added Noakes-Kalvius function

This commit is contained in:
suter_a 2012-05-31 09:02:05 +00:00
parent e6e4bc19da
commit c713a367d6
6 changed files with 317 additions and 18 deletions

View File

@ -6,6 +6,8 @@
changes since 0.11.0 changes since 0.11.0
=================================== ===================================
NEW 2012-05-31 added Noakes-Kalvius function (see A. Yaouanc and P. Dalmas de Reotiers,
"Muon Spin Rotation, Relaxation, and Resonance" Oxford, Section 6.4.1.3).
NEW 2012-05-25 musredit/musrgui: added a dump muSR data header file information. NEW 2012-05-25 musredit/musrgui: added a dump muSR data header file information.
NEW 2012-05-22 added spin rotation angle to the LEM MusrRoot file. NEW 2012-05-22 added spin rotation angle to the LEM MusrRoot file.
NEW 2012-05-12 added dump_header. This is a little program which dumps the NEW 2012-05-12 added dump_header. This is a little program which dumps the

View File

@ -50,9 +50,8 @@ How to setup musrfit on different platforms: \texttt{http://lmu.web.psi.ch/facil
on >= Qt4.6. on >= Qt4.6.
- \ref MuSRFit A graphical user interface based on PerlQt (written by Z. Salman) for an easy to use interface to the musrfit framework. Compared to the more general approach of writting msr-files, it has some limitations, though it might be easier for a first user of the musrfit framework. - \ref MuSRFit A graphical user interface based on PerlQt (written by Z. Salman) for an easy to use interface to the musrfit framework. Compared to the more general approach of writting msr-files, it has some limitations, though it might be easier for a first user of the musrfit framework.
- \ref any2many Should be a "universal" muSR data-file-format converter. - \ref any2many Should be a "universal" muSR data-file-format converter.
- \ref nexus_dump Is a small program to dump NeXus file information (mainly run header info) to the standard output. - \ref dump_header Is a small program to dump the header information of a muSR data file to the standard output.
- \ref musrRootValidation This is a program to validate MusrRoot files. - \ref musrRootValidation This is a program to validate MusrRoot files.
- \ref read_musrRoot_runHeader Is a small program to dump MusrRoot file information (mainly run header info) to the standard output.
- \ref write_musrRoot_runHeader Is a little example program showing how to write MusrRoot files. - \ref write_musrRoot_runHeader Is a little example program showing how to write MusrRoot files.
\section roadmap Road map and missing features \section roadmap Road map and missing features
@ -62,7 +61,6 @@ How to setup musrfit on different platforms: \texttt{http://lmu.web.psi.ch/facil
<p>The following features should eventually be implemented, but are still missing: <p>The following features should eventually be implemented, but are still missing:
- there are still issues with MUD files on 64bit systems which should eventually be fixed. - there are still issues with MUD files on 64bit systems which should eventually be fixed.
- non-muSR: The plan is to add an option to fit/plot \f$f(x_1,\ldots,x_n)\f$ versus \f$g(x_1,\ldots,x_n)\f$, where \f$x_i\f$ is a given data set element. - non-muSR: The plan is to add an option to fit/plot \f$f(x_1,\ldots,x_n)\f$ versus \f$g(x_1,\ldots,x_n)\f$, where \f$x_i\f$ is a given data set element.
- mu-Minus: The handling for \f$\mu_{-}\f$ fits is still missing and should be implemented.
- as soon as ROOT will properly support MS Windows platforms, some better support for MS Windows will be added. Currently only the cygwin version will be supported. - as soon as ROOT will properly support MS Windows platforms, some better support for MS Windows will be added. Currently only the cygwin version will be supported.
- check if it is possible to add FIR filtering for muSR data - check if it is possible to add FIR filtering for muSR data
- add an interface to maxent - add an interface to maxent
@ -141,9 +139,9 @@ PSI firewall required).
<p>Here will eventually follow a more technical description of any2many. If you looking for a user-manual like description, please check \htmlonly<a href="http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrFit.html">musrfit user manual</a>\endhtmlonly \latexonly musrfit user manual: \texttt{http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrFit.html} \endlatexonly <p>Here will eventually follow a more technical description of any2many. If you looking for a user-manual like description, please check \htmlonly<a href="http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrFit.html">musrfit user manual</a>\endhtmlonly \latexonly musrfit user manual: \texttt{http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrFit.html} \endlatexonly
//**************************************************************************************************** //****************************************************************************************************
\page nexusDumpPage \page dumpHeaderPage
\section nexus_dump nexus_dump \section dump_header dump_header
<p>This is a little help program which reads a NeXus file and dumps most of the relevant information to the standard output. <p>This is a little helper program which reads the header information of a muSR data file and dumps most of the relevant information to the standard output.
//**************************************************************************************************** //****************************************************************************************************
\page musrRootValidationPage \page musrRootValidationPage
@ -151,11 +149,6 @@ PSI firewall required).
<p>This program allows to validate a given (or supposedly given) MusrRoot file if it is consistent with the minimal required entries via XML Schema schemes. <p>This program allows to validate a given (or supposedly given) MusrRoot file if it is consistent with the minimal required entries via XML Schema schemes.
Please check \htmlonly<a href="http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrRoot.html">MusrRoot web-page</a>\endhtmlonly \latexonly MusrRoot web-page: \texttt{http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrRoot.html}\endlatexonly Please check \htmlonly<a href="http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrRoot.html">MusrRoot web-page</a>\endhtmlonly \latexonly MusrRoot web-page: \texttt{http://lmu.web.psi.ch/facilities/software/musrfit/user/MUSR/MusrRoot.html}\endlatexonly
//****************************************************************************************************
\page read_musrRoot_runHeader_Page
\section read_musrRoot_runHeader read_musrRoot_runHeader
<p>This is a little help program which reads a MusrRoot file and dumps the RunHeader information to the standard output.
//**************************************************************************************************** //****************************************************************************************************
\page write_musrRoot_runHeader_Page \page write_musrRoot_runHeader_Page
\section write_musrRoot_runHeader write_musrRoot_runHeader \section write_musrRoot_runHeader write_musrRoot_runHeader

View File

@ -509,14 +509,14 @@ INPUT = musrfit.dox \
../src/classes/PUserFcn.cpp \ ../src/classes/PUserFcn.cpp \
../src/external/MusrRoot/TMusrRunHeader.h \ ../src/external/MusrRoot/TMusrRunHeader.h \
../src/external/MusrRoot/TMusrRunHeader.cpp \ ../src/external/MusrRoot/TMusrRunHeader.cpp \
../src/any2many.cpp \
../src/dump_header.cpp \
../src/msr2data.cpp \ ../src/msr2data.cpp \
../src/msr2msr.cpp \ ../src/msr2msr.cpp \
../src/musrfit.cpp \ ../src/musrfit.cpp \
../src/musrt0.cpp \ ../src/musrt0.cpp \
../src/musrview.cpp \ ../src/musrview.cpp \
../src/nexus_dump.cpp \
../src/musrRootValidation.cpp \ ../src/musrRootValidation.cpp \
../src/read_musrRoot_runHeader.cpp \
../src/write_musrRoot_runHeader.cpp ../src/write_musrRoot_runHeader.cpp
# If the value of the INPUT tag contains directories, you can use the # If the value of the INPUT tag contains directories, you can use the

View File

@ -379,7 +379,7 @@ Bool_t PRunAsymmetry::PrepareData()
// keep the time resolution in (us) // keep the time resolution in (us)
fTimeResolution = runData->GetTimeResolution()/1.0e3; fTimeResolution = runData->GetTimeResolution()/1.0e3;
cout.precision(10); cout.precision(10);
cout << endl << ">> PRunSingleHisto::PrepareData(): time resolution=" << fixed << runData->GetTimeResolution() << "(ns)" << endl; cout << endl << ">> PRunAsymmetry::PrepareData(): time resolution=" << fixed << runData->GetTimeResolution() << "(ns)" << endl;
// collect histogram numbers // collect histogram numbers
PUIntVector forwardHistoNo; PUIntVector forwardHistoNo;

View File

@ -393,7 +393,6 @@ Bool_t PTheory::IsValid()
*/ */
Double_t PTheory::Func(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const Double_t PTheory::Func(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const
{ {
if (fMul) { if (fMul) {
if (fAdd) { // fMul != 0 && fAdd != 0 if (fAdd) { // fMul != 0 && fAdd != 0
switch (fType) { switch (fType) {
@ -477,6 +476,22 @@ Double_t PTheory::Func(register Double_t t, const PDoubleVector& paramValues, co
return SkewedGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + return SkewedGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) +
fAdd->Func(t, paramValues, funcValues); fAdd->Func(t, paramValues, funcValues);
break; break;
case THEORY_STATIC_ZF_NK:
return StaticNKZF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) +
fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_STATIC_TF_NK:
return StaticNKTF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) +
fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_ZF_NK:
return DynamicNKZF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) +
fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_TF_NK:
return DynamicNKTF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) +
fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_POLYNOM: case THEORY_POLYNOM:
return Polynom(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) + return Polynom(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues) +
fAdd->Func(t, paramValues, funcValues); fAdd->Func(t, paramValues, funcValues);
@ -552,6 +567,18 @@ Double_t PTheory::Func(register Double_t t, const PDoubleVector& paramValues, co
case THEORY_SKEWED_GAUSS: case THEORY_SKEWED_GAUSS:
return SkewedGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); return SkewedGauss(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues);
break; break;
case THEORY_STATIC_ZF_NK:
return StaticNKZF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues);
break;
case THEORY_STATIC_TF_NK:
return StaticNKTF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_ZF_NK:
return DynamicNKZF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_TF_NK:
return DynamicNKTF (t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues);
break;
case THEORY_POLYNOM: case THEORY_POLYNOM:
return Polynom(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues); return Polynom(t, paramValues, funcValues) * fMul->Func(t, paramValues, funcValues);
break; break;
@ -627,6 +654,18 @@ Double_t PTheory::Func(register Double_t t, const PDoubleVector& paramValues, co
case THEORY_SKEWED_GAUSS: case THEORY_SKEWED_GAUSS:
return SkewedGauss(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); return SkewedGauss(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues);
break; break;
case THEORY_STATIC_ZF_NK:
return StaticNKZF (t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_STATIC_TF_NK:
return StaticNKTF (t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_ZF_NK:
return DynamicNKZF (t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_TF_NK:
return DynamicNKTF (t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues);
break;
case THEORY_POLYNOM: case THEORY_POLYNOM:
return Polynom(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues); return Polynom(t, paramValues, funcValues) + fAdd->Func(t, paramValues, funcValues);
break; break;
@ -700,6 +739,18 @@ Double_t PTheory::Func(register Double_t t, const PDoubleVector& paramValues, co
case THEORY_SKEWED_GAUSS: case THEORY_SKEWED_GAUSS:
return SkewedGauss(t, paramValues, funcValues); return SkewedGauss(t, paramValues, funcValues);
break; break;
case THEORY_STATIC_ZF_NK:
return StaticNKZF(t, paramValues, funcValues);
break;
case THEORY_STATIC_TF_NK:
return StaticNKTF(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_ZF_NK:
return DynamicNKZF(t, paramValues, funcValues);
break;
case THEORY_DYNAMIC_TF_NK:
return DynamicNKTF(t, paramValues, funcValues);
break;
case THEORY_POLYNOM: case THEORY_POLYNOM:
return Polynom(t, paramValues, funcValues); return Polynom(t, paramValues, funcValues);
break; break;
@ -2063,6 +2114,235 @@ Double_t PTheory::SkewedGauss(register Double_t t, const PDoubleVector& paramVal
return skg; return skg;
} }
//--------------------------------------------------------------------------
/**
* <p> theory function: staticNKZF (see D.R. Noakes and G.M. Kalvius Phys. Rev. B 56, 2352 (1997) and
* A. Yaouanc and P. Dalmas de Reotiers, "Muon Spin Rotation, Relaxation, and Resonance" Oxford, Section 6.4.1.3)
*
* \f[ = \frac{1}{3} + \frac{2}{3}\,\frac{1}{\left(1+(\gamma\Delta_{\rm GbG}t)^2\right)^{3/2}}\,
* \left(1 - \frac{(\gamma\Delta_0 t)^2}{\left(1+(\gamma\Delta_{\rm GbG}t)^2\right)}\right)\,
* \exp\left[\frac{(\gamma\Delta_0 t)^2}{2\left(1+(\gamma\Delta_{\rm GbG}t)^2\right)}\right] \f]
*
* <b>meaning of paramValues:</b> \f$\Delta_0\f$, \f$R_{\rm b} = \Delta_{\rm GbG}/\Delta_0\f$ [,\f$t_{\rm shift}\f$]
*
* <b>return:</b> function value
*
* \param t time in \f$(\mu\mathrm{s})\f$, or x-axis value for non-muSR fit
* \param paramValues parameter values
* \param funcValues vector with the functions (i.e. functions of the parameters)
*/
Double_t PTheory::StaticNKZF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const
{
// expected paramters: damping_D0 R_b tshift
Double_t val[3];
Double_t result = 1.0;
assert(fParamNo.size() <= 3);
if (t < 0.0)
return result;
// check if FUNCTIONS are used
for (UInt_t i=0; i<fParamNo.size(); i++) {
if (fParamNo[i] < MSR_PARAM_FUN_OFFSET) { // parameter or resolved map
val[i] = paramValues[fParamNo[i]];
} else { // function
val[i] = funcValues[fParamNo[i]-MSR_PARAM_FUN_OFFSET];
}
}
Double_t tt;
if (fParamNo.size() == 2) // no tshift
tt = t;
else // tshift present
tt = t-val[2];
Double_t t2 = tt*tt;
Double_t Rb2 = val[1]*val[1];
Double_t Rb2p = 1.0+Rb2;
Double_t Deff2_t2 = val[0]*val[0]*(1.0+Rb2)*t2;
Double_t denom = (Rb2p+Rb2*Deff2_t2);
result = 0.333333333333333 + 0.666666666666666667 * TMath::Power(Rb2p/denom, 1.5) * (1.0 - (Deff2_t2/denom)) * exp(-0.5*Deff2_t2/denom);
return result;
}
//--------------------------------------------------------------------------
/**
* <p> theory function: staticNKTF (see D.R. Noakes and G.M. Kalvius Phys. Rev. B 56, 2352 (1997) and
* A. Yaouanc and P. Dalmas de Reotiers, "Muon Spin Rotation, Relaxation, and Resonance" Oxford, Section 6.4.1.3)
*
* \f[ = \frac{1}{\sqrt{1+(\gamma\Delta_{\rm GbG} t)^2}}\,
* \exp\left[-\frac{(\gamma\Delta_0 t)^2}{2(1+(\gamma\Delta_{\rm GbG}t)^2)}\right]\,
* \cos(\gamma B_{\rm ext} t + \varphi) \f]
*
* <b>meaning of paramValues:</b> \f$\varphi\f$, \f$\nu = \gamma B_{\rm ext}\f$, \f$\Delta_0\f$, \f$R_{\rm b} = \Delta_{\rm GbG}/\Delta_0\f$ [,\f$t_{\rm shift}\f$]
*
* <b>return:</b> function value
*
* \param t time in \f$(\mu\mathrm{s})\f$, or x-axis value for non-muSR fit
* \param paramValues parameter values
* \param funcValues vector with the functions (i.e. functions of the parameters)
*/
Double_t PTheory::StaticNKTF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const
{
// expected paramters: phase frequency damping_D0 R_b tshift
Double_t val[5];
Double_t result = 1.0;
assert(fParamNo.size() <= 5);
if (t < 0.0)
return result;
// check if FUNCTIONS are used
for (UInt_t i=0; i<fParamNo.size(); i++) {
if (fParamNo[i] < MSR_PARAM_FUN_OFFSET) { // parameter or resolved map
val[i] = paramValues[fParamNo[i]];
} else { // function
val[i] = funcValues[fParamNo[i]-MSR_PARAM_FUN_OFFSET];
}
}
Double_t tt;
if (fParamNo.size() == 4) // no tshift
tt = t;
else // tshift present
tt = t-val[4];
Double_t D0t_2 = val[2]*val[2]*tt*tt;
Double_t DGt_2p = 1.0 + val[2]*val[2]*val[3]*val[3]*tt*tt;
result = 1.0/sqrt(DGt_2p)*exp(-0.5*D0t_2/DGt_2p)*TMath::Cos(DEG_TO_RAD*val[0]+TWO_PI*val[1]*tt);
return result;
}
//--------------------------------------------------------------------------
/**
* <p> theory function: dynamicNKZF (see D.R. Noakes and G.M. Kalvius Phys. Rev. B 56, 2352 (1997) and
* A. Yaouanc and P. Dalmas de Reotiers, "Muon Spin Rotation, Relaxation, and Resonance" Oxford, Section 6.4.1.3)
*
* \f{eqnarray*}
* \Theta(t) &=& \frac{\exp(-\nu_c t) - 1 - \nu_c t}{\nu_c^2} \\
* \Delta_{\rm eff} &=& \sqrt{\Delta_0^2 + \Delta_{\rm GbG}^2} \\
* P_{Z}^{\rm dyn}(t) &=& \sqrt{\frac{1+R_{\rm b}^2}{1+R_{\rm b}^2+4 (R_{\rm b}\gamma\Delta_{\rm eff})^2 \Theta(t)}}\,
* \exp\left[-\frac{2 (\gamma\Delta_{\rm eff})^2\Theta(t)}{1+R_{\rm b}^2+4 (R_{\rm b}\gamma\Delta_{\rm eff})^2 \Theta(t)}\right] \\
* &=& \sqrt{\frac{1}{1+4 \Delta_{\rm GbG}^2 \Theta(t)}}\,\exp\left[-\frac{2 \Delta_0^2 \Theta(t)}{1+4 \Delta_{\rm GbG}^2 \Theta(t)}\right]
* \f}
*
* <b>meaning of paramValues:</b> \f$\Delta_0\f$, \f$R_{\rm b} = \Delta_{\rm GbG}/\Delta_0\f$, \f$\nu_c\f$ [,\f$t_{\rm shift}\f$]
*
* <b>return:</b> function value
*
* \param t time in \f$(\mu\mathrm{s})\f$, or x-axis value for non-muSR fit
* \param paramValues parameter values
* \param funcValues vector with the functions (i.e. functions of the parameters)
*/
Double_t PTheory::DynamicNKZF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const
{
// expected paramters: damping_D0 R_b nu_c tshift
Double_t val[4];
Double_t result = 1.0;
assert(fParamNo.size() <= 4);
if (t < 0.0)
return result;
// check if FUNCTIONS are used
for (UInt_t i=0; i<fParamNo.size(); i++) {
if (fParamNo[i] < MSR_PARAM_FUN_OFFSET) { // parameter or resolved map
val[i] = paramValues[fParamNo[i]];
} else { // function
val[i] = funcValues[fParamNo[i]-MSR_PARAM_FUN_OFFSET];
}
}
Double_t tt;
if (fParamNo.size() == 3) // no tshift
tt = t;
else // tshift present
tt = t-val[3];
Double_t theta;
if (val[2] < 1.0e-6) { // nu_c -> 0
theta = 0.5*tt*tt;
} else {
theta = (exp(-val[2]*tt) - 1.0 + val[2]*tt)/(val[2]*val[2]);
}
Double_t denom = 1.0/(1.0 + 4.0*val[0]*val[0]*val[1]*val[1]*theta);
result = sqrt(denom)*exp(-2.0*val[0]*val[0]*theta*denom);
return result;
}
//--------------------------------------------------------------------------
/**
* <p> theory function: dynamicNKTF (see D.R. Noakes and G.M. Kalvius Phys. Rev. B 56, 2352 (1997) and
* A. Yaouanc and P. Dalmas de Reotiers, "Muon Spin Rotation, Relaxation, and Resonance" Oxford, Section 6.4.1.3)
*
* \f{eqnarray*}
* \Theta(t) &=& \frac{\exp(-\nu_c t) - 1 - \nu_c t}{\nu_c^2} \\
* \Delta_{\rm eff} &=& \sqrt{\Delta_0^2 + \Delta_{\rm GbG}^2} \\
* P_{X}^{\rm dyn}(t) &=& \sqrt{\frac{1+R_{\rm b}^2}{1+R_{\rm b}^2+2 (R_{\rm b}\gamma\Delta_{\rm eff})^2 \Theta(t)}}\,
* \exp\left[-\frac{(\gamma\Delta_{\rm eff})^2\Theta(t)}{1+R_{\rm b}^2+2 (R_{\rm b}\gamma\Delta_{\rm eff})^2 \Theta(t)}\right]\,\cos(\gamma B_{\rm ext} t + \varphi) \\
* &=& \sqrt{\frac{1}{1+2 \Delta_{\rm GbG}^2 \Theta(t)}}\,\exp\left[-\frac{\Delta_0^2 \Theta(t)}{1+2 \Delta_{\rm GbG}^2 \Theta(t)}\right]\,\cos(\gamma B_{\rm ext} t + \varphi)
* \f}
*
* <b>meaning of paramValues:</b> \f$\varphi\f$, \f$\nu = \gamma B_{\rm ext}\f$, \f$\Delta_0\f$, \f$R_{\rm b} = \Delta_{\rm GbG}/\Delta_0\f$, \f$\nu_c\f$ [,\f$t_{\rm shift}\f$]
*
* <b>return:</b> function value
*
* \param t time in \f$(\mu\mathrm{s})\f$, or x-axis value for non-muSR fit
* \param paramValues parameter values
* \param funcValues vector with the functions (i.e. functions of the parameters)
*/
Double_t PTheory::DynamicNKTF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const
{
// expected paramters: phase frequency damping_D0 R_b nu_c tshift
Double_t val[6];
Double_t result = 1.0;
assert(fParamNo.size() <= 6);
if (t < 0.0)
return result;
// check if FUNCTIONS are used
for (UInt_t i=0; i<fParamNo.size(); i++) {
if (fParamNo[i] < MSR_PARAM_FUN_OFFSET) { // parameter or resolved map
val[i] = paramValues[fParamNo[i]];
} else { // function
val[i] = funcValues[fParamNo[i]-MSR_PARAM_FUN_OFFSET];
}
}
Double_t tt;
if (fParamNo.size() == 5) // no tshift
tt = t;
else // tshift present
tt = t-val[5];
Double_t theta;
if (val[4] < 1.0e-6) { // nu_c -> 0
theta = 0.5*tt*tt;
} else {
theta = (exp(-val[4]*tt) - 1.0 + val[4]*tt)/(val[4]*val[4]);
}
Double_t denom = 1.0/(1.0 + 2.0*val[2]*val[2]*val[3]*val[3]*theta);
result = sqrt(denom)*exp(-val[2]*val[2]*theta*denom)*TMath::Cos(DEG_TO_RAD*val[0]+TWO_PI*val[1]*tt);
return result;
}
//-------------------------------------------------------------------------- //--------------------------------------------------------------------------
/** /**
* <p> theory function: polynom * <p> theory function: polynom

View File

@ -65,8 +65,12 @@
#define THEORY_BESSEL 17 #define THEORY_BESSEL 17
#define THEORY_INTERNAL_BESSEL 18 #define THEORY_INTERNAL_BESSEL 18
#define THEORY_SKEWED_GAUSS 19 #define THEORY_SKEWED_GAUSS 19
#define THEORY_POLYNOM 20 #define THEORY_STATIC_ZF_NK 20
#define THEORY_USER_FCN 21 #define THEORY_STATIC_TF_NK 21
#define THEORY_DYNAMIC_ZF_NK 22
#define THEORY_DYNAMIC_TF_NK 23
#define THEORY_POLYNOM 24
#define THEORY_USER_FCN 25
// function parameter tags, i.e. how many parameters has a specific function // function parameter tags, i.e. how many parameters has a specific function
// if there is a comment with a (tshift), the number of parameters is increased by one // if there is a comment with a (tshift), the number of parameters is increased by one
@ -90,9 +94,13 @@
#define THEORY_PARAM_BESSEL 2 // phase, frequency (tshift) #define THEORY_PARAM_BESSEL 2 // phase, frequency (tshift)
#define THEORY_PARAM_INTERNAL_BESSEL 5 // fraction, phase, frequency, TF damping, LF damping (tshift) #define THEORY_PARAM_INTERNAL_BESSEL 5 // fraction, phase, frequency, TF damping, LF damping (tshift)
#define THEORY_PARAM_SKEWED_GAUSS 4 // phase, frequency, rate minus, rate plus (tshift) #define THEORY_PARAM_SKEWED_GAUSS 4 // phase, frequency, rate minus, rate plus (tshift)
#define THEORY_PARAM_STATIC_ZF_NK 2 // damping D0, R_b=DGbG/D0 (tshift)
#define THEORY_PARAM_STATIC_TF_NK 4 // phase, frequency, damping D0, R_b=DGbG/D0 (tshift)
#define THEORY_PARAM_DYNAMIC_ZF_NK 3 // damping D0, R_b=DGbG/D0, nu_c (tshift)
#define THEORY_PARAM_DYNAMIC_TF_NK 5 // phase, frequency, damping D0, R_b=DGbG/D0, nu_c (tshift)
// number of available user functions // number of available user functions
#define THEORY_MAX 22 #define THEORY_MAX 26
// maximal number of parameters. Needed in the contents of LF // maximal number of parameters. Needed in the contents of LF
#define THEORY_MAX_PARAM 10 #define THEORY_MAX_PARAM 10
@ -184,6 +192,18 @@ static PTheoDataBase fgTheoDataBase[THEORY_MAX] = {
{THEORY_SKEWED_GAUSS, THEORY_PARAM_SKEWED_GAUSS, false, {THEORY_SKEWED_GAUSS, THEORY_PARAM_SKEWED_GAUSS, false,
"skewedGss", "skg", "(phase frequency rate_m rate_p)", "(phase frequency rate_m rate_p tshift)"}, "skewedGss", "skg", "(phase frequency rate_m rate_p)", "(phase frequency rate_m rate_p tshift)"},
{THEORY_STATIC_ZF_NK, THEORY_PARAM_STATIC_ZF_NK, false,
"staticNKZF", "snkzf", "(damping_D0 R_b)", "(damping_D0 R_b tshift)"},
{THEORY_STATIC_TF_NK, THEORY_PARAM_STATIC_TF_NK, false,
"staticNKTF", "snktf", "(phase frequency damping_D0 R_b)", "(phase frequency damping_D0 R_b tshift)"},
{THEORY_DYNAMIC_ZF_NK, THEORY_PARAM_DYNAMIC_ZF_NK, false,
"dynamicNKZF", "dnkzf", "(damping_D0 R_b nu_c)", "(damping_D0 R_b nu_c tshift)"},
{THEORY_DYNAMIC_TF_NK, THEORY_PARAM_DYNAMIC_TF_NK, false,
"dynamicNKTF", "dnktf", "(phase frequency damping_D0 R_b nu_c)", "(phase frequency damping_D0 R_b nu_c tshift)"},
{THEORY_POLYNOM, 0, false, {THEORY_POLYNOM, 0, false,
"polynom", "p", "(tshift p0 p1 ... pn)", "(tshift p0 p1 ... pn)"}, "polynom", "p", "(tshift p0 p1 ... pn)", "(tshift p0 p1 ... pn)"},
@ -232,6 +252,10 @@ class PTheory
virtual Double_t Bessel(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const; virtual Double_t Bessel(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t InternalBessel(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const; virtual Double_t InternalBessel(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t SkewedGauss(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const; virtual Double_t SkewedGauss(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t StaticNKZF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t StaticNKTF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t DynamicNKZF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t DynamicNKTF(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t Polynom(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const; virtual Double_t Polynom(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;
virtual Double_t UserFcn(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const; virtual Double_t UserFcn(register Double_t t, const PDoubleVector& paramValues, const PDoubleVector& funcValues) const;