start-/endTimeBin are now class members. This reduces the number of recalculations.
This commit is contained in:
@ -64,6 +64,9 @@ PRunSingleHisto::PRunSingleHisto() : PRunBase()
|
||||
// the fit range can be changed in the command block, these variables need to be accessible
|
||||
fGoodBins[0] = -1;
|
||||
fGoodBins[1] = -1;
|
||||
|
||||
fStartTimeBin = -1;
|
||||
fEndTimeBin = -1;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
@ -81,6 +84,7 @@ PRunSingleHisto::PRunSingleHisto(PMsrHandler *msrInfo, PRunDataHandler *rawData,
|
||||
{
|
||||
fScaleN0AndBkg = IsScaleN0AndBkg();
|
||||
fNoOfFitBins = 0;
|
||||
fBackground = 0;
|
||||
|
||||
fPacking = fRunInfo->GetPacking();
|
||||
if (fPacking == -1) { // i.e. packing is NOT given in the RUN-block, it must be given in the GLOBAL-block
|
||||
@ -99,6 +103,9 @@ PRunSingleHisto::PRunSingleHisto(PMsrHandler *msrInfo, PRunDataHandler *rawData,
|
||||
fGoodBins[0] = -1;
|
||||
fGoodBins[1] = -1;
|
||||
|
||||
fStartTimeBin = -1;
|
||||
fEndTimeBin = -1;
|
||||
|
||||
if (!PrepareData()) {
|
||||
cerr << endl << ">> PRunSingleHisto::PRunSingleHisto: **SEVERE ERROR**: Couldn't prepare data for fitting!";
|
||||
cerr << endl << ">> This is very bad :-(, will quit ...";
|
||||
@ -173,15 +180,7 @@ Double_t PRunSingleHisto::CalcChiSquare(const std::vector<Double_t>& par)
|
||||
|
||||
// calculate chi square
|
||||
Double_t time(1.0);
|
||||
Int_t i, N(static_cast<Int_t>(fData.GetValue()->size()));
|
||||
|
||||
// In order not to have an IF in the next loop, determine the start and end bins for the fit range now
|
||||
Int_t startTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
|
||||
if (startTimeBin < 0)
|
||||
startTimeBin = 0;
|
||||
Int_t endTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
|
||||
if (endTimeBin > N)
|
||||
endTimeBin = N;
|
||||
Int_t i;
|
||||
|
||||
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
|
||||
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
|
||||
@ -190,12 +189,12 @@ Double_t PRunSingleHisto::CalcChiSquare(const std::vector<Double_t>& par)
|
||||
time = fTheory->Func(time, par, fFuncValues);
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
Int_t chunk = (endTimeBin - startTimeBin)/omp_get_num_procs();
|
||||
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq)
|
||||
#endif
|
||||
for (i=startTimeBin; i < endTimeBin; ++i) {
|
||||
for (i=fStartTimeBin; i<fEndTimeBin; ++i) {
|
||||
time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep();
|
||||
diff = fData.GetValue()->at(i) -
|
||||
(N0*TMath::Exp(-time/tau)*(1.0+fTheory->Func(time, par, fFuncValues))+bkg);
|
||||
@ -266,15 +265,7 @@ Double_t PRunSingleHisto::CalcChiSquareExpected(const std::vector<Double_t>& par
|
||||
|
||||
// calculate chi square
|
||||
Double_t time(1.0);
|
||||
Int_t i, N(static_cast<Int_t>(fData.GetValue()->size()));
|
||||
|
||||
// In order not to have an IF in the next loop, determine the start and end bins for the fit range now
|
||||
Int_t startTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
|
||||
if (startTimeBin < 0)
|
||||
startTimeBin = 0;
|
||||
Int_t endTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
|
||||
if (endTimeBin > N)
|
||||
endTimeBin = N;
|
||||
Int_t i;
|
||||
|
||||
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
|
||||
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
|
||||
@ -283,12 +274,12 @@ Double_t PRunSingleHisto::CalcChiSquareExpected(const std::vector<Double_t>& par
|
||||
time = fTheory->Func(time, par, fFuncValues);
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
Int_t chunk = (endTimeBin - startTimeBin)/omp_get_num_procs();
|
||||
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq)
|
||||
#endif
|
||||
for (i=startTimeBin; i < endTimeBin; ++i) {
|
||||
for (i=fStartTimeBin; i < fEndTimeBin; ++i) {
|
||||
time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep();
|
||||
theo = N0*TMath::Exp(-time/tau)*(1.0+fTheory->Func(time, par, fFuncValues))+bkg;
|
||||
diff = fData.GetValue()->at(i) - theo;
|
||||
@ -359,7 +350,7 @@ Double_t PRunSingleHisto::CalcMaxLikelihood(const std::vector<Double_t>& par)
|
||||
Double_t theo;
|
||||
Double_t data;
|
||||
Double_t time(1.0);
|
||||
Int_t i, N(static_cast<Int_t>(fData.GetValue()->size()));
|
||||
Int_t i;
|
||||
|
||||
// norm is needed since there is no simple scaling like in chisq case to get the correct Max.Log.Likelihood value when normlizing N(t) to 1/ns
|
||||
Double_t normalizer = 1.0;
|
||||
@ -367,14 +358,6 @@ Double_t PRunSingleHisto::CalcMaxLikelihood(const std::vector<Double_t>& par)
|
||||
if (fScaleN0AndBkg)
|
||||
normalizer = fPacking * (fTimeResolution * 1.0e3);
|
||||
|
||||
// In order not to have an IF in the next loop, determine the start and end bins for the fit range now
|
||||
Int_t startTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
|
||||
if (startTimeBin < 0)
|
||||
startTimeBin = 0;
|
||||
Int_t endTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
|
||||
if (endTimeBin > N)
|
||||
endTimeBin = N;
|
||||
|
||||
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
|
||||
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
|
||||
// for a given set of parameters---which should be done outside of the parallelized loop.
|
||||
@ -382,12 +365,12 @@ Double_t PRunSingleHisto::CalcMaxLikelihood(const std::vector<Double_t>& par)
|
||||
time = fTheory->Func(time, par, fFuncValues);
|
||||
|
||||
#ifdef HAVE_GOMP
|
||||
Int_t chunk = (endTimeBin - startTimeBin)/omp_get_num_procs();
|
||||
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
|
||||
if (chunk < 10)
|
||||
chunk = 10;
|
||||
#pragma omp parallel for default(shared) private(i,time,theo,data) schedule(dynamic,chunk) reduction(-:mllh)
|
||||
#endif
|
||||
for (i=startTimeBin; i<endTimeBin; ++i) {
|
||||
for (i=fStartTimeBin; i<fEndTimeBin; ++i) {
|
||||
time = fData.GetDataTimeStart() + (Double_t)i*fData.GetDataTimeStep();
|
||||
// calculate theory for the given parameter set
|
||||
theo = N0*TMath::Exp(-time/tau)*(1.0+fTheory->Func(time, par, fFuncValues))+bkg;
|
||||
@ -588,15 +571,15 @@ void PRunSingleHisto::SetFitRangeBin(const TString fitRange)
|
||||
void PRunSingleHisto::CalcNoOfFitBins()
|
||||
{
|
||||
// In order not having to loop over all bins and to stay consistent with the chisq method, calculate the start and end bins explicitly
|
||||
Int_t startTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
|
||||
if (startTimeBin < 0)
|
||||
startTimeBin = 0;
|
||||
Int_t endTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
|
||||
if (endTimeBin > static_cast<Int_t>(fData.GetValue()->size()))
|
||||
endTimeBin = fData.GetValue()->size();
|
||||
fStartTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
|
||||
if (fStartTimeBin < 0)
|
||||
fStartTimeBin = 0;
|
||||
fEndTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
|
||||
if (fEndTimeBin > static_cast<Int_t>(fData.GetValue()->size()))
|
||||
fEndTimeBin = fData.GetValue()->size();
|
||||
|
||||
if (endTimeBin > startTimeBin)
|
||||
fNoOfFitBins = endTimeBin - startTimeBin;
|
||||
if (fEndTimeBin > fStartTimeBin)
|
||||
fNoOfFitBins = fEndTimeBin - fStartTimeBin;
|
||||
else
|
||||
fNoOfFitBins = 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user