) > 0.0) { fAddT0s[i-1][j] = addRunData->GetT0Bin(histoNo[j]); fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file } } // fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file for (UInt_t j=0; jGetT0BinEstimated(histoNo[j]); fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file cerr << endl << ">> PRunMuMinus::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!"; cerr << endl << ">> run: " << fRunInfo->GetRunName(i)->Data(); cerr << endl << ">> will try the estimated one: forward t0 = " << addRunData->GetT0BinEstimated(histoNo[j]); cerr << endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!"; cerr << endl; } } // check if t0 is within proper bounds for (UInt_t j=0; jGetForwardHistoNoSize(); j++) { if ((fAddT0s[i-1][j] < 0) || (fAddT0s[i-1][j] > (Int_t)addRunData->GetDataBin(histoNo[j])->size())) { cerr << endl << ">> PRunMuMinus::GetProperT0(): **ERROR** addt0 data bin (" << fAddT0s[i-1][j] << ") doesn't make any sense!"; cerr << endl; return false; } } } } return true; } //-------------------------------------------------------------------------- // GetProperDataRange (private) //-------------------------------------------------------------------------- /** *

Get the proper data range, i.e. first/last good bin (fgb/lgb). * -# get fgb/lgb from the RUN block * -# if fgb/lgb still undefined, try to get it from the GLOBAL block * -# if fgb/lgb still undefined, try to estimate them. * * return: * - true if everthing went smooth * - false, otherwise. */ Bool_t PRunMuMinus::GetProperDataRange() { // get start/end data Int_t start; Int_t end; start = fRunInfo->GetDataRange(0); end = fRunInfo->GetDataRange(1); // check if data range has been given in the RUN block, if not try to get it from the GLOBAL block if (start < 0) { start = fMsrInfo->GetMsrGlobal()->GetDataRange(0); } if (end < 0) { end = fMsrInfo->GetMsrGlobal()->GetDataRange(1); } // check if data range has been provided, and if not try to estimate them if (start < 0) { Int_t offset = (Int_t)(10.0e-3/fTimeResolution); start = (Int_t)fT0s[0]+offset; fRunInfo->SetDataRange(start, 0); cerr << endl << ">> PRunMuMinus::GetProperDataRange(): **WARNING** data range was not provided, will try data range start = t0+" << offset << "(=10ns) = " << start << "."; cerr << endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE."; cerr << endl; } if (end < 0) { end = fForward.size(); fRunInfo->SetDataRange(end, 1); cerr << endl << ">> PRunMuMinus::GetProperDataRange(): **WARNING** data range was not provided, will try data range end = " << end << "."; cerr << endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE."; cerr << endl; } // check if start and end make any sense // 1st check if start and end are in proper order if (end < start) { // need to swap them Int_t keep = end; end = start; start = keep; } // 2nd check if start is within proper bounds if ((start < 0) || (start > (Int_t)fForward.size())) { cerr << endl << ">> PRunMuMinus::GetProperDataRange(): **ERROR** start data bin (" << start << ") doesn't make any sense!"; cerr << endl; return false; } // 3rd check if end is within proper bounds if ((end < 0) || (end > (Int_t)fForward.size())) { cerr << endl << ">> PRunMuMinus::GetProperDataRange(): **ERROR** end data bin (" << end << ") doesn't make any sense!"; cerr << endl; return false; } // keep good bins for potential later use fGoodBins[0] = start; fGoodBins[1] = end; return true; } //-------------------------------------------------------------------------- // GetProperFitRange (private) //-------------------------------------------------------------------------- /** *

Get the proper fit range. There are two possible fit range commands: * fit given in (usec), or * fit fgb+offset_0 lgb-offset_1 given in (bins), therefore it works the following way: * -# get fit range assuming given in time from RUN block * -# if fit range in RUN block is given in bins, replace start/end * -# if fit range is NOT given yet, try fit range assuming given in time from GLOBAL block * -# if fit range in GLOBAL block is given in bins, replace start/end * -# if still no fit range is given, use fgb/lgb. * * \param globalBlock pointer to the GLOBAL block information form the msr-file. */ void PRunMuMinus::GetProperFitRange(PMsrGlobalBlock *globalBlock) { // set fit start/end time; first check RUN Block fFitStartTime = fRunInfo->GetFitRange(0); fFitEndTime = fRunInfo->GetFitRange(1); // if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now if (fRunInfo->IsFitRangeInBin()) { fFitStartTime = (fGoodBins[0] + fRunInfo->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt fFitEndTime = (fGoodBins[1] - fRunInfo->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt // write these times back into the data structure. This way it is available when writting the log-file fRunInfo->SetFitRange(fFitStartTime, 0); fRunInfo->SetFitRange(fFitEndTime, 1); } if (fFitStartTime == PMUSR_UNDEFINED) { // fit start/end NOT found in the RUN block, check GLOBAL block fFitStartTime = globalBlock->GetFitRange(0); fFitEndTime = globalBlock->GetFitRange(1); // if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now if (globalBlock->IsFitRangeInBin()) { fFitStartTime = (fGoodBins[0] + globalBlock->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt fFitEndTime = (fGoodBins[1] - globalBlock->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt // write these times back into the data structure. This way it is available when writting the log-file globalBlock->SetFitRange(fFitStartTime, 0); globalBlock->SetFitRange(fFitEndTime, 1); } } if ((fFitStartTime == PMUSR_UNDEFINED) || (fFitEndTime == PMUSR_UNDEFINED)) { fFitStartTime = (fGoodBins[0] - fT0s[0]) * fTimeResolution; // (fgb-t0)*dt fFitEndTime = (fGoodBins[1] - fT0s[0]) * fTimeResolution; // (lgb-t0)*dt cerr << ">> PRunMuMinus::GetProperFitRange(): **WARNING** Couldn't get fit start/end time!" << endl; cerr << ">> Will set it to fgb/lgb which given in time is: " << fFitStartTime << "..." << fFitEndTime << " (usec)" << endl; } }