/*************************************************************************** PTheory.cpp Author: Andreas Suter e-mail: andreas.suter@psi.ch $Id$ ***************************************************************************/ /*************************************************************************** * Copyright (C) 2007 by Andreas Suter * * andreas.suter@psi.c * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include using namespace std; #include #include #include #include #include #include #include #include #include "PMsrHandler.h" #include "PTheory.h" #define SQRT_TWO 1.41421356237 #define SQRT_PI 1.77245385091 //-------------------------------------------------------------------------- // Constructor //-------------------------------------------------------------------------- /** *

The theory block his parsed and mapped to a tree. Every line (except the '+') * is a theory object by itself, i.e. the whole theory is build up recursivly. * Example: * Theory block: * a 1 * tf 2 3 * se 4 * + * a 5 * tf 6 7 * se 8 * + * a 9 * tf 10 11 * * This is mapped into the following binary tree: * * a 1 * +/ \* * a 5 tf 2 3 * + / \* \ * * a 9 a 5 se 4 * \* \* * tf 10 11 tf 6 7 * \* * se 8 * * \param msrInfo * \param runNo * \param parent needed in order to know if PTheory is the root object or a child * false (default) -> this is the root object * true -> this is part of an already existing object tree */ PTheory::PTheory(PMsrHandler *msrInfo, unsigned int runNo, const bool hasParent) { // init stuff fValid = true; fAdd = 0; fMul = 0; fUserFcnClassName = TString(""); fUserFcn = 0; fDynLFdt = 0.0; static unsigned int lineNo = 1; // lineNo static unsigned int depth = 0; // needed to handle '+' properly if (hasParent == false) { // reset static counters if root object lineNo = 1; // the lineNo counter and the depth counter need to be depth = 0; // reset for every root object (new run). } for (unsigned int i=0; iGetMsrTheory(); if (lineNo > fullTheoryBlock->size()-1) { return; } // get the line to be parsed PMsrLineStructure *line = &(*fullTheoryBlock)[lineNo]; // copy line content to str in order to remove comments TString str = line->fLine.Copy(); // remove theory line comment if present, i.e. something starting with '(' int index = str.Index("("); if (index > 0) // theory line comment present str.Resize(index); // remove msr-file comment if present, i.e. something starting with '#' index = str.Index("#"); if (index > 0) // theory line comment present str.Resize(index); // tokenize line TObjArray *tokens; TObjString *ostr; tokens = str.Tokenize(" \t"); if (!tokens) { cout << endl << "**SEVERE ERROR**: PTheory(): Couldn't tokenize theory block line " << line->fLineNo << "."; cout << endl << " line content: " << line->fLine.Data(); cout << endl; exit(0); } ostr = dynamic_cast(tokens->At(0)); str = ostr->GetString(); // search the theory function unsigned int idx = SearchDataBase(str); // function found is not defined if (idx == (unsigned int) THEORY_UNDEFINED) { cout << endl << "**ERROR**: PTheory(): Theory line '" << line->fLine.Data() << "'"; cout << endl << " in line no " << line->fLineNo << " is undefined!"; fValid = false; return; } // line is a valid function, hence analyze parameters if (((unsigned int)(tokens->GetEntries()-1) < fNoOfParam) && ((idx != THEORY_USER_FCN) && (idx != THEORY_POLYNOM))) { cout << endl << "**ERROR**: PTheory(): Theory line '" << line->fLine.Data() << "'"; cout << endl << " in line no " << line->fLineNo; cout << endl << " expecting " << fgTheoDataBase[idx].fNoOfParam << ", but found " << tokens->GetEntries()-1; fValid = false; } // keep function index fType = idx; // filter out the parameters int status; unsigned int value; bool ok = false; for (int i=1; iGetEntries(); i++) { ostr = dynamic_cast(tokens->At(i)); str = ostr->GetString(); // if userFcn, the first entry is the function name and needs to be handled specially if ((fType == THEORY_USER_FCN) && ((i == 1) || (i == 2))) { //cout << endl << ">> userFcn: i=" << i << ", str=" << str.Data() << endl; if (i == 1) { fUserFcnSharedLibName = str; } if (i == 2) { fUserFcnClassName = str; } continue; } // check if str is map if (str.Contains("map")) { status = sscanf(str.Data(), "map%u", &value); if (status == 1) { // everthing ok ok = true; // get parameter from map PIntVector maps = (*msrInfo->GetMsrRunList())[runNo].fMap; if ((value <= maps.size()) && (value > 0)) { // everything fine fParamNo.push_back(maps[value-1]-1); } else { // map index out of range cout << endl << "**ERROR**: PTheory: map index " << value << " out of range! See line no " << line->fLineNo; fValid = false; } } else { // something wrong cout << endl << "**ERROR**: PTheory: map '" << str.Data() << "' not allowed. See line no " << line->fLineNo; fValid = false; } } else if (str.Contains("fun")) { // check if str is fun status = sscanf(str.Data(), "fun%u", &value); if (status == 1) { // everthing ok ok = true; // handle function, i.e. get, from the function number x (FUNx), the function index, // add function offset and fill "parameter vector" fParamNo.push_back(msrInfo->GetFuncIndex(value)+MSR_PARAM_FUN_OFFSET); } else { // something wrong fValid = false; } } else { // check if str is param no status = sscanf(str.Data(), "%u", &value); if (status == 1) { // everthing ok ok = true; fParamNo.push_back(value-1); } // check if one of the valid entries was found if (!ok) { cout << endl << "**ERROR**: PTheory: '" << str.Data() << "' not allowed. See line no " << line->fLineNo; fValid = false; } } } // call the next line (only if valid so far and not the last line) // handle '*' if (fValid && (lineNo < fullTheoryBlock->size()-1)) { line = &(*fullTheoryBlock)[lineNo+1]; if (!line->fLine.Contains("+")) { // make sure next line is not a '+' depth++; lineNo++; fMul = new PTheory(msrInfo, runNo, true); depth--; } } // call the next line (only if valid so far and not the last line) // handle '+' if (fValid && (lineNo < fullTheoryBlock->size()-1)) { line = &(*fullTheoryBlock)[lineNo+1]; if ((depth == 0) && line->fLine.Contains("+")) { lineNo += 2; // go to the next theory function line fAdd = new PTheory(msrInfo, runNo, true); } } // make clean and tidy theory block for the msr-file if (fValid && !hasParent) { // parent theory object MakeCleanAndTidyTheoryBlock(fullTheoryBlock); } // check if user function, if so, check if it is reachable (root) and if yes invoke object if (!fUserFcnClassName.IsWhitespace()) { cout << endl << ">> user function class name: " << fUserFcnClassName.Data() << endl; if (!TClass::GetDict(fUserFcnClassName.Data())) { if (gSystem->Load(fUserFcnSharedLibName.Data()) < 0) { cout << endl << "**ERROR**: PTheory: user function class '" << fUserFcnClassName.Data() << "' not found."; cout << endl << " Tried to load " << fUserFcnSharedLibName.Data() << " but failed."; cout << endl << " See line no " << line->fLineNo; fValid = false; // clean up if (tokens) { delete tokens; tokens = 0; } return; } } // invoke user function object fUserFcn = 0; fUserFcn = (PUserFcnBase*)TClass::GetClass(fUserFcnClassName.Data())->New(); //cout << endl << ">> fUserFcn = " << fUserFcn << endl; if (fUserFcn == 0) { cout << endl << "**ERROR**: PTheory: user function object could not be invoked. See line no " << line->fLineNo; fValid = false; } else { // user function valid, hence expand the fUserParam vector to the proper size fUserParam.resize(fParamNo.size()); } } // clean up if (tokens) { delete tokens; tokens = 0; } } //-------------------------------------------------------------------------- // Destructor //-------------------------------------------------------------------------- /** *

*/ PTheory::~PTheory() { //cout << endl << "PTheory::~PTheory() ..." << endl; fParamNo.clear(); fUserParam.clear(); fLFIntegral.clear(); fDynLFFuncValue.clear(); // recursive clean up CleanUp(this); if (fUserFcn) { delete fUserFcn; fUserFcn = 0; } } //-------------------------------------------------------------------------- // IsValid //-------------------------------------------------------------------------- /** *

Checks if the theory tree is valid. Needs to be implemented!! * */ bool PTheory::IsValid() { if (fMul) { if (fAdd) { return (fValid && fMul->IsValid() && fAdd->IsValid()); } else { return (fValid && fMul->IsValid()); } } else { if (fAdd) { return (fValid && fAdd->IsValid()); } else { return fValid; } } return false; } //-------------------------------------------------------------------------- /** *

* * \param t * \param paramValues */ double PTheory::Func(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { if (fMul) { if (fAdd) { // fMul != 0 && fAdd != 0 switch (fType) { case THEORY_ASYMMETRY: return Asymmetry(paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SIMPLE_EXP: return SimpleExp(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_GENERAL_EXP: return GeneralExp(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SIMPLE_GAUSS: return SimpleGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT: return StaticGaussKT(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT_LF: return StaticGaussKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_DYNAMIC_GAUSS_KT_LF: return DynamicGaussKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT: return StaticLorentzKT(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT_LF: return StaticLorentzKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_DYNAMIC_LORENTZ_KT_LF: return DynamicLorentzKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_COMBI_LGKT: return CombiLGKT(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SPIN_GLASS: return SpinGlass(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_RANDOM_ANISOTROPIC_HYPERFINE: return RandomAnisotropicHyperfine(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_ABRAGAM: return Abragam(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_INTERNAL_FIELD: return InternalField(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_TF_COS: return TFCos(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_BESSEL: return Bessel(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_INTERNAL_BESSEL: return InternalBessel(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SKEWED_GAUSS: return SkewedGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_POLYNOM: return Polynom(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_USER_FCN: return UserFcn(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; default: cout << endl << "**PANIC ERROR**: PTheory::Func: You never should have reached this line?!?! (" << fType << ")"; cout << endl; exit(0); } } else { // fMul !=0 && fAdd == 0 switch (fType) { case THEORY_ASYMMETRY: return Asymmetry(paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_SIMPLE_EXP: return SimpleExp(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_GENERAL_EXP: return GeneralExp(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_SIMPLE_GAUSS: return SimpleGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT: return StaticGaussKT(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT_LF: return StaticGaussKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_DYNAMIC_GAUSS_KT_LF: return DynamicGaussKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT: return StaticLorentzKT(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT_LF: return StaticLorentzKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_DYNAMIC_LORENTZ_KT_LF: return DynamicLorentzKTLF(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_COMBI_LGKT: return CombiLGKT(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_SPIN_GLASS: return SpinGlass(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_RANDOM_ANISOTROPIC_HYPERFINE: return RandomAnisotropicHyperfine(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_ABRAGAM: return Abragam(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_INTERNAL_FIELD: return InternalField(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_TF_COS: return TFCos(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_BESSEL: return Bessel(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_INTERNAL_BESSEL: return InternalBessel(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_SKEWED_GAUSS: return SkewedGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_POLYNOM: return Polynom(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; case THEORY_USER_FCN: return UserFcn(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); break; default: cout << endl << "**PANIC ERROR**: PTheory::Func: You never should have reached this line?!?! (" << fType << ")"; cout << endl; exit(0); } } } else { // fMul == 0 && fAdd != 0 if (fAdd) { switch (fType) { case THEORY_ASYMMETRY: return Asymmetry(paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SIMPLE_EXP: return SimpleExp(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_GENERAL_EXP: return GeneralExp(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SIMPLE_GAUSS: return SimpleGauss(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT: return StaticGaussKT(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT_LF: return StaticGaussKTLF(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_DYNAMIC_GAUSS_KT_LF: return DynamicGaussKTLF(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT: return StaticLorentzKT(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT_LF: return StaticLorentzKTLF(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_DYNAMIC_LORENTZ_KT_LF: return DynamicLorentzKTLF(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_COMBI_LGKT: return CombiLGKT(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SPIN_GLASS: return SpinGlass(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_RANDOM_ANISOTROPIC_HYPERFINE: return RandomAnisotropicHyperfine(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_ABRAGAM: return Abragam(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_INTERNAL_FIELD: return InternalField(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_TF_COS: return TFCos(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_BESSEL: return Bessel(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_INTERNAL_BESSEL: return InternalBessel(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_SKEWED_GAUSS: return SkewedGauss(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_POLYNOM: return Polynom(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; case THEORY_USER_FCN: return UserFcn(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); break; default: cout << endl << "**PANIC ERROR**: PTheory::Func: You never should have reached this line?!?! (" << fType << ")"; cout << endl; exit(0); } } else { // fMul == 0 && fAdd == 0 switch (fType) { case THEORY_ASYMMETRY: return Asymmetry(paramValues, funcValues); break; case THEORY_SIMPLE_EXP: return SimpleExp(t, paramValues, funcValues); break; case THEORY_GENERAL_EXP: return GeneralExp(t, paramValues, funcValues); break; case THEORY_SIMPLE_GAUSS: return SimpleGauss(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT: return StaticGaussKT(t, paramValues, funcValues); break; case THEORY_STATIC_GAUSS_KT_LF: return StaticGaussKTLF(t, paramValues, funcValues); break; case THEORY_DYNAMIC_GAUSS_KT_LF: return DynamicGaussKTLF(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT: return StaticLorentzKT(t, paramValues, funcValues); break; case THEORY_STATIC_LORENTZ_KT_LF: return StaticLorentzKTLF(t, paramValues, funcValues); break; case THEORY_DYNAMIC_LORENTZ_KT_LF: return DynamicLorentzKTLF(t, paramValues, funcValues); break; case THEORY_COMBI_LGKT: return CombiLGKT(t, paramValues, funcValues); break; case THEORY_SPIN_GLASS: return SpinGlass(t, paramValues, funcValues); break; case THEORY_RANDOM_ANISOTROPIC_HYPERFINE: return RandomAnisotropicHyperfine(t, paramValues, funcValues); break; case THEORY_ABRAGAM: return Abragam(t, paramValues, funcValues); break; case THEORY_INTERNAL_FIELD: return InternalField(t, paramValues, funcValues); break; case THEORY_TF_COS: return TFCos(t, paramValues, funcValues); break; case THEORY_BESSEL: return Bessel(t, paramValues, funcValues); break; case THEORY_INTERNAL_BESSEL: return InternalBessel(t, paramValues, funcValues); break; case THEORY_SKEWED_GAUSS: return SkewedGauss(t, paramValues, funcValues); break; case THEORY_POLYNOM: return Polynom(t, paramValues, funcValues); break; case THEORY_USER_FCN: return UserFcn(t, paramValues, funcValues); break; default: cout << endl << "**PANIC ERROR**: PTheory::Func: You never should have reached this line?!?! (" << fType << ")"; cout << endl; exit(0); } } } return 0.0; } //-------------------------------------------------------------------------- /** *

Recursively clean up theory * * If data were a pointer to some data on the heap, * here, we would call delete on it. If it were a "composed" object, * its destructor would get called automatically after our own * destructor, so we would not have to worry about it. * * So all we have to clean up is the left and right subchild. * It turns out that we don't have to check for null pointers; * C++ automatically ignores a call to delete on a NULL pointer * (according to the man page, the same is true with malloc() in C) * * the COOLEST part is that if right is a non-null pointer, * the destructor gets called recursively! * * \param theo */ void PTheory::CleanUp(PTheory *theo) { if (theo->fMul) { // '*' present delete theo->fMul; theo->fMul = 0; } if (theo->fAdd) { delete theo->fAdd; theo->fAdd = 0; } } //-------------------------------------------------------------------------- /** *

* * \param name */ int PTheory::SearchDataBase(TString name) { int idx = THEORY_UNDEFINED; for (unsigned int i=0; i * * \param fullTheoryBlock */ void PTheory::MakeCleanAndTidyTheoryBlock(PMsrLines *fullTheoryBlock) { PMsrLineStructure *line; TString str, tidy; char substr[256]; TObjArray *tokens = 0; TObjString *ostr; int idx = THEORY_UNDEFINED; for (unsigned int i=1; isize(); i++) { // get the line to be prettyfied line = &(*fullTheoryBlock)[i]; // copy line content to str in order to remove comments str = line->fLine.Copy(); // remove theory line comment if present, i.e. something starting with '(' int index = str.Index("("); if (index > 0) // theory line comment present str.Resize(index); // tokenize line tokens = str.Tokenize(" \t"); // make a handable string out of the asymmetry token ostr = dynamic_cast(tokens->At(0)); str = ostr->GetString(); // check if the line is just a '+' if so nothing to be done if (str.Contains("+")) continue; // check if the function is a polynom if (!str.CompareTo("p") || str.Contains("polynom")) { MakeCleanAndTidyPolynom(i, fullTheoryBlock); continue; } // check if the function is a userFcn if (!str.CompareTo("u") || str.Contains("userFcn")) { MakeCleanAndTidyUserFcn(i, fullTheoryBlock); continue; } // search the theory function for (unsigned int j=0; jGetEntries() < fgTheoDataBase[idx].fNoOfParam + 1) return; // make tidy string sprintf(substr, "%-10s", fgTheoDataBase[idx].fName.Data()); tidy = TString(substr); for (unsigned int j=1; j<(unsigned int)tokens->GetEntries(); j++) { ostr = dynamic_cast(tokens->At(j)); str = ostr->GetString(); sprintf(substr, "%6s", str.Data()); tidy += TString(substr); } if (fgTheoDataBase[idx].fComment.Length() != 0) { if (tidy.Length() < 35) { for (unsigned int k=0; k<35-(unsigned int)tidy.Length(); k++) tidy += TString(" "); } else { tidy += TString(" "); } if ((unsigned int)tokens->GetEntries() == fgTheoDataBase[idx].fNoOfParam + 1) // no tshift tidy += fgTheoDataBase[idx].fComment; else tidy += fgTheoDataBase[idx].fCommentTimeShift; } // write tidy string back into theory block (*fullTheoryBlock)[i].fLine = tidy; } // clean up if (tokens) { delete tokens; tokens = 0; } } //-------------------------------------------------------------------------- // MakeCleanAndTidyPolynom private //-------------------------------------------------------------------------- /** *

* * \param fullTheoryBlock */ void PTheory::MakeCleanAndTidyPolynom(unsigned int i, PMsrLines *fullTheoryBlock) { PMsrLineStructure *line; TString str, tidy; TObjArray *tokens = 0; TObjString *ostr; char substr[256]; //cout << endl << ">> MakeCleanAndTidyPolynom: " << (*fullTheoryBlock)[i].fLine.Data(); // init tidy tidy = TString("polynom "); // get the line to be prettyfied line = &(*fullTheoryBlock)[i]; // copy line content to str in order to remove comments str = line->fLine.Copy(); // tokenize line tokens = str.Tokenize(" \t"); // check if comment is already present, and if yes ignore it by setting max correctly unsigned int max = (unsigned int)tokens->GetEntries(); for (unsigned int j=1; j(tokens->At(j)); str = ostr->GetString(); if (str.Contains("(")) { // comment present max=j; break; } } for (unsigned int j=1; j(tokens->At(j)); str = ostr->GetString(); sprintf(substr, "%6s", str.Data()); tidy += TString(substr); } // add comment tidy += " (tshift p0 p1 ... pn)"; // write tidy string back into theory block (*fullTheoryBlock)[i].fLine = tidy; // clean up if (tokens) { delete tokens; tokens = 0; } } //-------------------------------------------------------------------------- // MakeCleanAndTidyUserFcn private //-------------------------------------------------------------------------- /** *

* * \param fullTheoryBlock */ void PTheory::MakeCleanAndTidyUserFcn(unsigned int i, PMsrLines *fullTheoryBlock) { PMsrLineStructure *line; TString str, tidy; TObjArray *tokens = 0; TObjString *ostr; //cout << endl << ">> MakeCleanAndTidyUserFcn: " << (*fullTheoryBlock)[i].fLine.Data(); // init tidy tidy = TString("userFcn "); // get the line to be prettyfied line = &(*fullTheoryBlock)[i]; // copy line content to str in order to remove comments str = line->fLine.Copy(); // tokenize line tokens = str.Tokenize(" \t"); for (unsigned int j=1; j<(unsigned int)tokens->GetEntries(); j++) { ostr = dynamic_cast(tokens->At(j)); str = ostr->GetString(); tidy += TString(" ") + str; } // write tidy string back into theory block (*fullTheoryBlock)[i].fLine = tidy; // clean up if (tokens) { delete tokens; tokens = 0; } } //-------------------------------------------------------------------------- /** *

Asymmetry * \f[ = A \f] * * \param paramValues */ double PTheory::Asymmetry(const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: asym double asym; // check if FUNCTIONS are used if (fParamNo[0] < MSR_PARAM_FUN_OFFSET) { // parameter or resolved map asym = paramValues[fParamNo[0]]; } else { asym = funcValues[fParamNo[0]-MSR_PARAM_FUN_OFFSET]; } return asym; } //-------------------------------------------------------------------------- /** *

Simple exponential * \f[ = \exp\left(-\lambda t\right) \f] or * \f[ = \exp\left(-\lambda (t-t_{\rm shift} \right) \f] * *

For details concerning fParamNo and paramValues see PTheory::Asymmetry and * PTheory::PTheory. * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues parameter values: depolarization rate \f$\lambda\f$ * in \f$(1/\mu\mathrm{s})\f$, optionally \f$t_{\rm shift}\f$ */ double PTheory::SimpleExp(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: lambda [tshift] double val[2]; assert(fParamNo.size() <= 2); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::GeneralExp(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: lambda beta [tshift] double val[3]; double result; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::SimpleGauss(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: sigma [tshift] double val[2]; assert(fParamNo.size() <= 2); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::StaticGaussKT(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: sigma [tshift] double val[2]; assert(fParamNo.size() <= 2); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::StaticGaussKTLF(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: frequency damping [tshift] double val[3]; double result; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::DynamicGaussKTLF(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: frequency damping hopping [tshift] double val[4]; double result = 0.0; bool useKeren = false; assert(fParamNo.size() <= 4); // check if FUNCTIONS are used for (unsigned int i=0; i 5.0) // nu/Delta > 5.0 useKeren = true; if (!useKeren) { // check if the parameter values have changed, and if yes recalculate the non-analytic integral bool newParam = false; for (unsigned int i=0; i<4; i++) { if (val[i] != fPrevParam[i]) { newParam = true; break; } } if (newParam) { // new parameters found for (unsigned int i=0; i<4; i++) fPrevParam[i] = val[i]; CalculateDynKTLF(val, 0); // 0 means Gauss } } double tt; if (fParamNo.size() == 3) // no tshift tt = t; else // tshift present tt = t-val[3]; if (tt < 0.0) // for times < 0 return a function value of 0.0 return 0.0; if (useKeren) { // see PRB50, 10039 (1994) double wL = TWO_PI * val[0]; double wL2 = wL*wL; double nu2 = val[2]*val[2]; double Gamma_t = 2.0*val[1]*val[1]/((wL2+nu2)*(wL2+nu2))* ((wL2+nu2)*val[2]*t + (wL2-nu2)*(1.0 - TMath::Exp(-val[2]*t)*TMath::Cos(wL*t)) - 2.0*val[2]*wL*TMath::Exp(-val[2]*t)*TMath::Sin(wL*t)); result = TMath::Exp(-Gamma_t); } else { // from Voltera result = GetDynKTLFValue(tt); } return result; } //-------------------------------------------------------------------------- /** *

(see Uemura et al. PRB 31, 546 (85)) * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::StaticLorentzKT(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: lambda [tshift] double val[2]; assert(fParamNo.size() <= 2); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::StaticLorentzKTLF(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: frequency damping [tshift] double val[3]; double result; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::DynamicLorentzKTLF(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: frequency damping hopping [tshift] double val[4]; double result = 0.0; assert(fParamNo.size() <= 4); // check if all parameters == 0 if ((val[0] == 0.0) && (val[1] == 0.0) && (val[2] == 0.0)) return 1.0; // check if FUNCTIONS are used for (unsigned int i=0; i 5 * damping, of Larmor angular frequency is > 30 * damping (BMW limit) Double_t w0 = 2.0*TMath::Pi()*val[0]; Double_t a = val[1]; Double_t nu = val[2]; if ((nu > 5.0 * a) || (w0 >= 30.0 * a)) { // 'c' and 'd' are parameters BMW obtained by fitting large parameter space LF-curves to the model below const Double_t c[7] = {1.15331, 1.64826, -0.71763, 3.0, 0.386683, -5.01876, 2.41854}; const Double_t d[4] = {2.44056, 2.92063, 1.69581, 0.667277}; Double_t w0N[4]; Double_t nuN[4]; w0N[0] = w0; nuN[0] = nu; for (unsigned int i=1; i<4; i++) { w0N[i] = w0 * w0N[i-1]; nuN[i] = nu * nuN[i-1]; } Double_t denom = w0N[3]+d[0]*w0N[2]*nuN[0]+d[1]*w0N[1]*nuN[1]+d[2]*w0N[0]*nuN[2]+d[3]*nuN[3]; Double_t b1 = (c[0]*w0N[2]+c[1]*w0N[1]*nuN[0]+c[2]*w0N[0]*nuN[1])/denom; Double_t b2 = (c[3]*w0N[2]+c[4]*w0N[1]*nuN[0]+c[5]*w0N[0]*nuN[1]+c[6]*nuN[2])/denom; Double_t w0t = w0*tt; Double_t j1, j0; if (fabs(w0t) < 0.001) { // check zero time limits of the spherical bessel functions j0(x) and j1(x) j0 = 1.0; j1 = 0.0; } else { j0 = sin(w0t)/w0t; j1 = (sin(w0t)-w0t*cos(w0t))/(w0t*w0t); } Double_t Gamma_t = -4.0/3.0*a*(b1*(1.0-j0*TMath::Exp(-nu*tt))+b2*j1*TMath::Exp(-nu*tt)+(1.0-b2*w0/3.0-b1*nu)*tt); return TMath::Exp(Gamma_t); } // check if the parameter values have changed, and if yes recalculate the non-analytic integral bool newParam = false; for (unsigned int i=0; i<4; i++) { if (val[i] != fPrevParam[i]) { newParam = true; break; } } if (newParam) { // new parameters found for (unsigned int i=0; i<4; i++) fPrevParam[i] = val[i]; CalculateDynKTLF(val, 1); // 0 means Lorentz } result = GetDynKTLFValue(tt); return result; } //-------------------------------------------------------------------------- /** *

* * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::CombiLGKT(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: lambdaL lambdaG [tshift] double val[3]; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::SpinGlass(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: lambda gamma q [tshift] if (paramValues[fParamNo[0]] == 0.0) return 1.0; double val[4]; assert(fParamNo.size() <= 4); // check if FUNCTIONS are used for (unsigned int i=0; iWhere does this come from ??? please give a reference * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::RandomAnisotropicHyperfine(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: nu lambda [tshift] double val[3]; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::Abragam(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: sigma gamma [tshift] double val[3]; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::InternalField(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: fraction phase frequency rateT rateL [tshift] double val[6]; assert(fParamNo.size() <= 6); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::TFCos(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: phase frequency [tshift] double val[3]; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::Bessel(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: phase frequency [tshift] double val[3]; assert(fParamNo.size() <= 3); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::InternalBessel(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: fraction phase frequency rateT rateL [tshift] double val[6]; assert(fParamNo.size() <= 6); // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::SkewedGauss(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: phase frequency sigma- sigma+ [tshift] double val[5]; double skg; assert(fParamNo.size() <= 5); // check if FUNCTIONS are used for (unsigned int i=0; i= 25.0) || (zm >= 25.0)) // needed to prevent crash of 1F1 skg = 2.0e300; else if (fabs(val[2]) == fabs(val[3])) // sigma+ == sigma- -> Gaussian skg = TMath::Cos(phase+freq*tt) * gp; else skg = TMath::Cos(phase+freq*tt) * (wm*gm + wp*gp) + TMath::Sin(phase+freq*tt) * (wm*gm*2.0*zm/SQRT_PI*ROOT::Math::conf_hyperg(0.5,1.5,zm*zm) - wp*gp*2.0*zp/SQRT_PI*ROOT::Math::conf_hyperg(0.5,1.5,zp*zp)); return skg; } //-------------------------------------------------------------------------- /** *

* * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues tshift, p0, p1, ..., pn */ double PTheory::Polynom(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { // expected parameters: tshift p0 p1 p2 ... double result = 0.0; double tshift = 0.0; double val; double expo = 0.0; // check if FUNCTIONS are used for (unsigned int i=0; i * * \param t time in \f$(\mu\mathrm{s})\f$ * \param paramValues */ double PTheory::UserFcn(register double t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const { /* static bool first = true; if (first) { cout << endl << ">> UserFcn: fParamNo.size()=" << fParamNo.size() << ", fUserParam.size()=" << fUserParam.size(); for (unsigned int i=0; i> " << i << ": " << fParamNo[i]+1; } cout << endl; } */ // check if FUNCTIONS are used for (unsigned int i=0; i " << i << ": " << fUserParam[i]; } cout << endl; cout << endl << ">> t=" << t << ", function value=" << (*fUserFcn)(t, fUserParam); cout << endl; } */ return (*fUserFcn)(t, fUserParam); } //-------------------------------------------------------------------------- /** *

The fLFIntegral is given in steps of 1 ns, e.g. index i=100 coresponds to t=100ns * * \param val parameters needed to calculate the non-analytic integral of the static Gauss LF function. */ void PTheory::CalculateGaussLFIntegral(const double *val) const { // val[0] = nu (field), val[1] = Delta if (val[0] == 0.0) // field == 0.0, hence nothing to be done return; const double dt=0.001; // all times in usec double t, ft; double w0 = TMath::TwoPi()*val[0]; double Delta = val[1]; double preFactor = 2.0*TMath::Power(Delta, 4.0) / TMath::Power(w0, 3.0); // clear previously allocated vector fLFIntegral.clear(); // calculate integral t = 0.0; fLFIntegral.push_back(0.0); // start value of the integral ft = 0.0; for (unsigned int i=1; i<2e4; i++) { t += dt; ft += 0.5*dt*preFactor*(TMath::Exp(-0.5*TMath::Power(Delta * (t-dt), 2.0))*TMath::Sin(w0*(t-dt))+ TMath::Exp(-0.5*TMath::Power(Delta * t, 2.0))*TMath::Sin(w0*t)); fLFIntegral.push_back(ft); } } //-------------------------------------------------------------------------- /** *

* * \param val parameters needed to calculate the non-analytic integral of the static Lorentz LF function. */ void PTheory::CalculateLorentzLFIntegral(const double *val) const { // val[0] = nu, val[1] = a if (val[0] == 0.0) // field == 0.0, hence nothing to be done return; const double dt=0.001; // all times in usec double t, ft; double w0 = TMath::TwoPi()*val[0]; double a = val[1]; double preFactor = a*(1+pow(a/w0,2.0)); // clear previously allocated vector fLFIntegral.clear(); // calculate integral t = 0.0; fLFIntegral.push_back(0.0); // start value of the integral ft = 0.0; // calculate first integral bin value (needed bcause of sin(x)/x x->0) t += dt; ft += 0.5*dt*preFactor*(1.0+sin(w0*t)/(w0*t)*exp(-a*t)); fLFIntegral.push_back(ft); // calculate all the other integral bin values for (unsigned int i=2; i<2e4; i++) { t += dt; ft += 0.5*dt*preFactor*(sin(w0*(t-dt))/(w0*(t-dt))*exp(-a*(t-dt))+sin(w0*t)/(w0*t)*exp(-a*t)); fLFIntegral.push_back(ft); } } //-------------------------------------------------------------------------- /** *

* * \param t time in (usec) */ double PTheory::GetLFIntegralValue(const double t) const { unsigned int idx = static_cast(t/0.001); // since LF-integral is calculated in nsec if (idx < 0) return 0.0; if (idx > fLFIntegral.size()-1) return fLFIntegral[fLFIntegral.size()-1]; // liniarly interpolate between the two relvant function bins double df = (fLFIntegral[idx+1]-fLFIntegral[idx])/0.001*(t-idx*0.001); return fLFIntegral[idx]+df; } //-------------------------------------------------------------------------- /** *

Number of sampling points is estimated according to w0: w0 T = 2 pi * t_sampling = T/16 (i.e. 16 points on 1 period) * N = 8/pi w0 Tmax = 16 nu0 Tmax * * \param val parameters needed to solve the voltera integral equation * \param tag 0=Gauss, 1=Lorentz */ void PTheory::CalculateDynKTLF(const double *val, int tag) const { // val: 0=nu0, 1=Delta (Gauss) / a (Lorentz), 2=nu const double Tmax = 20.0; // 20 usec unsigned int N = static_cast(16.0*Tmax*val[0]); // check if rate (Delta or a) is very high if (fabs(val[1]) > 0.1) { double tmin = 20.0; switch (tag) { case 0: // Gauss tmin = sqrt(3.0)/val[1]; break; case 1: // Lorentz tmin = 2.0/val[1]; break; default: break; } unsigned int Nrate = static_cast(25.0 * Tmax / tmin); if (Nrate > N) { N = Nrate; } } if (N < 300) // if too view points, i.e. nu0 very small, take 300 points N = 300; // allocate memory for dyn KT LF function vector fDynLFFuncValue.clear(); // get rid of a possible previous vector fDynLFFuncValue.resize(N); // calculate the non-analytic integral of the static KT LF function switch (tag) { case 0: // Gauss CalculateGaussLFIntegral(val); break; case 1: // Lorentz CalculateLorentzLFIntegral(val); break; default: cout << endl << "**FATAL ERROR** in PTheory::CalculateDynKTLF: You should never have reached this point." << endl; assert(false); break; } // calculate the P^(0)(t) exp(-nu t) vector PDoubleVector p0exp(N); double t = 0.0; double dt = Tmax/N; fDynLFdt = dt; // keep it since it is needed in GetDynKTLFValue() for (unsigned int i=0; i * * \param t time in (usec) */ double PTheory::GetDynKTLFValue(const double t) const { int idx = static_cast(t/fDynLFdt); if (idx < 0) return 0.0; if (idx > static_cast(fDynLFFuncValue.size())-1) return fDynLFFuncValue[fDynLFFuncValue.size()-1]; // liniarly interpolate between the two relvant function bins double df = (fDynLFFuncValue[idx+1]-fDynLFFuncValue[idx])*(t-idx*fDynLFdt)/fDynLFdt; return fDynLFFuncValue[idx]+df; } //-------------------------------------------------------------------------- // END //--------------------------------------------------------------------------