% $Id$ \documentclass[twoside]{article} \usepackage[english]{babel} \usepackage{a4} \usepackage{amssymb} \usepackage{graphicx} \usepackage{fancyhdr} \usepackage{array} \usepackage{float} \usepackage{hyperref} \usepackage{xspace} \usepackage{rotating} \usepackage{dcolumn} \setlength{\topmargin}{10mm} \setlength{\topmargin}{-13mm} % \setlength{\oddsidemargin}{0.5cm} % \setlength{\evensidemargin}{0cm} \setlength{\oddsidemargin}{1cm} \setlength{\evensidemargin}{1cm} \setlength{\textwidth}{14.5cm} \setlength{\textheight}{23.8cm} \def\mathbi#1{\textbf{\em #1}} \pagestyle{fancyplain} \addtolength{\headwidth}{0.6cm} \fancyhead{}% \fancyhead[RE,LO]{\bf Estimate $\mathbi{N}_0$}% \fancyhead[LE,RO]{\thepage} \cfoot{--- Andreas Suter -- \today ---} \rfoot{\includegraphics[width=6.4cm]{PSI_Logo_wide_blau.pdf}} \DeclareMathAlphabet{\bi}{OML}{cmm}{b}{it} \newcommand{\mean}[1]{\langle #1 \rangle} \newcommand{\lem}{LE-$\mu$SR\xspace} \newcommand{\musr}{$\mu$SR\xspace} \newcommand{\etal}{\emph{et al.\xspace}} \newcommand{\ie}{\emph{i.e.\xspace}} \newcommand{\eg}{\emph{e.g.\xspace}} \newcolumntype{d}[1]{D{.}{.}{#1}} \begin{document} % Header info -------------------------------------------------- \thispagestyle{empty} \noindent \begin{tabular}{@{\hspace{-0.7cm}}l@{\hspace{6cm}}r} \noindent\includegraphics[width=3.4cm]{PSI_Logo_narrow_blau.jpg} & {\Huge\sf Memorandum} \end{tabular} % \vskip 1cm % \begin{tabular}{@{\hspace{-0.5cm}}ll@{\hspace{4cm}}ll} Datum: & \today & & \\[3ex] Von: & Andreas Suter & An: & \\ Telefon: & +41\, (0)56\, 310\, 4238 & & \\ Raum: & WLGA / 119 & cc: & \\ e-mail: & \verb?andreas.suter@psi.ch? & & \\ \end{tabular} % \vskip 0.3cm \noindent\hrulefill \vskip 1cm % \noindent The \musr decay histogram can be described by \begin{equation}\label{eq:decay} N(t) = N_0\, e^{-t/\tau_\mu} \left[ 1 + A P(t) \right] + \mathrm{Bkg} \end{equation} \noindent For single histogram fits a good initial estimate for $N_0$ is needed in order that \textsc{Minuit2} has a chance to converge. Here I summaries how $N_0$ can be reasonably well estimates. For all estimates, it is assumed that rather to take Eq.(\ref{eq:decay}), the following ansatz will be used \begin{equation}\label{eq:N0ansatz} T(t) = N_0\, e^{-t/\tau_\mu} + \mathrm{Bkg}, \end{equation} \noindent \ie the asymmetry is ignored all together. \section*{Estimate $\mathbi{N}_0$ with free Background} We would like to minimize $\chi^2$, which is \begin{equation}\label{eq:chisq} \chi^2 = \sum_i \frac{(D_i - T_i)^2}{\sigma_i^2} = \sum_i \frac{(D_i - T_i)^2}{D_i}, \end{equation} \noindent where $D_i$ is a histogram entry of the measured data, $T_i$ the evaluation of Eq.(\ref{eq:N0ansatz}) at $t_i = \Delta t \cdot i$, with $\Delta t$ the histogram time resolution. In the last step Poisson statistics is used, \ie $\sigma_i^2 = D_i$. In order to minimize Eq.(\ref{eq:N0ansatz}), it is sufficient that $\nabla \chi^2 = 0 \Longrightarrow$ \begin{eqnarray*} \frac{\partial \chi^2}{\partial N_0} &=& \sum_i \left[ \frac{2 (D_i - T_i)}{D_i}\, e^{-t_i/\tau_\mu} \right] = 0 \\ \frac{\partial \chi^2}{\partial \mathrm{Bkg}} &=& \sum_i \left[ \frac{2 (D_i - T_i)}{D_i} \right] = 0 \end{eqnarray*} \noindent With the following abbreviations \begin{eqnarray}\label{eq:abbrv} x_i &=& e^{-t_i/\tau_\mu} \\ \Delta &=& \sum_i 1/D_i \nonumber \\ S &=& \sum_i 1 \nonumber \end{eqnarray} \noindent ($S$ is the number of bins in the histogram) the background can be written as \begin{equation}\label{eq:bkgEstimate} \mathrm{Bkg} = \frac{1}{\Delta}\, \sum_i \left[ 1 - \frac{N_0}{D_i}\, x_i \right] \end{equation} \noindent and using this result, $N_0$ is \begin{equation}\label{eq:N0estimate} N_0 = \frac{\displaystyle\sum_i \left[x_i \left(1-\frac{S}{D_i \Delta}\right)\right]}{\displaystyle\sum_j \left[\frac{x_j}{D_j}\left(x_j - \frac{1}{\Delta} \sum_k \frac{x_k}{D_k}\right)\right]}. \end{equation} \noindent Eqs.(\ref{eq:bkgEstimate}) \& (\ref{eq:N0estimate}) allow to estimate $N_0$ and Bkg. However, the results are mostly unsatisfactory since typically $N_0$ is underestimate whereas Bkg is grossly overestimated. The reason is the missing asymmetry term. \section*{Estimate $\mathbi{N}_0$ with linked Background} A much more robust ansatz is to link the background to $N_0$, \ie \begin{equation}\label{eq:N0ansatz_with_linked_bkg} T(t) = N_0\, e^{-t/\tau_\mu} + \mathrm{Bkg} = N_0\, e^{-t/\tau_\mu} + \alpha N_0, \end{equation} \noindent where $\alpha$ is typically $0.01$ are smaller. The practical tests show that it is mostly save to set $\alpha=0$. From $$ \frac{\partial \chi^2}{\partial N_0} = 0 $$ \noindent it follows \begin{equation}\label{eq:N0estimate_with_linked_bkg} N_0 = \frac{\displaystyle\sum_i (\alpha + x_i)}{\displaystyle\sum_i\frac{(\alpha + x_i)^2}{D_i}}. \end{equation} \noindent Eq.(\ref{eq:N0estimate_with_linked_bkg}) with $\alpha < 0.01$ leads typically to very good results. A closer look at Eq.(\ref{eq:N0estimate_with_linked_bkg}) reveals that there is a principle problem. How should one deal with $D_i = 0$? There are two possibilities: \begin{enumerate} \item if $D_i = 0$, set it to $D_i = 1$. This implicitly assumes that an empty bin has an uncertainty of 1. \item if $D_i = 0$, ignore it! \end{enumerate} \noindent Currently \texttt{musrfit} ignores empty bins. \end{document}