modernized code to C++11 and newer.

This allows to analyze the code by external code analyzers. Since a lot is adopted,
the version is changed to 1.4.3

Conflicts:
	src/classes/PFitter.cpp
	src/classes/PFourier.cpp
	src/classes/PMsrHandler.cpp
	src/classes/PMusrCanvas.cpp
	src/classes/PRunAsymmetry.cpp
	src/classes/PRunAsymmetryRRF.cpp
	src/classes/PRunListCollection.cpp
	src/classes/PRunSingleHisto.cpp
	src/classes/PRunSingleHistoRRF.cpp
	src/classes/PStartupHandler.cpp
	src/include/PFourier.h
	src/include/PRunListCollection.h
	src/musrFT.cpp
This commit is contained in:
2019-04-16 15:34:49 +02:00
parent 1c5069bc48
commit c64c74dbf8
138 changed files with 7017 additions and 7230 deletions

View File

@@ -8,7 +8,7 @@
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007-2017 by Andreas Suter *
* Copyright (C) 2007-2019 by Andreas Suter *
* andreas.suter@psi.ch *
* *
* This program is free software; you can redistribute it and/or modify *
@@ -31,9 +31,7 @@
#include <iostream>
#include <iomanip>
using namespace std;
#include "TH1F.h"
#include "TF1.h"
#include "TAxis.h"
@@ -67,17 +65,18 @@ PFTPhaseCorrection::PFTPhaseCorrection(const Int_t minBin, const Int_t maxBin) :
/**
*
*/
PFTPhaseCorrection::PFTPhaseCorrection(vector<Double_t> &reFT, vector<Double_t> &imFT, const Int_t minBin, const Int_t maxBin) :
PFTPhaseCorrection::PFTPhaseCorrection(std::vector<Double_t> &reFT, std::vector<Double_t> &imFT, const Int_t minBin, const Int_t maxBin) :
fReal(reFT), fImag(imFT), fMinBin(minBin), fMaxBin(maxBin)
{
Init();
Int_t realSize = static_cast<Int_t>(fReal.size());
if (fMinBin == -1)
fMinBin = 0;
if (fMaxBin == -1)
fMaxBin = fReal.size();
if (fMaxBin > fReal.size())
fMaxBin = fReal.size();
fMaxBin = realSize;
if (fMaxBin > realSize)
fMaxBin = realSize;
fRealPh.resize(fReal.size());
fImagPh.resize(fReal.size());
@@ -110,7 +109,7 @@ void PFTPhaseCorrection::Minimize()
} else {
fMin = -1.0;
fValid = false;
cout << endl << ">> **WARNING** minimize failed to find a minimum for the real FT phase correction ..." << endl;
std::cout << std::endl << ">> **WARNING** minimize failed to find a minimum for the real FT phase correction ..." << std::endl;
return;
}
}
@@ -130,7 +129,7 @@ Double_t PFTPhaseCorrection::GetPhaseCorrectionParam(UInt_t idx)
else if (idx == 1)
result = fPh_c1;
else
cerr << ">> **ERROR** requested phase correction parameter with index=" << idx << " does not exist!" << endl;
std::cerr << ">> **ERROR** requested phase correction parameter with index=" << idx << " does not exist!" << std::endl;
return result;
}
@@ -144,7 +143,7 @@ Double_t PFTPhaseCorrection::GetPhaseCorrectionParam(UInt_t idx)
Double_t PFTPhaseCorrection::GetMinimum()
{
if (!fValid) {
cerr << ">> **ERROR** requested minimum is invalid!" << endl;
std::cerr << ">> **ERROR** requested minimum is invalid!" << std::endl;
return -1.0;
}
@@ -178,7 +177,7 @@ void PFTPhaseCorrection::CalcPhasedFT() const
Double_t w=0.0;
for (UInt_t i=0; i<fRealPh.size(); i++) {
w = (Double_t)i / (Double_t)fReal.size();
w = static_cast<Double_t>(i) / static_cast<Double_t>(fReal.size());
phi = fPh_c0 + fPh_c1 * w;
fRealPh[i] = fReal[i]*cos(phi) - fImag[i]*sin(phi);
fImagPh[i] = fReal[i]*sin(phi) + fImag[i]*cos(phi);
@@ -253,7 +252,7 @@ Double_t PFTPhaseCorrection::Entropy() const
/**
*
*/
double PFTPhaseCorrection::operator()(const vector<double> &par) const
double PFTPhaseCorrection::operator()(const std::vector<double> &par) const
{
// par : [0]: c0, [1]: c1
@@ -287,20 +286,20 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
fDCCorrected(dcCorrected), fZeroPaddingPower(zeroPaddingPower)
{
// some necessary checks and initialization
if (fData == 0) {
cerr << endl << "**ERROR** PFourier::PFourier: no valid data" << endl << endl;
if (fData == nullptr) {
std::cerr << std::endl << "**ERROR** PFourier::PFourier: no valid data" << std::endl << std::endl;
fValid = false;
return;
}
fValid = true;
fUseFFTW = true;
fIn = 0;
fOut = 0;
fIn = nullptr;
fOut = nullptr;
#ifdef HAVE_DKS
fInDKS = 0;
fOutDKS = 0;
fInDKS = nullptr;
fOutDKS = nullptr;
#endif
SetUseFFTW(useFFTW);
@@ -324,7 +323,7 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
}
// calculate start and end bin
fNoOfData = (UInt_t)((fEndTime-fStartTime)/fTimeResolution);
fNoOfData = static_cast<UInt_t>((fEndTime-fStartTime)/fTimeResolution);
// check if zero padding is whished
if (fZeroPaddingPower > 0) {
@@ -355,13 +354,12 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
default:
fValid = false;
return;
break;
}
// allocate necessary memory
if (fUseFFTW) {
fIn = (fftw_complex *)fftw_malloc(sizeof(fftw_complex)*fNoOfBins);
fOut = (fftw_complex *)fftw_malloc(sizeof(fftw_complex)*fNoOfBins);
fIn = static_cast<fftw_complex *>(fftw_malloc(sizeof(fftw_complex)*fNoOfBins));
fOut = static_cast<fftw_complex *>(fftw_malloc(sizeof(fftw_complex)*fNoOfBins));
} else { // try DKS
#ifdef HAVE_DKS
fInDKS = new double[fNoOfBins];
@@ -372,13 +370,13 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
// check if memory allocation has been successful
if (fUseFFTW) {
if ((fIn == 0) || (fOut == 0)) {
if ((fIn == nullptr) || (fOut == nullptr)) {
fValid = false;
return;
}
} else { // try DKS
#ifdef HAVE_DKS
if ((fInDKS == 0) || (fOutDKS == 0)) {
if ((fInDKS == nullptr) || (fOutDKS == nullptr)) {
fValid = false;
return;
}
@@ -533,7 +531,7 @@ void PFourier::SetUseFFTW(const Bool_t flag)
if (flag == false) {
#ifndef HAVE_DKS
fUseFFTW = true;
cerr << endl << "PFouier::SetUseFFTW: **ERROR** DKS not in use, will fall back to FFTW" << endl << endl;
std::cerr << std::endl << "PFouier::SetUseFFTW: **ERROR** DKS not in use, will fall back to FFTW" << std::endl << std::endl;
#else
fUseFFTW = flag;
#endif
@@ -565,7 +563,7 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke realFourier
Char_t name[256];
@@ -575,21 +573,21 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
UInt_t noOfFourierBins = fNoOfBins/2+1;
TH1F *realFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (realFourier == 0) {
TH1F *realFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (realFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << std::endl;
return nullptr;
}
// fill realFourier vector
if (fUseFFTW) {
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
realFourier->SetBinContent(i+1, scale*fOut[i][0]);
realFourier->SetBinError(i+1, 0.0);
}
} else {
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
#ifdef HAVE_DKS
realFourier->SetBinContent(i+1, scale*fOutDKS[i].real());
#else
@@ -615,11 +613,11 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
* \param min minimal freq / field from which to optimise. Given in the choosen unit.
* \param max maximal freq / field up to which to optimise. Given in the choosen unit.
*/
TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Double_t> &phase,
TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, std::vector<Double_t> &phase,
const Double_t scale, const Double_t min, const Double_t max)
{
if ((re == 0) || (im == 0))
return 0;
if ((re == nullptr) || (im == nullptr))
return nullptr;
phase.resize(2); // c0, c1
@@ -635,7 +633,7 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
minBin = axis->FindFixBin(min);
if ((minBin == 0) || (minBin > maxBin)) {
minBin = 1;
cerr << "**WARNING** minimum frequency/field out of range. Will adopted it." << endl;
std::cerr << "**WARNING** minimum frequency/field out of range. Will adopted it." << std::endl;
}
}
@@ -644,12 +642,12 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
maxBin = axis->FindFixBin(max);
if ((maxBin == 0) || (maxBin > axis->GetNbins())) {
maxBin = axis->GetNbins();
cerr << "**WARNING** maximum frequency/field out of range. Will adopted it." << endl;
std::cerr << "**WARNING** maximum frequency/field out of range. Will adopted it." << std::endl;
}
}
// copy the real/imag Fourier from min to max
vector<Double_t> realF, imagF;
std::vector<Double_t> realF, imagF;
for (Int_t i=minBin; i<=maxBin; i++) {
realF.push_back(re->GetBinContent(i));
imagF.push_back(im->GetBinContent(i));
@@ -657,15 +655,15 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
// optimize real FT phase
PFTPhaseCorrection *phCorrectedReFT = new PFTPhaseCorrection(realF, imagF);
if (phCorrectedReFT == 0) {
cerr << endl << "**SEVERE ERROR** couldn't invoke PFTPhaseCorrection object." << endl;
return 0;
if (phCorrectedReFT == nullptr) {
std::cerr << std::endl << "**SEVERE ERROR** couldn't invoke PFTPhaseCorrection object." << std::endl;
return nullptr;
}
phCorrectedReFT->Minimize();
if (!phCorrectedReFT->IsValid()) {
cerr << endl << "**ERROR** could not find a valid phase correction minimum." << endl;
return 0;
std::cerr << std::endl << "**ERROR** could not find a valid phase correction minimum." << std::endl;
return nullptr;
}
phase[0] = phCorrectedReFT->GetPhaseCorrectionParam(0);
phase[1] = phCorrectedReFT->GetPhaseCorrectionParam(1);
@@ -673,7 +671,7 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
// clean up
if (phCorrectedReFT) {
delete phCorrectedReFT;
phCorrectedReFT = 0;
phCorrectedReFT = nullptr;
}
realF.clear();
imagF.clear();
@@ -684,16 +682,16 @@ TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Do
snprintf(name, sizeof(name), "%s_Fourier_PhOptRe", re->GetName());
snprintf(title, sizeof(title), "%s_Fourier_PhOptRe", re->GetTitle());
TH1F *realPhaseOptFourier = new TH1F(name, title, noOfBins, -res/2.0, (Double_t)(noOfBins-1)*res+res/2.0);
if (realPhaseOptFourier == 0) {
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << endl;
return 0;
TH1F *realPhaseOptFourier = new TH1F(name, title, noOfBins, -res/2.0, static_cast<Double_t>(noOfBins-1)*res+res/2.0);
if (realPhaseOptFourier == nullptr) {
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << std::endl;
return nullptr;
}
// fill realFourier vector
Double_t ph;
for (Int_t i=0; i<noOfBins; i++) {
ph = phase[0] + phase[1] * (Double_t)((Int_t)i-(Int_t)minBin) / (Double_t)(maxBin-minBin);
ph = phase[0] + phase[1] * static_cast<Double_t>(i-static_cast<Int_t>(minBin)) / static_cast<Double_t>(maxBin-minBin);
realPhaseOptFourier->SetBinContent(i+1, scale*(re->GetBinContent(i+1)*cos(ph) - im->GetBinContent(i+1)*sin(ph)));
realPhaseOptFourier->SetBinError(i+1, 0.0);
}
@@ -713,7 +711,7 @@ TH1F* PFourier::GetImaginaryFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke imaginaryFourier
Char_t name[256];
@@ -723,21 +721,21 @@ TH1F* PFourier::GetImaginaryFourier(const Double_t scale)
UInt_t noOfFourierBins = fNoOfBins/2+1;
TH1F* imaginaryFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (imaginaryFourier == 0) {
TH1F* imaginaryFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (imaginaryFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the imaginary part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the imaginary part of the Fourier transform." << std::endl;
return nullptr;
}
// fill imaginaryFourier vector
if (fUseFFTW) {
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
imaginaryFourier->SetBinContent(i+1, scale*fOut[i][1]);
imaginaryFourier->SetBinError(i+1, 0.0);
}
} else {
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
#ifdef HAVE_DKS
imaginaryFourier->SetBinContent(i+1, scale*fOutDKS[i].imag());
#else
@@ -760,7 +758,7 @@ TH1F* PFourier::GetPowerFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke powerFourier
Char_t name[256];
@@ -770,21 +768,21 @@ TH1F* PFourier::GetPowerFourier(const Double_t scale)
UInt_t noOfFourierBins = fNoOfBins/2+1;
TH1F* pwrFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (pwrFourier == 0) {
TH1F* pwrFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (pwrFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the power part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the power part of the Fourier transform." << std::endl;
return nullptr;
}
// fill powerFourier vector
if (fUseFFTW) {
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
pwrFourier->SetBinContent(i+1, scale*sqrt(fOut[i][0]*fOut[i][0]+fOut[i][1]*fOut[i][1]));
pwrFourier->SetBinError(i+1, 0.0);
}
} else {
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
#ifdef HAVE_DKS
pwrFourier->SetBinContent(i+1, scale*sqrt(fOutDKS[i].real()*fOutDKS[i].real()+fOutDKS[i].imag()*fOutDKS[i].imag()));
#else
@@ -807,7 +805,7 @@ TH1F* PFourier::GetPhaseFourier(const Double_t scale)
{
// check if valid flag is set
if (!fValid)
return 0;
return nullptr;
// invoke phaseFourier
Char_t name[256];
@@ -817,17 +815,17 @@ TH1F* PFourier::GetPhaseFourier(const Double_t scale)
UInt_t noOfFourierBins = fNoOfBins/2+1;
TH1F* phaseFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (phaseFourier == 0) {
TH1F* phaseFourier = new TH1F(name, title, static_cast<Int_t>(noOfFourierBins), -fResolution/2.0, static_cast<Double_t>(noOfFourierBins-1)*fResolution+fResolution/2.0);
if (phaseFourier == nullptr) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the phase part of the Fourier transform." << endl;
return 0;
std::cerr << std::endl << "**SEVERE ERROR** couldn't allocate memory for the phase part of the Fourier transform." << std::endl;
return nullptr;
}
// fill phaseFourier vector
Double_t value = 0.0;
Double_t re, im;
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<static_cast<Int_t>(noOfFourierBins); i++) {
if (fUseFFTW) {
re = fOut[i][0];
im = fOut[i][1];
@@ -894,15 +892,15 @@ void PFourier::PrepareFFTwInputData(UInt_t apodizationTag)
Double_t mean = 0.0;
if (fDCCorrected) {
for (UInt_t i=start; i<start+fNoOfData; i++) {
mean += fData->GetBinContent(i);
mean += fData->GetBinContent(static_cast<Int_t>(i));
}
mean /= (Double_t)fNoOfData;
mean /= static_cast<Double_t>(fNoOfData);
}
// 2nd fill fIn
if (fUseFFTW) {
for (UInt_t i=0; i<fNoOfData; i++) {
fIn[i][0] = fData->GetBinContent(i+start) - mean;
fIn[i][0] = fData->GetBinContent(static_cast<Int_t>(i+start)) - mean;
fIn[i][1] = 0.0;
}
for (UInt_t i=fNoOfData; i<fNoOfBins; i++) {
@@ -912,7 +910,7 @@ void PFourier::PrepareFFTwInputData(UInt_t apodizationTag)
} else {
for (UInt_t i=0; i<fNoOfData; i++) {
#ifdef HAVE_DKS
fInDKS[i] = fData->GetBinContent(i+start) - mean;
fInDKS[i] = fData->GetBinContent(static_cast<Int_t>(i+start)) - mean;
#endif
}
for (UInt_t i=fNoOfData; i<fNoOfBins; i++) {
@@ -923,7 +921,7 @@ void PFourier::PrepareFFTwInputData(UInt_t apodizationTag)
}
// 3rd apodize data (if wished)
ApodizeData(apodizationTag);
ApodizeData(static_cast<Int_t>(apodizationTag));
}
//--------------------------------------------------------------------------
@@ -951,6 +949,8 @@ void PFourier::ApodizeData(Int_t apodizationTag) {
}
switch (apodizationTag) {
case F_APODIZATION_NONE:
return;
case F_APODIZATION_WEAK:
c[0] = cweak[0]+cweak[1]+cweak[2];
c[1] = -(cweak[1]+2.0*cweak[2]);
@@ -969,7 +969,7 @@ void PFourier::ApodizeData(Int_t apodizationTag) {
c[4] = cstrong[2];
break;
default:
cerr << endl << ">> **ERROR** User Apodization tag " << apodizationTag << " unknown, sorry ..." << endl;
std::cerr << std::endl << ">> **ERROR** User Apodization tag " << apodizationTag << " unknown, sorry ..." << std::endl;
break;
}
@@ -977,7 +977,7 @@ void PFourier::ApodizeData(Int_t apodizationTag) {
for (UInt_t i=0; i<fNoOfData; i++) {
q = c[0];
for (UInt_t j=1; j<5; j++) {
q += c[j] * pow((Double_t)i/(Double_t)fNoOfData, 2.0*(Double_t)j);
q += c[j] * pow(static_cast<Double_t>(i)/static_cast<Double_t>(fNoOfData), 2.0*static_cast<Double_t>(j));
}
if (fUseFFTW) {
fIn[i][0] *= q;