/*************************************************************************** PFourier.h Author: Andreas Suter e-mail: andreas.suter@psi.ch ***************************************************************************/ /*************************************************************************** * Copyright (C) 2007-2016 by Andreas Suter * * andreas.suter@psi.ch * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifndef _PFOURIER_H_ #define _PFOURIER_H_ #include "fftw3.h" #include "PMusr.h" #define F_APODIZATION_NONE 1 #define F_APODIZATION_WEAK 2 #define F_APODIZATION_MEDIUM 3 #define F_APODIZATION_STRONG 4 /** * muSR Fourier class. */ class PFourier { public: PFourier(TH1F *data, Int_t unitTag, Double_t startTime = 0.0, Double_t endTime = 0.0, Bool_t dcCorrected = false, UInt_t zeroPaddingPower = 0); virtual ~PFourier(); virtual void Transform(UInt_t apodizationTag = 0); virtual const char* GetDataTitle() { return fData->GetTitle(); } virtual const Int_t GetUnitTag() { return fUnitTag; } virtual Double_t GetResolution() { return fResolution; } virtual Double_t GetMaxFreq(); virtual TH1F* GetRealFourier(const Double_t scale = 1.0); virtual TH1F* GetPhaseOptRealFourier(Double_t &phase, const Double_t scale = 1.0, const Double_t min = -1.0, const Double_t max = -1.0); virtual TH1F* GetImaginaryFourier(const Double_t scale = 1.0); virtual TH1F* GetPowerFourier(const Double_t scale = 1.0); virtual TH1F* GetPhaseFourier(const Double_t scale = 1.0); virtual Bool_t IsValid() { return fValid; } private: TH1F *fData; ///< data histogram to be Fourier transformed. Bool_t fValid; ///< true = all boundary conditions fullfilled and hence a Fourier transform can be performed. Int_t fUnitTag; ///< 1=Field Units (G), 2=Field Units (T), 3=Frequency Units (MHz), 4=Angular Frequency Units (Mc/s) Int_t fApodization; ///< 0=none, 1=weak, 2=medium, 3=strong Double_t fTimeResolution; ///< time resolution of the data histogram in (us) Double_t fStartTime; ///< start time of the data histogram Double_t fEndTime; ///< end time of the data histogram Bool_t fDCCorrected; ///< if true, removed DC offset from signal before Fourier transformation, otherwise not UInt_t fZeroPaddingPower; ///< power for zero padding, if set < 0 no zero padding will be done Double_t fResolution; ///< Fourier resolution (field, frequency, or angular frequency) UInt_t fNoOfData; ///< number of bins in the time interval between fStartTime and fStopTime UInt_t fNoOfBins; ///< number of bins to be Fourier transformed. Might be different to fNoOfData due to zero padding fftw_plan fFFTwPlan; ///< fftw plan (see FFTW3 User Manual) fftw_complex *fIn; ///< real part of the Fourier transform fftw_complex *fOut; ///< imaginary part of the Fourier transform virtual void PrepareFFTwInputData(UInt_t apodizationTag); virtual void ApodizeData(Int_t apodizationTag); }; #endif // _PFOURIER_H_