add proper p-wave (line,point) superfluid density calculation -- adopted to DKS.

This commit is contained in:
suter_a 2020-12-28 15:13:45 +01:00
parent aa08b40696
commit cd53c5a574
7 changed files with 840 additions and 15 deletions

View File

@ -35,6 +35,182 @@
#define SEED 0 #define SEED 0
#define STATEFILE NULL #define STATEFILE NULL
//-----------------------------------------------------------------------------
std::vector<double> TPointPWaveGapIntegralCuhre::fPar;
//-----------------------------------------------------------------------------
/**
* <p>Integrate the function using the Cuhre interface
*
* <p><b>return:</b>
* - value of the integral
*/
double TPointPWaveGapIntegralCuhre::IntegrateFunc(int tag)
{
const unsigned int NCOMP(1);
const unsigned int NVEC(1);
const double EPSREL (1e-4);
const double EPSABS (1e-6);
const unsigned int VERBOSE (0);
const unsigned int LAST (4);
const unsigned int MINEVAL (0);
const unsigned int MAXEVAL (50000);
const unsigned int KEY (13);
int nregions, neval, fail;
double integral[NCOMP], error[NCOMP], prob[NCOMP];
if (tag == 0)
Cuhre(fNDim, NCOMP, Integrand_aa, USERDATA, NVEC,
EPSREL, EPSABS, VERBOSE | LAST, MINEVAL, MAXEVAL,
KEY, STATEFILE, SPIN,
&nregions, &neval, &fail, integral, error, prob);
else
Cuhre(fNDim, NCOMP, Integrand_cc, USERDATA, NVEC,
EPSREL, EPSABS, VERBOSE | LAST, MINEVAL, MAXEVAL,
KEY, STATEFILE, SPIN,
&nregions, &neval, &fail, integral, error, prob);
return integral[0];
}
//-----------------------------------------------------------------------------
/**
* <p>Calculate the function value for the use with Cuhre---actual implementation of the function
* for p-wave point, aa==bb component
*
* <p><b>return:</b>
* - 0
*
* \param ndim number of dimensions of the integral (2 here)
* \param x point where the function should be evaluated
* \param ncomp number of components of the integrand (1 here)
* \param f function value
* \param userdata additional user parameters (required by the interface, NULL here)
*/
int TPointPWaveGapIntegralCuhre::Integrand_aa(const int *ndim, const double x[],
const int *ncomp, double f[], void *userdata) // x = {E, z}, fPar = {twokBT, Delta(T), Ec, zc}
{
double z = x[1]*fPar[3];
double deltasq(pow(sqrt(1.0-z*z)*fPar[1],2.0));
f[0] = (1.0-z*z)/TMath::Power(TMath::CosH(TMath::Sqrt(x[0]*x[0]*fPar[2]*fPar[2]+deltasq)/fPar[0]),2.0);
return 0;
}
//-----------------------------------------------------------------------------
/**
* <p>Calculate the function value for the use with Cuhre---actual implementation of the function
* for p-wave point, cc component
*
* <p><b>return:</b>
* - 0
*
* \param ndim number of dimensions of the integral (2 here)
* \param x point where the function should be evaluated
* \param ncomp number of components of the integrand (1 here)
* \param f function value
* \param userdata additional user parameters (required by the interface, NULL here)
*/
int TPointPWaveGapIntegralCuhre::Integrand_cc(const int *ndim, const double x[],
const int *ncomp, double f[], void *userdata) // x = {E, z}, fPar = {twokBT, Delta(T), Ec, zc}
{
double z = x[1]*fPar[3];
double deltasq(pow(sqrt(1.0-z*z)*fPar[1],2.0));
f[0] = (z*z)/TMath::Power(TMath::CosH(TMath::Sqrt(x[0]*x[0]*fPar[2]*fPar[2]+deltasq)/fPar[0]),2.0);
return 0;
}
//-----------------------------------------------------------------------------
std::vector<double> TLinePWaveGapIntegralCuhre::fPar;
//-----------------------------------------------------------------------------
/**
* <p>Integrate the function using the Cuhre interface
*
* <p><b>return:</b>
* - value of the integral
*/
double TLinePWaveGapIntegralCuhre::IntegrateFunc(int tag)
{
const unsigned int NCOMP(1);
const unsigned int NVEC(1);
const double EPSREL (1e-4);
const double EPSABS (1e-6);
const unsigned int VERBOSE (0);
const unsigned int LAST (4);
const unsigned int MINEVAL (0);
const unsigned int MAXEVAL (50000);
const unsigned int KEY (13);
int nregions, neval, fail;
double integral[NCOMP], error[NCOMP], prob[NCOMP];
if (tag == 0)
Cuhre(fNDim, NCOMP, Integrand_aa, USERDATA, NVEC,
EPSREL, EPSABS, VERBOSE | LAST, MINEVAL, MAXEVAL,
KEY, STATEFILE, SPIN,
&nregions, &neval, &fail, integral, error, prob);
else
Cuhre(fNDim, NCOMP, Integrand_cc, USERDATA, NVEC,
EPSREL, EPSABS, VERBOSE | LAST, MINEVAL, MAXEVAL,
KEY, STATEFILE, SPIN,
&nregions, &neval, &fail, integral, error, prob);
return integral[0];
}
//-----------------------------------------------------------------------------
/**
* <p>Calculate the function value for the use with Cuhre---actual implementation of the function
* for p-wave line, aa==bb component
*
* <p><b>return:</b>
* - 0
*
* \param ndim number of dimensions of the integral (2 here)
* \param x point where the function should be evaluated
* \param ncomp number of components of the integrand (1 here)
* \param f function value
* \param userdata additional user parameters (required by the interface, NULL here)
*/
int TLinePWaveGapIntegralCuhre::Integrand_aa(const int *ndim, const double x[],
const int *ncomp, double f[], void *userdata) // x = {E, z}, fPar = {twokBT, Delta(T), Ec, zc}
{
double z = x[1]*fPar[3];
double deltasq(pow(z*fPar[1],2.0));
f[0] = (1.0-z*z)/TMath::Power(TMath::CosH(TMath::Sqrt(x[0]*x[0]*fPar[2]*fPar[2]+deltasq)/fPar[0]),2.0);
return 0;
}
//-----------------------------------------------------------------------------
/**
* <p>Calculate the function value for the use with Cuhre---actual implementation of the function
* for p-wave line, cc component
*
* <p><b>return:</b>
* - 0
*
* \param ndim number of dimensions of the integral (2 here)
* \param x point where the function should be evaluated
* \param ncomp number of components of the integrand (1 here)
* \param f function value
* \param userdata additional user parameters (required by the interface, NULL here)
*/
int TLinePWaveGapIntegralCuhre::Integrand_cc(const int *ndim, const double x[],
const int *ncomp, double f[], void *userdata) // x = {E, z}, fPar = {twokBT, Delta(T), Ec, zc}
{
double z = x[1]*fPar[3];
double deltasq(pow(z*fPar[1],2.0));
f[0] = (z*z)/TMath::Power(TMath::CosH(TMath::Sqrt(x[0]*x[0]*fPar[2]*fPar[2]+deltasq)/fPar[0]),2.0);
return 0;
}
//-----------------------------------------------------------------------------
std::vector<double> TDWaveGapIntegralCuhre::fPar; std::vector<double> TDWaveGapIntegralCuhre::fPar;
/** /**

View File

@ -249,6 +249,47 @@ inline double TMCIntegrator::IntegrateFunc(size_t dim, double *x1, double *x2)
return fMCIntegrator->Integral(fFunc, dim, x1, x2, (this)); return fMCIntegrator->Integral(fFunc, dim, x1, x2, (this));
} }
//-----------------------------------------------------------------------------
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and a point p symmetry of the superconducting order parameter.
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TPointPWaveGapIntegralCuhre {
public:
TPointPWaveGapIntegralCuhre() : fNDim(2) {}
~TPointPWaveGapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand_aa(const int*, const double[], const int*, double[], void*);
static int Integrand_cc(const int*, const double[], const int*, double[], void*);
double IntegrateFunc(int tag);
protected:
static std::vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
//-----------------------------------------------------------------------------
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and a line p symmetry of the superconducting order parameter.
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TLinePWaveGapIntegralCuhre {
public:
TLinePWaveGapIntegralCuhre() : fNDim(2) {}
~TLinePWaveGapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand_aa(const int*, const double[], const int*, double[], void*);
static int Integrand_cc(const int*, const double[], const int*, double[], void*);
double IntegrateFunc(int tag);
protected:
static std::vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
//-----------------------------------------------------------------------------
/** /**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model * <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and a d_{x^2-y^2} symmetry of the superconducting order parameter. * assuming a cylindrical Fermi surface and a d_{x^2-y^2} symmetry of the superconducting order parameter.

Binary file not shown.

View File

@ -74,16 +74,17 @@ E-Mail: & \verb?andreas.suter@psi.ch? &&
\section*{\musrfithead plug-in for the calculation of the temperature dependence of $\bm{1/\lambda^2}$ for various gap symmetries}% \section*{\musrfithead plug-in for the calculation of the temperature dependence of $\bm{1/\lambda^2}$ for various gap symmetries}%
This memo is intended to give a short summary of the background on which the \gapint plug-in for \musrfit \cite{musrfit} has been developed. The aim of this implementation is the efficient calculation of integrals of the form This memo is intended to give a short summary of the background on which the \gapint plug-in for \musrfit \cite{musrfit} has been developed. The aim of this implementation is the efficient calculation of integrals of the form
\begin{equation}\label{int} \begin{equation}\label{eq:int_phi}
I(T) = 1 + \frac{1}{\pi}\int_0^{2\pi}\int_{\Delta(\varphi,T)}^{\infty}\left(\frac{\partial f}{\partial E}\right) \frac{E}{\sqrt{E^2-\Delta^2(\varphi,T)}}\mathrm{d}E\mathrm{d}\varphi\,, I(T) = 1 + \frac{1}{\pi}\int_0^{2\pi}\int_{\Delta(\varphi,T)}^{\infty}\left(\frac{\partial f}{\partial E}\right) \frac{E}{\sqrt{E^2-\Delta^2(\varphi,T)}}\mathrm{d}E\mathrm{d}\varphi\,,
\end{equation} \end{equation}
where $f = (1+\exp(E/k_{\mathrm B}T))^{-1}$, like they appear e.g. in the theoretical temperature dependence of $1/\lambda^2$~\cite{Manzano}. where $f = (1+\exp(E/k_{\mathrm B}T))^{-1}$, like they appear e.g. in the theoretical temperature dependence of $1/\lambda^2$~\cite{Manzano}.
In order not to do too many unnecessary function calls during the final numerical evaluation we simplify the integral (\ref{int}) as far as possible analytically. The derivative of $f$ is given by For gap symmetries which involve not only a $E$- and $\varphi$-dependence but also a $\theta$-dependence, see the special section towards the end of the memo.
In order not to do too many unnecessary function calls during the final numerical evaluation we simplify the integral (\ref{eq:int_phi}) as far as possible analytically. The derivative of $f$ is given by
\begin{equation}\label{derivative} \begin{equation}\label{derivative}
\frac{\partial f}{\partial E} = -\frac{1}{k_{\mathrm B}T}\frac{\exp(E/k_{\mathrm B}T)}{\left(1+\exp(E/k_{\mathrm B}T)\right)^2} = -\frac{1}{4k_{\mathrm B}T} \frac{1}{\cosh^2\left(E/2k_{\mathrm B}T\right)}. \frac{\partial f}{\partial E} = -\frac{1}{k_{\mathrm B}T}\frac{\exp(E/k_{\mathrm B}T)}{\left(1+\exp(E/k_{\mathrm B}T)\right)^2} = -\frac{1}{4k_{\mathrm B}T} \frac{1}{\cosh^2\left(E/2k_{\mathrm B}T\right)}.
\end{equation} \end{equation}
Using (\ref{derivative}) and doing the substitution $E'^2 = E^2-\Delta^2(\varphi,T)$, equation (\ref{int}) can be written as Using (\ref{derivative}) and doing the substitution $E'^2 = E^2-\Delta^2(\varphi,T)$, equation (\ref{eq:int_phi}) can be written as
\begin{equation} \begin{equation}\label{eq:bmw_2d}
\begin{split} \begin{split}
I(T) & = 1 - \frac{1}{4\pi k_{\mathrm B}T}\int_0^{2\pi}\int_{\Delta(\varphi,T)}^{\infty}\frac{1}{\cosh^2\left(E/2k_{\mathrm B}T\right)}\frac{E}{\sqrt{E^2-\Delta^2(\varphi,T)}}\mathrm{d}E\mathrm{d}\varphi \\ I(T) & = 1 - \frac{1}{4\pi k_{\mathrm B}T}\int_0^{2\pi}\int_{\Delta(\varphi,T)}^{\infty}\frac{1}{\cosh^2\left(E/2k_{\mathrm B}T\right)}\frac{E}{\sqrt{E^2-\Delta^2(\varphi,T)}}\mathrm{d}E\mathrm{d}\varphi \\
& = 1 - \frac{1}{4\pi k_{\mathrm B}T}\int_0^{2\pi}\int_{0}^{\infty}\frac{1}{\cosh^2\left(\sqrt{E'^2+\Delta^2(\varphi,T)}/2k_{\mathrm B}T\right)}\mathrm{d}E'\mathrm{d}\varphi\,. & = 1 - \frac{1}{4\pi k_{\mathrm B}T}\int_0^{2\pi}\int_{0}^{\infty}\frac{1}{\cosh^2\left(\sqrt{E'^2+\Delta^2(\varphi,T)}/2k_{\mathrm B}T\right)}\mathrm{d}E'\mathrm{d}\varphi\,.
@ -167,6 +168,22 @@ The \gapint plug-in calculates $\tilde{I}(T)$ for the following $\Delta(\varphi)
Parameters: $T_{\mathrm c}~(\mathrm{K})$, $\Delta_0~(\mathrm{meV})$, $a~(1)$, $[c_0~(1),~a_{\rm G}~(1)]$. Parameters: $T_{\mathrm c}~(\mathrm{K})$, $\Delta_0~(\mathrm{meV})$, $a~(1)$, $[c_0~(1),~a_{\rm G}~(1)]$.
If $c_0$ and $a_{\rm G}$ are provided, the temperature dependence according to Eq.(\ref{eq:gapT_Prozorov}) will be used, If $c_0$ and $a_{\rm G}$ are provided, the temperature dependence according to Eq.(\ref{eq:gapT_Prozorov}) will be used,
otherwise Eq.(\ref{eq:gapT_Manzano}) will be utilized. otherwise Eq.(\ref{eq:gapT_Manzano}) will be utilized.
\item[\textit{p}-wave (point) \cite{Pang2015}:]
\begin{equation}
\Delta(\theta, T) = \Delta(T) \sin(\theta) = \Delta(T) \cdot \sqrt{1-z^2}
\end{equation}
\musrfit theory line: \verb?userFcn libGapIntegrals TGapPointPWave 1 2 [3 [4 5]]?\\[1.5ex]
Parameters: $T_{\mathrm c}~(\mathrm{K})$, $\Delta_0~(\mathrm{meV})$, [ \verb?orientation_tag?, $[c_0~(1),~a_{\rm G}~(1)]$]. If $c_0$ and $a_{\rm G}$ are provided,
the temperature dependence according to Eq.(\ref{eq:gapT_Prozorov}) will be used, otherwise Eq.(\ref{eq:gapT_Manzano}) will be utilized. \\
\verb?orientation_tag?: $0=\{aa,bb\}$, $1=cc$, and the default $2=$ average (see Eq.\ (\ref{eq:n_avg}))
\item[\textit{p}-wave (line) \cite{Ozaki1986}:]
\begin{equation}
\Delta(\theta, T) = \Delta(T) \cos(\theta) = \Delta(T) \cdot z
\end{equation}
\musrfit theory line: \verb?userFcn libGapIntegrals TGapLinePWave 1 2 [3 [4 5]]?\\[1.5ex]
Parameters: $T_{\mathrm c}~(\mathrm{K})$, $\Delta_0~(\mathrm{meV})$, [ \verb?orientation_tag?, $[c_0~(1),~a_{\rm G}~(1)]$]. If $c_0$ and $a_{\rm G}$ are provided,
the temperature dependence according to Eq.(\ref{eq:gapT_Prozorov}) will be used, otherwise Eq.(\ref{eq:gapT_Manzano}) will be utilized. \\
\verb?orientation_tag?: $0=\{aa,bb\}$, $1=cc$, and the default $2=$ average (see Eq.\ (\ref{eq:n_avg}))
\end{description} \end{description}
\noindent It is also possible to calculate a power law temperature dependence (in the two fluid approximation $n=4$) and the dirty \textit{s}-wave expression. \noindent It is also possible to calculate a power law temperature dependence (in the two fluid approximation $n=4$) and the dirty \textit{s}-wave expression.
@ -193,6 +210,69 @@ Obviously for this no integration is needed.
within the semi-classical model assuming a cylindrical Fermi surface and a mixed $d_{x^2-y^2} + s$ symmetry of the superconducting order parameter within the semi-classical model assuming a cylindrical Fermi surface and a mixed $d_{x^2-y^2} + s$ symmetry of the superconducting order parameter
(effectively: $d_{x^2-y^2}$ with shifted nodes and \textit{a}-\textit{b}-anisotropy)) see the source code. (effectively: $d_{x^2-y^2}$ with shifted nodes and \textit{a}-\textit{b}-anisotropy)) see the source code.
\subsection*{Gap Integrals for $\bm{\theta}$-, and $\bm{(\theta, \varphi)}$-dependent Gaps}%
First some general formulae as found in Ref.\,\cite{Prozorov}. It assumes an anisotropic response which can be classified in 3 directions ($a$, $b$, and $c$).
\noindent For the case of a 2D Fermi surface (cylindrical symmetry):
\begin{equation}\label{eq:n_anisotrope_2D}
n_{aa \atop bb}(T) = 1 - \frac{1}{2\pi k_{\rm B} T} \int_0^{2\pi} \mathrm{d}\varphi\, {\cos^2(\varphi) \atop \sin^2(\varphi)} \underbrace{\int_0^\infty \mathrm{d}\varepsilon\, \left\{ \cosh\left[\frac{\sqrt{\varepsilon^2 + \Delta^2}}{2 k_{\rm B}T}\right]\right\}^{-2}}_{= G(\Delta(\varphi), T)}
\end{equation}
\noindent For the case of a 3D Fermi surface:
\begin{eqnarray}
n_{aa \atop bb}(T) &=& 1 - \frac{3}{4\pi k_{\rm B} T} \int_0^1 \mathrm{d}z\, (1-z^2) \int_0^{2\pi} \mathrm{d}\varphi\, {\cos^2(\varphi) \atop \sin^2(\varphi)} \cdot G(\Delta(z,\varphi), T) \label{eq:n_anisotrope_3D_aabb} \\
n_{cc}(T) &=& 1 - \frac{3}{2\pi k_{\rm B} T} \int_0^1 \mathrm{d}z\, z^2 \int_0^{2\pi} \mathrm{d}\varphi\, \cos^2(\varphi) \cdot G(\Delta(z,\varphi), T) \label{eq:n_anisotrope_3D_cc}
\end{eqnarray}
\noindent The ``powder averaged'' superfluid density is then defined as
\begin{equation}\label{eq:n_avg}
n_{\rm S} = \frac{1}{3}\cdot \left[ \sqrt{n_{aa} n_{bb}} + \sqrt{n_{aa} n_{cc}} + \sqrt{n_{bb} n_{cc}} \right]
\end{equation}
\subsubsection*{Isotropic s-Wave Gap}
\noindent For the 2D/3D case this means that $\Delta$ is just a constant.
\noindent For the 2D case it follows
\begin{equation}
n_{aa \atop bb}(T) = 1 - \frac{1}{2 k_{\rm B} T} \cdot G(\Delta, T) = n_{\rm S}(T).
\end{equation}
\noindent This is the same as Eq.(\ref{eq:bmw_2d}), assuming a $\Delta \neq f(\varphi)$.
\vspace{5mm}
\noindent The 3D case for $\Delta \neq f(\theta, \varphi)$:
\noindent The variable transformation $z = \cos(\theta)$ leads to $\mathrm{d}z = -\sin(\theta)\,\mathrm{d}\theta$, $z=0 \to \theta=\pi/2$, $z=1 \to \theta=0$, and hence to
\begin{eqnarray*}
n_{aa \atop bb}(T) &=& 1 - \frac{3}{4\pi k_{\rm B} T} \underbrace{\int_0^{\pi/2} \mathrm{d}\theta \, \sin^3(\theta)}_{= 2/3} \, \underbrace{\int_0^{2\pi} \mathrm{d}\varphi {\cos^2(\varphi) \atop \sin^2(\varphi)}}_{=\pi} \cdot G(\Delta, T) \\
&=& 1 - \frac{1}{2 k_{\rm B} T} \cdot G(\Delta, T). \\
n_{cc}(T) &=& 1 - \frac{3}{2\pi k_{\rm B} T} \underbrace{\int_0^{\pi/2} \mathrm{d}\theta \, \cos^2(\theta)\sin(\theta)}_{=1/3} \, \underbrace{\int_0^{2\pi} \mathrm{d}\varphi \cos^2(\varphi)}_{=\pi} \cdot G(\Delta, T) \\
&=& 1 - \frac{1}{2 k_{\rm B} T} \cdot G(\Delta, T).
\end{eqnarray*}
\noindent And hence
$$ n_{\rm S}(T) = 1- \frac{1}{2 k_{\rm B} T} \cdot G(\Delta, T). $$
\subsubsection*{3D Fermi Surface Gap $\mathbf{\Delta \neq f(\bm\varphi)}$}
For this case the superfluid density integrals reduce to ($z=\cos(\theta)$)
\begin{eqnarray}
n_{aa \atop bb}(T) &=& 1 - \frac{3}{4 k_{\rm B} T} \int_0^1 \mathrm{d}z\, (1-z^2) \cdot G(\Delta(z, T),T) \\
n_{cc}(T) &=& 1 - \frac{3}{2 k_{\rm B} T} \int_0^1 \mathrm{d}z\, z^2 \cdot G(\Delta(z, T),T)
\end{eqnarray}
\subsection*{License} \subsection*{License}
The \gapint library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation \cite{GPL}; either version 2 of the License, or (at your option) any later version. The \gapint library is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation \cite{GPL}; either version 2 of the License, or (at your option) any later version.
@ -208,6 +288,8 @@ The \gapint library is free software; you can redistribute it and/or modify it u
\bibitem{Matsui} H.~Matsui~\textit{et al.}, \textit{Direct Observation of a Nonmonotonic $d_{x^2-y^2}$-Wave Superconducting Gap in the Electron-Doped High-T$_{\mathrm c}$ Superconductor Pr$_{0.89}$LaCe$_{0.11}$CuO$_4$}, Phys.~Rev.~Lett.~\textbf{95}~(2005)~017003 \bibitem{Matsui} H.~Matsui~\textit{et al.}, \textit{Direct Observation of a Nonmonotonic $d_{x^2-y^2}$-Wave Superconducting Gap in the Electron-Doped High-T$_{\mathrm c}$ Superconductor Pr$_{0.89}$LaCe$_{0.11}$CuO$_4$}, Phys.~Rev.~Lett.~\textbf{95}~(2005)~017003
\bibitem{Eremin} I.~Eremin, E.~Tsoncheva, and A.V.~Chubukov, \textit{Signature of the nonmonotonic $d$-wave gap in electron-doped cuprates}, Phys.~Rev.~B~\textbf{77}~(2008)~024508 \bibitem{Eremin} I.~Eremin, E.~Tsoncheva, and A.V.~Chubukov, \textit{Signature of the nonmonotonic $d$-wave gap in electron-doped cuprates}, Phys.~Rev.~B~\textbf{77}~(2008)~024508
\bibitem{AnisotropicSWave} ?? \bibitem{AnisotropicSWave} ??
\bibitem{Pang2015} G.M.~Pang, \emph{et al.}, Phys.~Rev.~B~\textbf{91}~(2015)~220502(R), and references in there.
\bibitem{Ozaki1986} M.~Ozaki, \emph{et al.}, Prog.~Theor.~Phys.~\textbf{75}~(1986)~442.
\bibitem{Tinkham} M.~Tinkham, \textit{Introduction to Superconductivity} $2^{\rm nd}$ ed. (Dover Publications, New York, 2004). \bibitem{Tinkham} M.~Tinkham, \textit{Introduction to Superconductivity} $2^{\rm nd}$ ed. (Dover Publications, New York, 2004).
\bibitem{GPL} http://www.gnu.org/licenses/old-licenses/gpl-2.0.html \bibitem{GPL} http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

View File

@ -36,6 +36,8 @@
#define TWOPI 6.28318530717958647692 #define TWOPI 6.28318530717958647692
ClassImp(TGapSWave) ClassImp(TGapSWave)
ClassImp(TGapPointPWave)
ClassImp(TGapLinePWave)
ClassImp(TGapDWave) ClassImp(TGapDWave)
ClassImp(TGapCosSqDWave) ClassImp(TGapCosSqDWave)
ClassImp(TGapSinSqDWave) ClassImp(TGapSinSqDWave)
@ -46,6 +48,8 @@ ClassImp(TGapPowerLaw)
ClassImp(TGapDirtySWave) ClassImp(TGapDirtySWave)
ClassImp(TLambdaSWave) ClassImp(TLambdaSWave)
ClassImp(TLambdaPointPWave)
ClassImp(TLambdaLinePWave)
ClassImp(TLambdaDWave) ClassImp(TLambdaDWave)
ClassImp(TLambdaAnSWave) ClassImp(TLambdaAnSWave)
ClassImp(TLambdaNonMonDWave1) ClassImp(TLambdaNonMonDWave1)
@ -53,6 +57,8 @@ ClassImp(TLambdaNonMonDWave2)
ClassImp(TLambdaPowerLaw) ClassImp(TLambdaPowerLaw)
ClassImp(TLambdaInvSWave) ClassImp(TLambdaInvSWave)
ClassImp(TLambdaInvPointPWave)
ClassImp(TLambdaInvLinePWave)
ClassImp(TLambdaInvDWave) ClassImp(TLambdaInvDWave)
ClassImp(TLambdaInvAnSWave) ClassImp(TLambdaInvAnSWave)
ClassImp(TLambdaInvNonMonDWave1) ClassImp(TLambdaInvNonMonDWave1)
@ -77,6 +83,38 @@ TGapSWave::TGapSWave() {
fPar.clear(); fPar.clear();
} }
//--------------------------------------------------------------------
/**
* <p> point p wave gap integral
*/
TGapPointPWave::TGapPointPWave() {
TPointPWaveGapIntegralCuhre *gapint = new TPointPWaveGapIntegralCuhre();
fGapIntegral = gapint;
gapint = nullptr;
fTemp.clear();
fTempIter = fTemp.end();
fIntegralValues.clear();
fCalcNeeded.clear();
fPar.clear();
}
//--------------------------------------------------------------------
/**
* <p> line p wave gap integral
*/
TGapLinePWave::TGapLinePWave() {
TLinePWaveGapIntegralCuhre *gapint = new TLinePWaveGapIntegralCuhre();
fGapIntegral = gapint;
gapint = nullptr;
fTemp.clear();
fTempIter = fTemp.end();
fIntegralValues.clear();
fCalcNeeded.clear();
fPar.clear();
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -181,6 +219,22 @@ TLambdaSWave::TLambdaSWave() {
fLambdaInvSq = new TGapSWave(); fLambdaInvSq = new TGapSWave();
} }
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaPointPWave::TLambdaPointPWave() {
fLambdaInvSq = new TGapPointPWave();
}
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaLinePWave::TLambdaLinePWave() {
fLambdaInvSq = new TGapLinePWave();
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -221,6 +275,22 @@ TLambdaInvSWave::TLambdaInvSWave() {
fLambdaInvSq = new TGapSWave(); fLambdaInvSq = new TGapSWave();
} }
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaInvPointPWave::TLambdaInvPointPWave() {
fLambdaInvSq = new TGapPointPWave();
}
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaInvLinePWave::TLambdaInvLinePWave() {
fLambdaInvSq = new TGapLinePWave();
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -268,6 +338,36 @@ TGapSWave::~TGapSWave() {
fPar.clear(); fPar.clear();
} }
//--------------------------------------------------------------------
/**
* <p>
*/
TGapPointPWave::~TGapPointPWave() {
delete fGapIntegral;
fGapIntegral = nullptr;
fTemp.clear();
fTempIter = fTemp.end();
fIntegralValues.clear();
fCalcNeeded.clear();
fPar.clear();
}
//--------------------------------------------------------------------
/**
* <p>
*/
TGapLinePWave::~TGapLinePWave() {
delete fGapIntegral;
fGapIntegral = nullptr;
fTemp.clear();
fTempIter = fTemp.end();
fIntegralValues.clear();
fCalcNeeded.clear();
fPar.clear();
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -367,6 +467,24 @@ TLambdaSWave::~TLambdaSWave() {
fLambdaInvSq = nullptr; fLambdaInvSq = nullptr;
} }
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaPointPWave::~TLambdaPointPWave() {
delete fLambdaInvSq;
fLambdaInvSq = nullptr;
}
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaLinePWave::~TLambdaLinePWave() {
delete fLambdaInvSq;
fLambdaInvSq = nullptr;
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -412,6 +530,24 @@ TLambdaInvSWave::~TLambdaInvSWave() {
fLambdaInvSq = nullptr; fLambdaInvSq = nullptr;
} }
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaInvPointPWave::~TLambdaInvPointPWave() {
delete fLambdaInvSq;
fLambdaInvSq = nullptr;
}
//--------------------------------------------------------------------
/**
* <p>
*/
TLambdaInvLinePWave::~TLambdaInvLinePWave() {
delete fLambdaInvSq;
fLambdaInvSq = nullptr;
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -528,6 +664,191 @@ double TGapSWave::operator()(double t, const std::vector<double> &par) const {
} }
//--------------------------------------------------------------------
/**
* <p>prepare the needed parameters for the integration carried out in TPointPWaveGapIntegralCuhre.
* For details see also the Memo GapIntegrals.pdf, , especially Eq.(19) and (20).
*/
double TGapPointPWave::operator()(double t, const std::vector<double> &par) const {
// parameters: [0] Tc (K), [1] Delta0 (meV), [[2] orientation tag, [[3] c0 (1), [4] aG (1)]]
assert((par.size() >= 2) && (par.size() <= 5)); // 2 parameters: see A.~Carrington and F.~Manzano, Physica~C~\textbf{385}~(2003)~205
// 4 or 5 parameters: see R. Prozorov and R. Giannetta, Supercond. Sci. Technol. 19 (2006) R41-R67
// and Erratum Supercond. Sci. Technol. 21 (2008) 082003
// c0 in the original context is c0 = (pi kB Tc) / Delta0
// orientation tag: 0=aa,bb; 1=cc; 2=(sqrt[aa bb] + sqrt[aa cc] + sqrt[bb cc])/3 (default)
if (t <= 0.0)
return 1.0;
else if (t >= par[0])
return 0.0;
// check if orientation tag is given
int orientation_tag(2);
if ((par.size()==3) || (par.size()==5))
orientation_tag = static_cast<int>(par[2]);
bool integralParChanged(false);
if (fPar.empty()) { // first time calling this routine
fPar = par;
integralParChanged = true;
} else { // check if Tc or Delta0 have changed
for (unsigned int i(0); i<par.size(); i++) {
if (par[i] != fPar[i]) {
fPar[i] = par[i];
integralParChanged = true;
}
}
}
bool newTemp(false);
unsigned int vectorIndex;
if (integralParChanged) {
fCalcNeeded.clear();
fCalcNeeded.resize(fTemp.size(), true);
}
fTempIter = find(fTemp.begin(), fTemp.end(), t);
if(fTempIter == fTemp.end()) {
fTemp.push_back(t);
vectorIndex = fTemp.size() - 1;
fCalcNeeded.push_back(true);
newTemp = true;
} else {
vectorIndex = fTempIter - fTemp.begin();
}
if (fCalcNeeded[vectorIndex]) {
double ds, ds1;
std::vector<double> intPar; // parameters for the integral, T & Delta(T)
intPar.push_back(0.172346648*t); // 2 kB T, kB in meV/K = 0.086173324 meV/K
if ((par.size() == 2) || (par.size() == 3)) { // Carrington/Manzano
intPar.push_back(par[1]*tanh(1.82*pow(1.018*(par[0]/t-1.0),0.51)));
} else { // Prozorov/Giannetta
intPar.push_back(par[1]*tanh(par[2]*sqrt(par[3]*(par[0]/t-1.0)))); // Delta0*tanh(c0*sqrt(aG*(Tc/T-1)))
}
intPar.push_back(4.0*(t+intPar[1])); // upper limit of energy-integration: cutoff energy
intPar.push_back(1.0); // upper limit of theta-integration
fGapIntegral->SetParameters(intPar);
if (orientation_tag == 0) // aa,bb
ds = 1.0-(intPar[2]*3.0)/(2.0*intPar[0])*fGapIntegral->IntegrateFunc(0); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
else if (orientation_tag == 1) // cc
ds = 1.0-(intPar[2]*3.0)/(intPar[0])*fGapIntegral->IntegrateFunc(1); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
else { // average
ds = 1.0-(intPar[2]*3.0)/(2.0*intPar[0])*fGapIntegral->IntegrateFunc(0); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
ds1 = 1.0-(intPar[2]*3.0)/(intPar[0])*fGapIntegral->IntegrateFunc(1); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
ds = (ds + 2.0 * sqrt(ds*ds1))/3.0; // since aa==bb the avg looks like this
}
intPar.clear();
if (newTemp)
fIntegralValues.push_back(ds);
else
fIntegralValues[vectorIndex] = ds;
fCalcNeeded[vectorIndex] = false;
}
return fIntegralValues[vectorIndex];
}
//--------------------------------------------------------------------
/**
* <p>prepare the needed parameters for the integration carried out in TLinePWaveGapIntegralCuhre.
* For details see also the Memo GapIntegrals.pdf, especially Eq.(19) and (20).
*/
double TGapLinePWave::operator()(double t, const std::vector<double> &par) const {
// parameters: [0] Tc (K), [1] Delta0 (meV), [[2] orientation tag, [[3] c0 (1), [4] aG (1)]]
assert((par.size() >= 2) && (par.size() <= 5)); // 2 parameters: see A.~Carrington and F.~Manzano, Physica~C~\textbf{385}~(2003)~205
// 4 or 5 parameters: see R. Prozorov and R. Giannetta, Supercond. Sci. Technol. 19 (2006) R41-R67
// and Erratum Supercond. Sci. Technol. 21 (2008) 082003
// c0 in the original context is c0 = (pi kB Tc) / Delta0
// orientation tag: 0=aa,bb; 1=cc; 2=(sqrt[aa bb] + sqrt[aa cc] + sqrt[bb cc])/3 (default)
if (t <= 0.0)
return 1.0;
else if (t >= par[0])
return 0.0;
// check if orientation tag is given
int orientation_tag(2);
if ((par.size()==3) || (par.size()==5))
orientation_tag = static_cast<int>(par[2]);
bool integralParChanged(false);
if (fPar.empty()) { // first time calling this routine
fPar = par;
integralParChanged = true;
} else { // check if parameter have changed
for (unsigned int i(0); i<par.size(); i++) {
if (par[i] != fPar[i]) {
fPar[i] = par[i];
integralParChanged = true;
}
}
}
bool newTemp(false);
unsigned int vectorIndex;
if (integralParChanged) {
fCalcNeeded.clear();
fCalcNeeded.resize(fTemp.size(), true);
}
fTempIter = find(fTemp.begin(), fTemp.end(), t);
if(fTempIter == fTemp.end()) {
fTemp.push_back(t);
vectorIndex = fTemp.size() - 1;
fCalcNeeded.push_back(true);
newTemp = true;
} else {
vectorIndex = fTempIter - fTemp.begin();
}
if (fCalcNeeded[vectorIndex]) {
double ds, ds1;
std::vector<double> intPar; // parameters for the integral, T & Delta(T)
intPar.push_back(0.172346648*t); // 2 kB T, kB in meV/K = 0.086173324 meV/K
if ((par.size() == 2) || (par.size() == 3)) { // Carrington/Manzano
intPar.push_back(par[1]*tanh(1.82*pow(1.018*(par[0]/t-1.0),0.51)));
} else { // Prozorov/Giannetta
intPar.push_back(par[1]*tanh(par[3]*sqrt(par[4]*(par[0]/t-1.0)))); // Delta0*tanh(c0*sqrt(aG*(Tc/T-1)))
}
intPar.push_back(4.0*(t+intPar[1])); // upper limit of energy-integration: cutoff energy
intPar.push_back(1.0); // upper limit of z-integration
fGapIntegral->SetParameters(intPar);
if (orientation_tag == 0) // aa,bb
ds = 1.0-(intPar[2]*3.0)/(2.0*intPar[0])*fGapIntegral->IntegrateFunc(0); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
else if (orientation_tag == 1) // cc
ds = 1.0-(intPar[2]*3.0)/(intPar[0])*fGapIntegral->IntegrateFunc(1); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
else { // average
ds = 1.0-(intPar[2]*3.0)/(2.0*intPar[0])*fGapIntegral->IntegrateFunc(0); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
ds1 = 1.0-(intPar[2]*3.0)/(intPar[0])*fGapIntegral->IntegrateFunc(1); // integral prefactor is by 2 lower [Eqs.(19,20)] since intPar[0]==2kB T!
ds = (ds + 2.0 * sqrt(ds*ds1))/3.0; // since aa==bb the avg looks like this
}
intPar.clear();
if (newTemp)
fIntegralValues.push_back(ds);
else
fIntegralValues[vectorIndex] = ds;
fCalcNeeded[vectorIndex] = false;
}
return fIntegralValues[vectorIndex];
}
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p>prepare the needed parameters for the integration carried out in TDWaveGapIntegralCuhre. * <p>prepare the needed parameters for the integration carried out in TDWaveGapIntegralCuhre.
@ -609,7 +930,6 @@ double TGapDWave::operator()(double t, const std::vector<double> &par) const {
} }
return fIntegralValues[vectorIndex]; return fIntegralValues[vectorIndex];
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1103,7 +1423,40 @@ double TLambdaSWave::operator()(double t, const std::vector<double> &par) const
return 1.0; return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par)); return 1.0/sqrt((*fLambdaInvSq)(t, par));
}
//--------------------------------------------------------------------
/**
* <p>
*/
double TLambdaPointPWave::operator()(double t, const std::vector<double> &par) const
{
assert(par.size() == 2); // two parameters: Tc, Delta0
if (t >= par[0])
return -1.0;
if (t <= 0.0)
return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par));
}
//--------------------------------------------------------------------
/**
* <p>
*/
double TLambdaLinePWave::operator()(double t, const std::vector<double> &par) const
{
assert(par.size() == 2); // two parameters: Tc, Delta0
if (t >= par[0])
return -1.0;
if (t <= 0.0)
return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1121,7 +1474,6 @@ double TLambdaDWave::operator()(double t, const std::vector<double> &par) const
return 1.0; return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par)); return 1.0/sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1139,7 +1491,6 @@ double TLambdaAnSWave::operator()(double t, const std::vector<double> &par) cons
return 1.0; return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par)); return 1.0/sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1157,7 +1508,6 @@ double TLambdaNonMonDWave1::operator()(double t, const std::vector<double> &par)
return 1.0; return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par)); return 1.0/sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1175,7 +1525,6 @@ double TLambdaNonMonDWave2::operator()(double t, const std::vector<double> &par)
return 1.0; return 1.0;
return 1.0/sqrt((*fLambdaInvSq)(t, par)); return 1.0/sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1192,7 +1541,6 @@ double TLambdaPowerLaw::operator()(double t, const std::vector<double> &par) con
return -1.0; return -1.0;
return 1.0/sqrt(1.0 - pow(t/par[0], par[1])); return 1.0/sqrt(1.0 - pow(t/par[0], par[1]));
} }
@ -1211,7 +1559,40 @@ double TLambdaInvSWave::operator()(double t, const std::vector<double> &par) con
return 1.0; return 1.0;
return sqrt((*fLambdaInvSq)(t, par)); return sqrt((*fLambdaInvSq)(t, par));
}
//--------------------------------------------------------------------
/**
* <p>
*/
double TLambdaInvPointPWave::operator()(double t, const std::vector<double> &par) const
{
assert(par.size() == 2); // two parameters: Tc, Delta0
if (t >= par[0])
return 0.0;
if (t <= 0.0)
return 1.0;
return sqrt((*fLambdaInvSq)(t, par));
}
//--------------------------------------------------------------------
/**
* <p>
*/
double TLambdaInvLinePWave::operator()(double t, const std::vector<double> &par) const
{
assert(par.size() == 2); // two parameters: Tc, Delta0
if (t >= par[0])
return 0.0;
if (t <= 0.0)
return 1.0;
return sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1229,7 +1610,6 @@ double TLambdaInvDWave::operator()(double t, const std::vector<double> &par) con
return 1.0; return 1.0;
return sqrt((*fLambdaInvSq)(t, par)); return sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1247,7 +1627,6 @@ double TLambdaInvAnSWave::operator()(double t, const std::vector<double> &par) c
return 1.0; return 1.0;
return sqrt((*fLambdaInvSq)(t, par)); return sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1265,7 +1644,6 @@ double TLambdaInvNonMonDWave1::operator()(double t, const std::vector<double> &p
return 1.0; return 1.0;
return sqrt((*fLambdaInvSq)(t, par)); return sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1283,7 +1661,6 @@ double TLambdaInvNonMonDWave2::operator()(double t, const std::vector<double> &p
return 1.0; return 1.0;
return sqrt((*fLambdaInvSq)(t, par)); return sqrt((*fLambdaInvSq)(t, par));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------
@ -1300,7 +1677,6 @@ double TLambdaInvPowerLaw::operator()(double t, const std::vector<double> &par)
return 0.0; return 0.0;
return sqrt(1.0 - pow(t/par[0], par[1])); return sqrt(1.0 - pow(t/par[0], par[1]));
} }
//-------------------------------------------------------------------- //--------------------------------------------------------------------

View File

@ -63,6 +63,62 @@ private:
ClassDef(TGapSWave,1) ClassDef(TGapSWave,1)
}; };
//--------------------------------------------------------------------
/**
* <p>
*/
class TGapPointPWave : public PUserFcnBase {
public:
TGapPointPWave();
virtual ~TGapPointPWave();
virtual Bool_t NeedGlobalPart() const { return false; }
virtual void SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx) { }
virtual Bool_t GlobalPartIsValid() const { return true; }
double operator()(double, const std::vector<double>&) const;
private:
TPointPWaveGapIntegralCuhre *fGapIntegral;
mutable std::vector<double> fTemp;
mutable std::vector<double>::const_iterator fTempIter;
mutable std::vector<double> fIntegralValues;
mutable std::vector<bool> fCalcNeeded;
mutable std::vector<double> fPar;
ClassDef(TGapPointPWave,1)
};
//--------------------------------------------------------------------
/**
* <p>
*/
class TGapLinePWave : public PUserFcnBase {
public:
TGapLinePWave();
virtual ~TGapLinePWave();
virtual Bool_t NeedGlobalPart() const { return false; }
virtual void SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx) { }
virtual Bool_t GlobalPartIsValid() const { return true; }
double operator()(double, const std::vector<double>&) const;
private:
TLinePWaveGapIntegralCuhre *fGapIntegral;
mutable std::vector<double> fTemp;
mutable std::vector<double>::const_iterator fTempIter;
mutable std::vector<double> fIntegralValues;
mutable std::vector<bool> fCalcNeeded;
mutable std::vector<double> fPar;
ClassDef(TGapLinePWave,1)
};
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -297,6 +353,50 @@ private:
ClassDef(TLambdaSWave,1) ClassDef(TLambdaSWave,1)
}; };
//--------------------------------------------------------------------
/**
* <p>
*/
class TLambdaPointPWave : public PUserFcnBase {
public:
TLambdaPointPWave();
virtual ~TLambdaPointPWave();
virtual Bool_t NeedGlobalPart() const { return false; }
virtual void SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx) { }
virtual Bool_t GlobalPartIsValid() const { return true; }
double operator()(double, const std::vector<double>&) const;
private:
TGapPointPWave *fLambdaInvSq;
ClassDef(TLambdaPointPWave,1)
};
//--------------------------------------------------------------------
/**
* <p>
*/
class TLambdaLinePWave : public PUserFcnBase {
public:
TLambdaLinePWave();
virtual ~TLambdaLinePWave();
virtual Bool_t NeedGlobalPart() const { return false; }
virtual void SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx) { }
virtual Bool_t GlobalPartIsValid() const { return true; }
double operator()(double, const std::vector<double>&) const;
private:
TGapLinePWave *fLambdaInvSq;
ClassDef(TLambdaLinePWave,1)
};
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>
@ -428,6 +528,50 @@ private:
ClassDef(TLambdaInvSWave,1) ClassDef(TLambdaInvSWave,1)
}; };
//--------------------------------------------------------------------
/**
* <p>
*/
class TLambdaInvPointPWave : public PUserFcnBase {
public:
TLambdaInvPointPWave();
virtual ~TLambdaInvPointPWave();
virtual Bool_t NeedGlobalPart() const { return false; }
virtual void SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx) { }
virtual Bool_t GlobalPartIsValid() const { return true; }
double operator()(double, const std::vector<double>&) const;
private:
TGapPointPWave *fLambdaInvSq;
ClassDef(TLambdaInvPointPWave,1)
};
//--------------------------------------------------------------------
/**
* <p>
*/
class TLambdaInvLinePWave : public PUserFcnBase {
public:
TLambdaInvLinePWave();
virtual ~TLambdaInvLinePWave();
virtual Bool_t NeedGlobalPart() const { return false; }
virtual void SetGlobalPart(std::vector<void *> &globalPart, UInt_t idx) { }
virtual Bool_t GlobalPartIsValid() const { return true; }
double operator()(double, const std::vector<double>&) const;
private:
TGapLinePWave *fLambdaInvSq;
ClassDef(TLambdaInvLinePWave,1)
};
//-------------------------------------------------------------------- //--------------------------------------------------------------------
/** /**
* <p> * <p>

View File

@ -35,6 +35,8 @@
#pragma link off all functions; #pragma link off all functions;
#pragma link C++ class TGapSWave+; #pragma link C++ class TGapSWave+;
#pragma link C++ class TGapPointPWave+;
#pragma link C++ class TGapLinePWave+;
#pragma link C++ class TGapDWave+; #pragma link C++ class TGapDWave+;
#pragma link C++ class TGapCosSqDWave+; #pragma link C++ class TGapCosSqDWave+;
#pragma link C++ class TGapSinSqDWave+; #pragma link C++ class TGapSinSqDWave+;
@ -44,12 +46,16 @@
#pragma link C++ class TGapPowerLaw+; #pragma link C++ class TGapPowerLaw+;
#pragma link C++ class TGapDirtySWave+; #pragma link C++ class TGapDirtySWave+;
#pragma link C++ class TLambdaSWave+; #pragma link C++ class TLambdaSWave+;
#pragma link C++ class TLambdaPointPWave+;
#pragma link C++ class TLambdaLinePWave+;
#pragma link C++ class TLambdaDWave+; #pragma link C++ class TLambdaDWave+;
#pragma link C++ class TLambdaAnSWave+; #pragma link C++ class TLambdaAnSWave+;
#pragma link C++ class TLambdaNonMonDWave1+; #pragma link C++ class TLambdaNonMonDWave1+;
#pragma link C++ class TLambdaNonMonDWave2+; #pragma link C++ class TLambdaNonMonDWave2+;
#pragma link C++ class TLambdaPowerLaw+; #pragma link C++ class TLambdaPowerLaw+;
#pragma link C++ class TLambdaInvSWave+; #pragma link C++ class TLambdaInvSWave+;
#pragma link C++ class TLambdaInvPointPWave+;
#pragma link C++ class TLambdaInvLinePWave+;
#pragma link C++ class TLambdaInvDWave+; #pragma link C++ class TLambdaInvDWave+;
#pragma link C++ class TLambdaInvAnSWave+; #pragma link C++ class TLambdaInvAnSWave+;
#pragma link C++ class TLambdaInvNonMonDWave1+; #pragma link C++ class TLambdaInvNonMonDWave1+;