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1 Rotating Reference Frame Fits

High transverse field µSR (HTF-µSR) experiments will typically lead to rather large data sets
since it is necessary to follow the high frequencies present in the positron decay histograms.
Currently the HAL-9500 instrument at PSI [1] is operated with 2 positron detector, with a
typical number of ∼ 4 × 105 histogram bins. To analyze HTF-µSR data on rather slugish
computer hardware is a challenge. In the last millennium the people invented the rotating
reference frame transformation (RRF) [4] to reduce to data sets to be handled.

Here I will shortly describe the ways how it is implemented in Musrfit, and why it should
be avoided to be used altogether. The starting point of all is given by the positron decay
spectrum which formally takes the form

N (j)(t) = N
(j)
0 exp(−t/τµ)

[
1 +A(j)(t)

]
+N

(j)
bkg, (1)

where (j) is the index of the positron counter, N0 gives the scale of recorded positrons, τµ is
the muon lifetime, A(t) the asymmetry, and Nbkg describes the background due to uncorrelated
events.

The idea behind the RRF is twofolded: (i) try to extract A(t), and (ii) shift the high
frequency data set A(t) to lower frequencies such that the number of necessary bins needed can
be reduced (packing / rebinning), and hence the overall number of bins is much smaller.

As I will try to explain, this is not for free, and there are problems arising from this kind of
data treatment.

1.1 Single Histogram RRF Implementation

In a first step the asymmetry needs to be determined. This is done the following way:

1. Determine the background, Nbkg, at times before t0 (t0 is the time of the muon implan-
tation). Hopefully the background before and after t0 is equal, which is not always the
case.

2. Multiple the background corrected histogram with exp(+t/τµ), this is leading to

M(t) ≡ [N(t)−Nbkg] exp(+t/τµ) = N0 [1 +A(t)] . (2)

3. In order to extract A(t) from M(t), N0 needs to be determined, which is almost the most
tricky part here. The idea is simple: since A(t) is dominated by high frequency signals,
proper averaging over M(t) should allow to determine N0, assuming that 〈A(t)〉 = 0. Is
this assumption always true? No! For instance it is not true if the averaging is preformed
over incomplete periodes of a single assumed signal. Another case where it will fail is if
multiple signals with too far apart frequencies is present, as e.g. in the case of muonium.
Said all this, let’s come back and try to determine N0:
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N0 =
Navg∑
k=0

wkM(tk), (3)

where Navg is determined such that Navg∆t ' 1µs (∆t being the time resolution. 1µs means
averaging over many cyles). In order to get a good estimate for Navg, N(t) is Fourier trans-
formed, and from this power spectrum the frequency with the largest amplitude is determined,
ν0. From ν0, ∆t, the number of cycles fitting into 1µs can be determined, and from this and
the time resolution Navg can be calculated. The weight wk is given by:

wk =
[∆M(tk)]−2∑Navg
j=0 [∆M(tj)]

−2
, (4)

where

∆M(t) =

[(
∂M

∂N
∆N

)2

+
(

∂M

∂Nbkg
∆Nbkg

)2
]1/2

' exp(+t/τµ)
√
N(t). (5)

The error estimate on N0 is then

∆N0 = σN0 =
√∑

k

w2
k∆M(tk)2. (6)

Having estimated N0, the asymmetry can be extracted as:

A(t) = M(t)/N0 − 1. (7)

4. Now the actual RRF transformation can take place: Arrf(t) = 2 × A(t) cos(ωrrft + φrrf).
The factor of 2 is introduced to conserve the asymmetry amplitude. The idea is the
following: Fourier transform theory tells as that

F {2×A(t) cos(ωrrft+ φrrf)} = F {A(t)} (ω − ωrrf) + F {A(t)} (ω + ωrrf), (8)

i.e. that the Fourier spectrum of A(t) is shifted down and up by ω − ωrrf and ω + ωrrf ,
respectively. In order to get rid of the high frequency part (F {A(t)} (ω+ωrrf)), Arrf(t) will be
heavily over-binned, i.e.

5. Do the rrf packing: Arrf(t) → 〈Arrf(t)〉p. Packing itself is a filtering of data! Especially
this kind of filter is dispersive [3], i.e. that it potentially is leading to line shape distortions.
For symmetric, rather narrow lines, this is unlikely to be a problem. However, this might
be quite different for complex line shapes as in the case of vortex lattices.

The property 〈Arrf(t)〉p is what is fitted. The error on this property is estimated the following
way: (i) the unpacked error of A(t) is:

∆A(t) ' exp(+t/τµ)
N0

[
N(t) +

(
N(t)−Nbkg

N0

)2

∆N2
0

]1/2

, (9)

and form this the packed Arrf(t) error can be calculated.

1.2 Asymmetry RRF Implementation

1. In order to circumvent the difficulties to estimate N0 the asymmetry of the starting
positron histograms is formed. For details see [2]. For this, positron detectors geometri-
cally under 180◦ are used. However, due the the spiraling of the positron in sufficiently
high magnetic fields, and the uncertainties of the t0’s, the geometrical phase might not
correspond to the positron signal phase! At B = 9T the uncertainty in t0 by one channel
leads to a phase shift of γµB∆t · (180/π) = 1.7◦. Fig.1 shows the t0-region of a typical
HAL-9500 spectrum. It shows that it is very hard to get the absolut value of t0 right.
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2. Carry out the RRF transformation Arrf(t) = 2×A(t) cos(ωrrft+ φrrf).

3. Do the rrf packing.
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Figure 1: The t0 region of a typical HAL-9500 spectrum. The broad black hump with the green
line, is the “prompt” peak. It is not straight forward how to define t0.

2 Discussion

Both RRF transformation sketched above have weak points which makes it hard to estimate
systematic errors. Both methods will fail at too low fields of . 1T. The only and single purpose
of the RRF transformation is slughish computer power! We developed GPU based fitting which
overcomes all this uncontrolled weaknesses and henceforth RRF could be omitted altogether.
I still added it for the time being, since strong GPU/CPU hardware is still a bit costly and
therefore not affordable to everyone.

In order to give a feeling about what might go “wrong” with the RRF, I was running a
couple of test cases. The chosen asymmetry is

A(j)(t) = A
(j)
0

3∑
k=1

fk exp
[
−0.5 · (σkt)2

]
cos(γµBkt+ φ(j)), (10)

with values found in Tab.1. For the simulation 4 positron detector signals were generated with
A

(j)
0 = {0.2554, 0.2574, 0.2576, 0.2566}. The further ingredients were: N (j)

0 = {27.0, 25.3, 25.6, 26.9},
N

(j)
bkg = {0.055, 0.060, 0.069, 0.064}, and φ(j) = {5.0, 95.0, 185.0, 275.0}.

k fk σk Bk
(1/µs) (T)

1 0.5 7 1 or 9
2 0.2 0.75 1.02 or 9.02
3 0.3 0.25 1.06 or 9.06

Table 1: Parameters used in Eq.(10).

Figure.2 shows the averaged Fourier power spectra for the simulated data sets at 1T. Both
RRF transformation are showing ghost lines, even for optimally chosen RRF rebinning. At
higher fields this is less pronounced. The ghost lines have various origins such as aliasing effects
due to the RRF packing not prefectly suppressing the high frequency part of Arrf(t), leakage of
the RRF frequency for not sufficently precise known N0 (see Eq.(6)) for single histogram RRF
fits, etc.

Fits of simulated data as described above (see Eq.(10), with fields 0.5, 1.0, 3.0, 5.0, 7.0,
and 9.0T) show that above about 1T the model parameters of the RRF fits are acceptable,
but the error bars are typically about a factor 3 larger compared to single histogram fits.
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1  Frac0    0.5023    0.0042
2  Rate0    7.04      0.12
3  Field0   9998.4    1.4
4  Frac1    0.1971    0.0028
5  Rate1    0.754     0.015
6  Field1   10200.04  0.17
7  Rate2    0.2425    0.0037
8  Field2   10600.005 0.046
9  Asy_L    0.2578    0.0026
10 Phase_L  4.93      0.55
11 N0_L     1081.54   0.63
12 Bkg_L    2.164     0.099
13 Asy_R    0.2591    0.0027
14 Phase_R  185.29    0.56
15 N0_R     1023.23   0.61
16 Bkg_R    2.617     0.096
17 Asy_T    0.2535    0.0027
18 Phase_T  96.75     0.57
19 N0_T     1013.07   0.61
20 Bkg_T    2.300     0.096
21 Asy_B    0.2568    0.0027
22 Phase_B  275.56    0.56
23 N0_B     1075.97   0.63
24 Bkg_B    2.601     0.099
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Figure 2: Averaged Fourier power spectra. Top left: from single histogram fit for the 1T data
set. Top right: from single histogram RRF fit. Bottom: from asymmetry RRF fit. Both RRF
sets show ghost lines.

The asymmetries of the RRF fits are “substantially” too small. The χ2 values are close to
meaningless for the RRF fits, since they are strongly depending on the RRF packing, time
interval chosen, etc.

To summaries: RRF fits can be used for online analysis if no GPU accelerator is available,
but must not be used for any final analysis!
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