/*************************************************************************** PSimulateMuTransition.cpp Author: Thomas Prokscha Date: 25-Feb-2010, 14-Apr-2016 Use root macros runMuSimulation.C and testAnalysis.C to run the simulation and to get a quick look on the data. Data are saved to a root histogram file with a structure similar to LEM histogram files; musrfit can be used to analyze the simulated data. Description: Root class to simulate muon spin polarization under successive Mu+/Mu0 charge-exchange or Mu0 spin-flip processes by a Monte-Carlo method. Consider transverse field geometry, and assume initial muon spin direction in x, and field applied along z. For PxMu(t) in muonium use the complex expression of equation (4) in the paper of M. Senba, J. Phys. B 23, 1545 (1990), or equation (7) in the paper of M. Senba, J. Phys. B 24, 3531 (1991); note that PxMu(t) is given by a superposition of the four frequencies "nu_12", "nu_34", "nu_23", "nu_14". These frequencies and the corresponding probabilities ("SetMuFractionState12" for transitions 12 and 34, "SetMuFractionState23" for states 23 and 14) can be calculated for a given field with the root macro AnisotropicMu.C Parameters: 1) Precession frequencies of "nu_12", "nu_34", "nu_23", "nu_14" 2) fractions of nu_12, nu_34; and nu_23 and nu_14 3) total Mu0 fraction 4) Mu+ electron-capture rate 5) Mu0 ionization rate 6) Mu0 spin-flip rate 7) initial muon spin phase 9) total muon decay asymmetry 9) number of muon decays to be generated. 10) debug flag: if TRUE print capture/ionization events on screen Output: Two histograms ("forward" and "backward") are written to a root file. The muon event simulation with a sequence of charge-changing processes is done in Event(): simulate muon spin phase under charge-exchange with "4 Mu transitions" 1) according to Mu+/Mu0 fraction begin either with a Mu+ state or Mu state 2) Mu+: determine next electron-capture time t_c. If t_c is larger than decay time t_d calculate muon spin precession for t_d; else calculate spin precession for t_c. 3) Determine next ionization time t_i; calculate Px(t_i) in Muonium; calculate the total muon spin polarization Px(t_i)*Px(t_c). 4) get the next electron capture time, continue until t_d is reached, and calculate the resulting polarization. The Mu0 spin-flip processes are calculated in GTSpinFlip(), using eq. (17) of M. Senba, J. Phys. B 24, 3531 (1991). ***************************************************************************/ /*************************************************************************** * Copyright (C) 2010 by Thomas Prokscha, Paul Scherrer Institut * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include using namespace std; #include #include #include "PSimulateMuTransition.h" ClassImp(PSimulateMuTransition) //-------------------------------------------------------------------------- // Constructor //-------------------------------------------------------------------------- /** *

Constructor. * * \param seed for the random number generator */ PSimulateMuTransition::PSimulateMuTransition(UInt_t seed) { fValid = true; fRandom = new TRandom2(seed); if (fRandom == 0) { fValid = false; } fNmuons = 100; // number of muons to simulate fMuPrecFreq34 = 4463.; // vacuum Mu hyperfine coupling constant fMuPrecFreq12 = 0.; // Mu precession frequency of a 12 transition fMuPrecFreq23 = 0.; // Mu precession frequency of a 23 transition fMuPrecFreq14 = 0.; // Mu precession frequency of a 14 transition fMuonPrecFreq = 0.; // muon precession frequency fBfield = 0.01; // magnetic field (T) fCaptureRate = 0.01; // Mu+ capture rate (MHz) fIonizationRate = 10.; // Mu0 ionization rate (MHz) fSpinFlipRate = 0.001; // Mu0 spin flip rate (MHz) fInitialPhase = 0.; fMuonPhase = fInitialPhase; fMuonDecayTime = 0.; fAsymmetry = 0.27; fMuFraction = 0.; fMuFractionState12 = 0.25; fMuFractionState34 = 0.25; fMuFractionState23 = 0.25; fMuFractionState14 = 0.25; fDebugFlag = kFALSE; } //-------------------------------------------------------------------------- // Destructor //-------------------------------------------------------------------------- /** *

Destructor. * */ PSimulateMuTransition::~PSimulateMuTransition() { if (fRandom) { delete fRandom; fRandom = 0; } } //-------------------------------------------------------------------------- // Output of current settings //-------------------------------------------------------------------------- /*! *

Prints the current settings onto std output. */ void PSimulateMuTransition::PrintSettings() const { cout << endl << "Mu0 precession frequency 12 (MHz) = " << fMuPrecFreq12; cout << endl << "Mu0 precession frequency 34 (MHz) = " << fMuPrecFreq34; cout << endl << "Mu0 precession frequency 23 (MHz) = " << fMuPrecFreq23; cout << endl << "Mu0 precession frequency 14 (MHz) = " << fMuPrecFreq14; cout << endl << "Mu+ precession frequency (MHz) = " << fMuonGyroRatio * fBfield; cout << endl << "B field (T) = " << fBfield; cout << endl << "Mu+ electron capture rate (MHz) = " << fCaptureRate; cout << endl << "Mu0 ionizatioan rate (MHz) = " << fIonizationRate; cout << endl << "Mu0 spin-flip rate (MHz) = " << fSpinFlipRate; if (fSpinFlipRate > 0.001) cout << endl << "!!! Note: spin-flip rate > 0.001 only spin-flip processes are considered!!!"; else{ cout << endl << "!!! spin-flip rate <= 0.001: only charge-exchange cycles are considered!!!"; cout << endl << "!!! if spin-flip rate > 0.001, only spin-flip processes are considered!!!"; } cout << endl << "Decay asymmetry = " << fAsymmetry; cout << endl << "Muonium fraction = " << fMuFraction; cout << endl << "Muonium fraction state12 = " << fMuFractionState12; cout << endl << "Muonium fraction state34 = " << fMuFractionState34; cout << endl << "Muonium fraction state23 = " << fMuFractionState23; cout << endl << "Muonium fraction state14 = " << fMuFractionState14; cout << endl << "Number of particles to simulate = " << fNmuons; cout << endl << "Initial muon spin phase (degree) = " << fInitialPhase; cout << endl << "Debug flag = " << fDebugFlag; cout << endl << endl; } //-------------------------------------------------------------------------- // SetSeed (public) //-------------------------------------------------------------------------- /** *

Sets the seed of the random generator. * * \param seed for the random number generator */ void PSimulateMuTransition::SetSeed(UInt_t seed) { if (!fValid) return; fRandom->SetSeed(seed); } //-------------------------------------------------------------------------- // Run (public) //-------------------------------------------------------------------------- /** * \param histoForward */ void PSimulateMuTransition::Run(TH1F *histoForward, TH1F *histoBackward) { // Double_t muoniumPolX = 1.0; //polarization in x direction Int_t i; if (histoForward == 0 || histoBackward == 0) return; fMuonPrecFreq = fMuonGyroRatio * fBfield; for (i = 0; i 0.001){// consider only Mu0 spin-flip in this case fMuonPhase += TMath::ACos(GTSpinFlip(fMuonDecayTime)); } else{ // initial muon state Mu+ or Mu0? if (fRandom->Rndm() <= 1.-fMuFraction) fMuonPhase += TMath::ACos(Event("Mu+")); else fMuonPhase += TMath::ACos(Event("Mu0")); } // fill 50% in "forward", and 50% in "backward" detector to get independent // events in "forward" and "backward" histograms. This allows "normal" uSR // analysis of the data // change muon decay time to ns if (fRandom->Rndm() <= 0.5) histoForward->Fill(fMuonDecayTime*1000., 1. + fAsymmetry*TMath::Cos(fMuonPhase)); else histoBackward->Fill(fMuonDecayTime*1000., 1. - fAsymmetry*TMath::Cos(fMuonPhase)); if ( (i%100000) == 0) cout << "number of events processed: " << i << endl; } cout << "number of events processed: " << i << endl; return; } //-------------------------------------------------------------------------- // NextEventTime (private) //-------------------------------------------------------------------------- /** *

Determine time of next event, assuming "Poisson" distribution in time * * \param EventRate event rate in MHz; returns next event time in micro-seconds */ Double_t PSimulateMuTransition::NextEventTime(const Double_t &EventRate) { if (EventRate <= 0.) return -1.; // signal error return -1./EventRate * TMath::Log(fRandom->Rndm()); } //-------------------------------------------------------------------------- // Phase (private) //-------------------------------------------------------------------------- // /** /* *

Determines phase of the muon spin * * \param time duration of precession (us); * \param chargeState charge state of Mu ("Mu+" or "Mu0") */ // Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const TString chargeState) // { // Double_t muonPhaseX; // Double_t muoniumPolX = 0; // // if (chargeState == "Mu+") // muonPhaseX = TMath::TwoPi()*fMuonPrecFreq*time; // else if (chargeState == "Mu0"){ // muoniumPolX = GTFunction(time).Re(); // if (fDebugFlag) cout << "muoniumPolX = " << muoniumPolX << endl; // muonPhaseX = TMath::ACos(muoniumPolX); // } // else // muonPhaseX = 0.; // // return muonPhaseX; // } //-------------------------------------------------------------------------- // Mu0 transverse field polarization function (private) //-------------------------------------------------------------------------- /** *

Calculates Mu0 polarization in x direction by superposition of four Mu0 frequencies * * \param time (us); */ TComplex PSimulateMuTransition::GTFunction(const Double_t &time, const TString chargeState) { Double_t twoPi = TMath::TwoPi(); TComplex complexPol = 0; if (chargeState == "Mu+") complexPol = TComplex::Exp(-TComplex::I()*twoPi*fMuonPrecFreq*time); else{ complexPol = (fMuFractionState12 * TComplex::Exp(TComplex::I()*twoPi*fMuPrecFreq12*time) + fMuFractionState34 * TComplex::Exp(-TComplex::I()*twoPi*fMuPrecFreq34*time)) + (fMuFractionState23 * TComplex::Exp(TComplex::I()*twoPi*fMuPrecFreq23*time) + fMuFractionState14 * TComplex::Exp(TComplex::I()*twoPi*fMuPrecFreq14*time)); } return complexPol; } //-------------------------------------------------------------------------- // Mu0 transverse field polarization function after n spin-flip collisions (private) //-------------------------------------------------------------------------- /** *

Calculates Mu0 polarization in x direction after n spin flip collisions. * See M. Senba, J.Phys. B24, 3531 (1991), equation (17) * * \param time (us); */ Double_t PSimulateMuTransition::GTSpinFlip(const Double_t &time) { TComplex complexPolX = 1.0; Double_t muoniumPolX = 1.0; //initial polarization in x direction Double_t eventTime = 0; Double_t eventDiffTime = 0; Double_t lastEventTime = 0; eventTime += NextEventTime(fSpinFlipRate); if (eventTime >= time){ muoniumPolX = GTFunction(time, "Mu0").Re(); } else{ while (eventTime < time){ eventDiffTime = eventTime - lastEventTime; complexPolX = complexPolX * GTFunction(eventDiffTime, "Mu0"); lastEventTime = eventTime; eventTime += NextEventTime(fSpinFlipRate); } // calculate for the last collision eventDiffTime = time - lastEventTime; complexPolX = complexPolX * GTFunction(eventDiffTime, "Mu0"); muoniumPolX = complexPolX.Re(); } return muoniumPolX; } //-------------------------------------------------------------------------- // Event (private) //-------------------------------------------------------------------------- /** *

Generates "muon event": simulate muon spin polarization under charge-exchange with * a neutral muonium state in transverse field, where the polarization evolution * PxMu(t) of the muon spin in muonium is determined by a superposition of the * four "Mu transitions" nu_12, nu_34, nu_23, and nu_14. Use complex polarization * functions. * 1) according to Mu+/Mu0 fraction begin either with a Mu+ state or Mu state * 2) Mu+: determine next electron-capture time t_c. If t_c is larger than decay time t_d * calculate muon spin precession for t_d, Px(t_i); else calculate spin precession for t_c. * 3) Determine next ionization time t_i+1; calculate Px(t_i+1) in Muonium. Polarization * after ionization process is given by Px(t_i+1)*Px(t_i). * 4) get the next electron capture time, continue until t_d is reached. * *

For isotropic muonium, TF: * nu_12 and nu_34 with equal probabilities, probability for both states fMuFractionState12 * ni_23 and nu_14 with equal probabilities, probability for both states fMuFractionState23 * *

Calculates Mu0 polarization in x direction during cyclic charge exchange. * See M. Senba, J.Phys. B23, 1545 (1990), equations (9), (11) * \param muonString if eq. "Mu+" begin with Mu+ precession */ Double_t PSimulateMuTransition::Event(const TString muonString) { TComplex complexPolX = 1.0; Double_t muoniumPolX = 1.0; //initial polarization in x direction Double_t eventTime, eventDiffTime, captureTime, ionizationTime; eventTime = 0.; eventDiffTime = 0.; if (fDebugFlag) cout << "Decay time = " << fMuonDecayTime << endl; // charge-exchange loop until muon decays while (1) { if (muonString == "Mu+"){// Mu+ initial state; get next electron capture time captureTime = NextEventTime(fCaptureRate); eventTime += captureTime; if (fDebugFlag) cout << "Capture time = " << captureTime << " PolX = " << complexPolX.Re() << endl; if (eventTime < fMuonDecayTime) complexPolX *= GTFunction(captureTime, "Mu+"); else{ //muon decays; handle precession prior to muon decay eventDiffTime = fMuonDecayTime - (eventTime - captureTime); complexPolX *= GTFunction(eventDiffTime, "Mu+"); break; } // now, we have Mu0; get next ionization time ionizationTime = NextEventTime(fIonizationRate); eventTime += ionizationTime; if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " PolX = " << complexPolX.Re() << endl; if (eventTime < fMuonDecayTime) complexPolX *= GTFunction(ionizationTime, "Mu0"); else{ //muon decays; handle precession prior to muon decay eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime); complexPolX *= GTFunction(eventDiffTime, "Mu0"); break; } } else{// Mu0 as initial state; get next ionization time ionizationTime = NextEventTime(fIonizationRate); eventTime += ionizationTime; if (fDebugFlag) cout << "Mu Ioniza. time = " << ionizationTime << " PolX = " << complexPolX.Re() << endl; if (eventTime < fMuonDecayTime) complexPolX *= GTFunction(ionizationTime, "Mu0"); else{ //muon decays; handle precession prior to muon decay eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime); complexPolX *= GTFunction(eventDiffTime, "Mu0"); break; } // Mu+ state; get next electron capture time captureTime = NextEventTime(fCaptureRate); eventTime += captureTime; if (fDebugFlag) cout << "Capture time = " << captureTime << " PolX = " << complexPolX.Re() << endl; if (eventTime < fMuonDecayTime) complexPolX *= GTFunction(captureTime, "Mu+"); else{ //muon decays; handle precession prior to muon decay eventDiffTime = fMuonDecayTime - (eventTime - captureTime); complexPolX *= GTFunction(eventDiffTime, "Mu+"); break; } } } muoniumPolX = complexPolX.Re(); if (fDebugFlag) cout << " Final PolX = " << muoniumPolX << endl; return muoniumPolX; }