for maxLH it is now possible to get the per-run-block maxLH, and the expected maxLH

This commit is contained in:
2016-12-18 10:36:02 +01:00
parent 65d40cfe97
commit c768c27898
9 changed files with 433 additions and 192 deletions

View File

@ -393,6 +393,103 @@ Double_t PRunSingleHisto::CalcMaxLikelihood(const std::vector<Double_t>& par)
return 2.0*mllh;
}
//--------------------------------------------------------------------------
// CalcMaxLikelihoodExpected (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate expected log maximum-likelihood.
*
* <b>return:</b>
* - log maximum-likelihood value
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunSingleHisto::CalcMaxLikelihoodExpected(const std::vector<Double_t>& par)
{
Double_t mllh = 0.0; // maximum log likelihood assuming poisson distribution for the single bin
Double_t N0;
// check if norm is a parameter or a function
if (fRunInfo->GetNormParamNo() < MSR_PARAM_FUN_OFFSET) { // norm is a parameter
N0 = par[fRunInfo->GetNormParamNo()-1];
} else { // norm is a function
// get function number
UInt_t funNo = fRunInfo->GetNormParamNo()-MSR_PARAM_FUN_OFFSET;
// evaluate function
N0 = fMsrInfo->EvalFunc(funNo, *fRunInfo->GetMap(), par);
}
// get tau
Double_t tau;
if (fRunInfo->GetLifetimeParamNo() != -1)
tau = par[fRunInfo->GetLifetimeParamNo()-1];
else
tau = PMUON_LIFETIME;
// get background
Double_t bkg;
if (fRunInfo->GetBkgFitParamNo() == -1) { // bkg not fitted
if (fRunInfo->GetBkgFix(0) == PMUSR_UNDEFINED) { // no fixed background given (background interval)
bkg = fBackground;
} else { // fixed bkg given
bkg = fRunInfo->GetBkgFix(0);
}
} else { // bkg fitted
bkg = par[fRunInfo->GetBkgFitParamNo()-1];
}
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
Int_t funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par);
}
// calculate maximum log likelihood
Double_t theo;
Double_t data;
Double_t time(1.0);
Int_t i;
// norm is needed since there is no simple scaling like in chisq case to get the correct Max.Log.Likelihood value when normlizing N(t) to 1/ns
Double_t normalizer = 1.0;
if (fScaleN0AndBkg)
normalizer = fPacking * (fTimeResolution * 1.0e3);
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
// for a given set of parameters---which should be done outside of the parallelized loop.
// For all other functions it means a tiny and acceptable overhead.
time = fTheory->Func(time, par, fFuncValues);
#ifdef HAVE_GOMP
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
if (chunk < 10)
chunk = 10;
#pragma omp parallel for default(shared) private(i,time,theo,data) schedule(dynamic,chunk) reduction(-:mllh)
#endif
for (i=fStartTimeBin; i<fEndTimeBin; ++i) {
time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep();
// calculate theory for the given parameter set
theo = N0*TMath::Exp(-time/tau)*(1.0+fTheory->Func(time, par, fFuncValues))+bkg;
theo *= normalizer;
data = normalizer*fData.GetValue()->at(i);
if (theo <= 0.0) {
cerr << ">> PRunSingleHisto::CalcMaxLikelihood: **WARNING** NEGATIVE theory!!" << endl;
continue;
}
if (data > 1.0e-9) { // is this correct?? needs to be checked. See G-test
mllh += data*log(data/theo);
}
}
return 2.0*mllh;
}
//--------------------------------------------------------------------------
// CalcTheory (public)
//--------------------------------------------------------------------------
@ -1571,7 +1668,6 @@ void PRunSingleHisto::EstimateN0()
Double_t tau = PMUON_LIFETIME;
UInt_t t0 = (UInt_t)round(fT0s[0]);
Double_t alpha = fMsrInfo->GetAlphaEstimateN0();
Double_t dval = 0.0;
Double_t nom = 0.0;
Double_t denom = 0.0;
@ -1580,14 +1676,12 @@ void PRunSingleHisto::EstimateN0()
// calc nominator
for (UInt_t i=t0; i<fForward.size(); i++) {
xx = exp(-dt*(Double_t)(i-t0)/tau);
xx += alpha;
nom += xx;
}
// calc denominator
for (UInt_t i=t0; i<fForward.size(); i++) {
xx = exp(-dt*(Double_t)(i-t0)/tau);
xx += alpha;
dval = fForward[i];
if (dval > 0)
denom += xx*xx/dval;