more work on Raw -> Smart Pointers for external libs.

This commit is contained in:
2023-10-27 23:23:19 +02:00
parent 7691ef2815
commit af13e78c52
16 changed files with 440 additions and 674 deletions

View File

@@ -35,6 +35,7 @@
#include <cmath>
#include <vector>
#include <memory>
//-----------------------------------------------------------------------------
/**
@@ -88,10 +89,8 @@ inline double T2Integrator::IntegrateFunc(double x1, double x2, const std::vecto
ptrPair.first = (this);
ptrPair.second = &par;
ROOT::Math::GSLIntegrator *integrator = new ROOT::Math::GSLIntegrator(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
std::unique_ptr<ROOT::Math::GSLIntegrator> integrator = std::make_unique<ROOT::Math::GSLIntegrator>(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
double value(integrator->Integral(&T2Integrator::FuncAtXgsl, static_cast<void*>(&ptrPair), x1, x2));
delete integrator;
integrator = nullptr;
return value;
}
@@ -115,7 +114,7 @@ class TIntegrator {
private:
static double FuncAtXgsl(double, void *);
ROOT::Math::GSLIntegrator *fIntegrator; ///< pointer to the GSL integrator
std::unique_ptr<ROOT::Math::GSLIntegrator> fIntegrator; ///< pointer to the GSL integrator
mutable double (*fFunc)(double, void *); ///< pointer to the integrand function
};
@@ -125,7 +124,7 @@ class TIntegrator {
* Allocation of memory for an integration using the adaptive 31 point Gauss-Kronrod rule
*/
inline TIntegrator::TIntegrator() : fFunc(0) {
fIntegrator = new ROOT::Math::GSLIntegrator(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
fIntegrator = std::make_unique<ROOT::Math::GSLIntegrator>(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
}
//-----------------------------------------------------------------------------
@@ -135,8 +134,6 @@ inline TIntegrator::TIntegrator() : fFunc(0) {
*/
inline TIntegrator::~TIntegrator(){
fPar.clear();
delete fIntegrator;
fIntegrator=nullptr;
fFunc=0;
}
@@ -190,7 +187,7 @@ class TMCIntegrator {
private:
static double FuncAtXgsl(double *, size_t, void *);
ROOT::Math::GSLMCIntegrator *fMCIntegrator; ///< pointer to the GSL integrator
std::unique_ptr<ROOT::Math::GSLMCIntegrator> fMCIntegrator; ///< pointer to the GSL integrator
mutable double (*fFunc)(double *, size_t, void *); ///< pointer to the integrand function
};
@@ -200,7 +197,7 @@ class TMCIntegrator {
* Allocation of memory for an integration using the MISER algorithm of Press and Farrar
*/
inline TMCIntegrator::TMCIntegrator() : fFunc(0) {
fMCIntegrator = new ROOT::Math::GSLMCIntegrator(ROOT::Math::MCIntegration::kMISER, 1.E-6, 1.E-4, 500000);
fMCIntegrator = std::make_unique<ROOT::Math::GSLMCIntegrator>(ROOT::Math::MCIntegration::kMISER, 1.E-6, 1.E-4, 500000);
}
//-----------------------------------------------------------------------------
@@ -210,8 +207,6 @@ inline TMCIntegrator::TMCIntegrator() : fFunc(0) {
*/
inline TMCIntegrator::~TMCIntegrator(){
fPar.clear();
delete fMCIntegrator;
fMCIntegrator=nullptr;
fFunc=0;
}

View File

@@ -33,37 +33,33 @@
#include <cmath>
#include <cassert>
#include <algorithm>
using namespace std;
#include <memory>
//--------------------
// Constructor of the TrimSPData class -- reading all available trim.SP-rge-files with a given name into std::vectors
//--------------------
TTrimSPData::TTrimSPData(const string &path, map<double, string> &energies, bool debug, unsigned int highRes) {
TTrimSPData::TTrimSPData(const std::string &path, std::map<double, std::string> &energies, bool debug, unsigned int highRes) {
// sort the energies in ascending order - this might be useful for later applications (energy-interpolations etc.)
// after the change from the vector to the map this is not necessary any more - since maps are always ordered!
// sort(energies.begin(), energies.end());
double zz(0.0), nzz(0.0);
vector<double> vzz, vnzz;
string word, energyStr;
std::vector<double> vzz, vnzz;
std::string word, energyStr;
bool goodFile(false);
for ( map<double, string>::const_iterator iter(energies.begin()); iter != energies.end(); ++iter ) {
for ( std::map<double, std::string>::const_iterator iter(energies.begin()); iter != energies.end(); ++iter ) {
energyStr = path + iter->second + ".rge";
ifstream *rgeFile = new ifstream(energyStr.c_str());
if(! *rgeFile) {
cerr << "TTrimSPData::TTrimSPData: file " << energyStr << " not found! Try next energy..." << endl;
delete rgeFile;
rgeFile = 0;
std::unique_ptr<std::ifstream> rgeFile = std::make_unique<std::ifstream>(energyStr.c_str());
if (rgeFile == nullptr) {
std::cerr << "TTrimSPData::TTrimSPData: file " << energyStr << " not found! Try next energy..." << std::endl;
} else {
while(*rgeFile >> word) {
if(word == "PARTICLES") {
while (*rgeFile >> word) {
if (word == "PARTICLES") {
goodFile = true;
break;
}
@@ -73,7 +69,7 @@ TTrimSPData::TTrimSPData(const string &path, map<double, string> &energies, bool
fEnergy.push_back(iter->first);
while(!rgeFile->eof()) {
while (!rgeFile->eof()) {
*rgeFile >> zz >> nzz;
vzz.push_back(zz);
vnzz.push_back(nzz);
@@ -92,8 +88,6 @@ TTrimSPData::TTrimSPData(const string &path, map<double, string> &energies, bool
rgeFile->close();
delete rgeFile;
rgeFile = 0;
vzz.clear();
vnzz.clear();
@@ -106,14 +100,14 @@ TTrimSPData::TTrimSPData(const string &path, map<double, string> &energies, bool
}
} else {
cerr << "TTrimSPData::TTrimSPData: " << energyStr << " does not seem to be a valid unmodified TRIM.SP output file!" << endl;
std::cerr << "TTrimSPData::TTrimSPData: " << energyStr << " does not seem to be a valid unmodified TRIM.SP output file!" << std::endl;
continue;
}
}
}
if (debug)
cout << "TTrimSPData::TTrimSPData: Read in " << fDataNZ.size() << " implantation profiles in total." << endl;
std::cout << "TTrimSPData::TTrimSPData: Read in " << fDataNZ.size() << " implantation profiles in total." << std::endl;
fOrigDataNZ = fDataNZ;
@@ -126,8 +120,8 @@ TTrimSPData::TTrimSPData(const string &path, map<double, string> &energies, bool
// If it is not found the energy iterator will point to the end() of the energy vector.
void TTrimSPData::FindEnergy(double e) const {
for(fEnergyIter = fEnergy.begin(); fEnergyIter != fEnergy.end(); ++fEnergyIter) {
if(fabs(*fEnergyIter - e) < 0.05)
for (fEnergyIter = fEnergy.begin(); fEnergyIter != fEnergy.end(); ++fEnergyIter) {
if (fabs(*fEnergyIter - e) < 0.05)
return;
}
return;
@@ -137,11 +131,11 @@ void TTrimSPData::UseHighResolution(double e) {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
vector<double> vecZ;
vector<double> vecNZ;
for(double zz(1.); zz<2100.; zz+=1.) {
std::vector<double> vecZ;
std::vector<double> vecNZ;
for (double zz(1.); zz<2100.; zz+=1.) {
vecZ.push_back(zz);
vecNZ.push_back(GetNofZ(zz/10.0, e));
}
@@ -153,7 +147,7 @@ void TTrimSPData::UseHighResolution(double e) {
return;
}
cout << "TTrimSPData::DataZ: No implantation profile available for the specified energy... Nothing happens." << endl;
std::cout << "TTrimSPData::DataZ: No implantation profile available for the specified energy... Nothing happens." << std::endl;
return;
}
@@ -161,16 +155,16 @@ void TTrimSPData::UseHighResolution(double e) {
// Method returning z-vector calculated by trim.SP for given energy[keV]
//---------------------
vector<double> TTrimSPData::DataZ(double e) const {
std::vector<double> TTrimSPData::DataZ(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
return fDataZ[i];
}
// default
cout << "TTrimSPData::DataZ: No implantation profile available for the specified energy... You get back the first one." << endl;
std::cout << "TTrimSPData::DataZ: No implantation profile available for the specified energy... You get back the first one." << std::endl;
return fDataZ[0];
}
@@ -179,50 +173,50 @@ vector<double> TTrimSPData::DataZ(double e) const {
// potentially altered by the WeightLayers- or the Normalize-method for given energy[keV]
//---------------------
vector<double> TTrimSPData::DataNZ(double e) const {
std::vector<double> TTrimSPData::DataNZ(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
return fDataNZ[i];
}
// default
cout << "TTrimSPData::DataNZ: No implantation profile available for the specified energy... You get back the first one." << endl;
return fDataNZ[0];
std::cout << "TTrimSPData::DataNZ: No implantation profile available for the specified energy... You get back the first one." << std::endl;
return fDataNZ[0];
}
//---------------------
// Method returning original n(z)-vector calculated by trim.SP for given energy[keV]
//---------------------
vector<double> TTrimSPData::OrigDataNZ(double e) const {
std::vector<double> TTrimSPData::OrigDataNZ(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
return fOrigDataNZ[i];
}
// default
cout << "TTrimSPData::OrigDataNZ: No implantation profile available for the specified energy... You get back the first one." << endl;
return fOrigDataNZ[0];
std::cout << "TTrimSPData::OrigDataNZ: No implantation profile available for the specified energy... You get back the first one." << std::endl;
return fOrigDataNZ[0];
}
double TTrimSPData::DataDZ(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
return fDZ[i];
}
// default
cout << "TTrimSPData::DataDZ: No implantation profile available for the specified energy... The resolution will be zero!" << endl;
return 0.0;
std::cout << "TTrimSPData::DataDZ: No implantation profile available for the specified energy... The resolution will be zero!" << std::endl;
return 0.0;
}
//---------------------
@@ -230,10 +224,10 @@ double TTrimSPData::DataDZ(double e) const {
// Parameters: Energy[keV], LayerNumber[1], Interfaces[nm]
//---------------------
double TTrimSPData::LayerFraction(double e, unsigned int layno, const vector<double>& interface) const {
double TTrimSPData::LayerFraction(double e, unsigned int layno, const std::vector<double>& interface) const {
if(layno < 1 && layno > (interface.size()+1)) {
cout << "TTrimSPData::LayerFraction: No such layer available according to your specified interfaces... Returning 0.0!" << endl;
if (layno < 1 && layno > (interface.size()+1)) {
std::cout << "TTrimSPData::LayerFraction: No such layer available according to your specified interfaces... Returning 0.0!" << std::endl;
return 0.0;
}
@@ -244,21 +238,21 @@ double TTrimSPData::LayerFraction(double e, unsigned int layno, const vector<dou
// Because we do not know if the implantation profile is normalized or not, do not care about this and calculate the fraction from the beginning
// Total "number of muons"
double totalNumber(0.0);
for(unsigned int j(0); j<fDataZ[i].size(); j++)
for (unsigned int j(0); j<fDataZ[i].size(); j++)
totalNumber += fDataNZ[i][j];
// "number of muons" in layer layno
double layerNumber(0.0);
if(!(layno-1)){
for(unsigned int j(0); j<fDataZ[i].size(); j++)
if(fDataZ[i][j] < interface[0]*10.0)
if (!(layno-1)){
for (unsigned int j(0); j<fDataZ[i].size(); j++)
if (fDataZ[i][j] < interface[0]*10.0)
layerNumber += fDataNZ[i][j];
} else if(!(layno-interface.size()-1)){
for(unsigned int j(0); j<fDataZ[i].size(); j++)
if(fDataZ[i][j] >= *(interface.end()-1)*10.0)
} else if (!(layno-interface.size()-1)) {
for (unsigned int j(0); j<fDataZ[i].size(); j++)
if (fDataZ[i][j] >= *(interface.end()-1)*10.0)
layerNumber += fDataNZ[i][j];
} else {
for(unsigned int j(0); j<fDataZ[i].size(); j++)
if(fDataZ[i][j] >= interface[layno-2]*10.0 && fDataZ[i][j] < interface[layno-1]*10.0)
for (unsigned int j(0); j<fDataZ[i].size(); j++)
if (fDataZ[i][j] >= interface[layno-2]*10.0 && fDataZ[i][j] < interface[layno-1]*10.0)
layerNumber += fDataNZ[i][j];
}
// fraction of muons in layer layno
@@ -267,9 +261,9 @@ double TTrimSPData::LayerFraction(double e, unsigned int layno, const vector<dou
}
// default
cout << "TTrimSPData::LayerFraction: No implantation profile available for the specified energy " << e << " keV... Returning 0.0" << endl;
return 0.0;
std::cout << "TTrimSPData::LayerFraction: No implantation profile available for the specified energy " << e << " keV... Returning 0.0" << std::endl;
return 0.0;
}
//---------------------
@@ -280,30 +274,30 @@ double TTrimSPData::LayerFraction(double e, unsigned int layno, const vector<dou
// the first and last layers get the full n(z), where only one third of the muons in the second layer will be taken into account
//---------------------
void TTrimSPData::WeightLayers(double e, const vector<double>& interface, const vector<double>& weight) const {
void TTrimSPData::WeightLayers(double e, const std::vector<double>& interface, const std::vector<double>& weight) const {
if(weight.size()-interface.size()-1) {
cout << "TTrimSPData::WeightLayers: For the weighting the number of interfaces has to be one less than the number of weights!" << endl;
cout << "TTrimSPData::WeightLayers: No weighting of the implantation profile will be done unless you take care of that!" << endl;
if (weight.size()-interface.size()-1) {
std::cout << "TTrimSPData::WeightLayers: For the weighting the number of interfaces has to be one less than the number of weights!" << std::endl;
std::cout << "TTrimSPData::WeightLayers: No weighting of the implantation profile will be done unless you take care of that!" << std::endl;
return;
}
for(unsigned int i(0); i<interface.size(); i++) {
for (unsigned int i(0); i<interface.size(); i++) {
if (interface[i]<0.0) {
cout << "TTrimSPData::WeightLayers: One of your layer interfaces has a negative coordinate! - No weighting will be done!" << endl;
std::cout << "TTrimSPData::WeightLayers: One of your layer interfaces has a negative coordinate! - No weighting will be done!" << std::endl;
return;
}
else if (i>1) {
if (interface[i]<interface[i-1]) {
cout << "TTrimSPData::WeightLayers: The specified interfaces appear to be not in ascending order! - No weighting will be done!" << endl;
std::cout << "TTrimSPData::WeightLayers: The specified interfaces appear to be not in ascending order! - No weighting will be done!" << std::endl;
return;
}
}
}
for(unsigned int i(0); i<weight.size(); i++) {
for (unsigned int i(0); i<weight.size(); i++) {
if (weight[i]>1.0 || weight[i]<0.0) {
cout << "TTrimSPData::WeightLayers: At least one of the specified weights is out of range - no weighting will be done!" << endl;
std::cout << "TTrimSPData::WeightLayers: At least one of the specified weights is out of range - no weighting will be done!" << std::endl;
return;
}
}
@@ -311,11 +305,11 @@ void TTrimSPData::WeightLayers(double e, const vector<double>& interface, const
FindEnergy(e);
// If all weights are equal to one, use the original n(z) vector
for(unsigned int i(0); i<weight.size(); i++) {
if(weight[i]-1.0)
for (unsigned int i(0); i<weight.size(); i++) {
if (weight[i]-1.0)
break;
if(i == weight.size() - 1) {
if(fEnergyIter != fEnergy.end()) {
if (i == weight.size() - 1) {
if (fEnergyIter != fEnergy.end()) {
unsigned int j(fEnergyIter - fEnergy.begin());
fDataNZ[j] = fOrigDataNZ[j];
fIsNormalized[j] = false;
@@ -324,12 +318,12 @@ void TTrimSPData::WeightLayers(double e, const vector<double>& interface, const
}
}
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
unsigned int k(0);
for(unsigned int j(0); j<fDataZ[i].size(); j++) {
if(k<interface.size()) {
if(fDataZ[i][j] < interface[k]*10.0)
for (unsigned int j(0); j<fDataZ[i].size(); j++) {
if (k<interface.size()) {
if (fDataZ[i][j] < interface[k]*10.0)
fDataNZ[i][j] = fOrigDataNZ[i][j]*weight[k];
else {
k++;
@@ -339,11 +333,11 @@ void TTrimSPData::WeightLayers(double e, const vector<double>& interface, const
else
fDataNZ[i][j] = fOrigDataNZ[i][j]*weight[k];
}
fIsNormalized[i] = false;
return;
fIsNormalized[i] = false;
return;
}
cout << "TTrimSPData::WeightLayers: No implantation profile available for the specified energy... No weighting done." << endl;
std::cout << "TTrimSPData::WeightLayers: No implantation profile available for the specified energy... No weighting done." << std::endl;
return;
}
@@ -353,20 +347,20 @@ void TTrimSPData::WeightLayers(double e, const vector<double>& interface, const
double TTrimSPData::GetNofZ(double zz, double e) const {
vector<double> z, nz;
std::vector<double> z, nz;
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
z = fDataZ[i];
nz = fDataNZ[i];
} else {
cout << "TTrimSPData::GetNofZ: No implantation profile available for the specified energy " << e << " keV... Quitting!" << endl;
std::cout << "TTrimSPData::GetNofZ: No implantation profile available for the specified energy " << e << " keV... Quitting!" << std::endl;
exit(-1);
}
if(zz < 0)
if (zz < 0)
return 0.0;
bool found = false;
@@ -395,7 +389,7 @@ void TTrimSPData::Normalize(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
double nZsum = 0.0;
for (unsigned int j(0); j<fDataZ[i].size(); j++)
@@ -408,9 +402,9 @@ void TTrimSPData::Normalize(double e) const {
return;
}
// default
cout << "TTrimSPData::Normalize: No implantation profile available for the specified energy... No normalization done." << endl;
return;
std::cout << "TTrimSPData::Normalize: No implantation profile available for the specified energy... No normalization done." << std::endl;
return;
}
//---------------------
@@ -420,12 +414,12 @@ void TTrimSPData::Normalize(double e) const {
bool TTrimSPData::IsNormalized(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
return fIsNormalized[i];
}
cout << "TTrimSPData::IsNormalized: No implantation profile available for the specified energy... Returning false! Check your code!" << endl;
std::cout << "TTrimSPData::IsNormalized: No implantation profile available for the specified energy... Returning false! Check your code!" << std::endl;
return false;
}
@@ -436,19 +430,19 @@ bool TTrimSPData::IsNormalized(double e) const {
double TTrimSPData::MeanRange(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
if (!fIsNormalized[i])
Normalize(e);
double mean(0.0);
for(unsigned int j(0); j<fDataNZ[i].size(); j++){
for (unsigned int j(0); j<fDataNZ[i].size(); j++){
mean += fDataNZ[i][j]*fDataZ[i][j];
}
mean *= fDZ[i]/10.0;
return mean;
}
cout << "TTrimSPData::MeanRange: No implantation profile available for the specified energy... Returning -1! Check your code!" << endl;
std::cout << "TTrimSPData::MeanRange: No implantation profile available for the specified energy... Returning -1! Check your code!" << std::endl;
return -1.;
}
@@ -460,21 +454,21 @@ double TTrimSPData::PeakRange(double e) const {
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
vector<double>::const_iterator nziter;
std::vector<double>::const_iterator nziter;
nziter = max_element(fDataNZ[i].begin(),fDataNZ[i].end());
if(nziter != fDataNZ[i].end()){
if (nziter != fDataNZ[i].end()){
unsigned int j(nziter - fDataNZ[i].begin());
return fDataZ[i][j]/10.0;
}
cout << "TTrimSPData::PeakRange: No maximum found in the implantation profile... Returning -1! Please check the profile!" << endl;
std::cout << "TTrimSPData::PeakRange: No maximum found in the implantation profile... Returning -1! Please check the profile!" << std::endl;
return -1.;
}
cout << "TTrimSPData::PeakRange: No implantation profile available for the specified energy... Returning -1! Check your code!" << endl;
std::cout << "TTrimSPData::PeakRange: No implantation profile available for the specified energy... Returning -1! Check your code!" << std::endl;
return -1.;
}
@@ -484,26 +478,26 @@ double TTrimSPData::PeakRange(double e) const {
//---------------------
void TTrimSPData::ConvolveGss(double w, double e) const {
if(!w)
if (!w)
return;
vector<double> z, nz, gss;
std::vector<double> z, nz, gss;
double nn;
FindEnergy(e);
if(fEnergyIter != fEnergy.end()) {
if (fEnergyIter != fEnergy.end()) {
unsigned int i(fEnergyIter - fEnergy.begin());
z = fDataZ[i];
nz = fDataNZ[i];
for(unsigned int k(0); k<z.size(); k++) {
for (unsigned int k(0); k<z.size(); k++) {
gss.push_back(exp(-z[k]*z[k]/200.0/w/w));
}
for(unsigned int k(0); k<nz.size(); k++) {
for (unsigned int k(0); k<nz.size(); k++) {
nn = 0.0;
for(unsigned int j(0); j<nz.size(); j++) {
for (unsigned int j(0); j<nz.size(); j++) {
nn += nz[j]*gss[abs(int(k)-int(j))];
}
fDataNZ[i][k] = nn;
@@ -514,6 +508,6 @@ void TTrimSPData::ConvolveGss(double w, double e) const {
return;
}
cout << "TTrimSPData::ConvolveGss: No implantation profile available for the specified energy... No convolution done!" << endl;
std::cout << "TTrimSPData::ConvolveGss: No implantation profile available for the specified energy... No convolution done!" << std::endl;
return;
}

View File

@@ -32,7 +32,6 @@
#include <vector>
#include <string>
#include <map>
using namespace std;
/**
* <p>Class used to handle a set of low energy muon implantation profiles
@@ -41,7 +40,7 @@ class TTrimSPData {
public:
TTrimSPData(const string&, map<double, string>&, bool debug = false, unsigned int highRes = 0);
TTrimSPData(const std::string&, std::map<double, std::string>&, bool debug = false, unsigned int highRes = 0);
~TTrimSPData() {
fDataZ.clear();
@@ -52,15 +51,15 @@ public:
fIsNormalized.clear();
}
vector<double> Energy() const {return fEnergy;}
vector<double> DataZ(double) const;
vector<double> DataNZ(double) const;
vector<double> OrigDataNZ(double) const;
std::vector<double> Energy() const {return fEnergy;}
std::vector<double> DataZ(double) const;
std::vector<double> DataNZ(double) const;
std::vector<double> OrigDataNZ(double) const;
double DataDZ(double) const;
void UseHighResolution(double);
void SetOriginal() {fOrigDataNZ = fDataNZ;}
void WeightLayers(double, const vector<double>&, const vector<double>&) const;
double LayerFraction(double, unsigned int, const vector<double>&) const;
void WeightLayers(double, const std::vector<double>&, const std::vector<double>&) const;
double LayerFraction(double, unsigned int, const std::vector<double>&) const;
double GetNofZ(double, double) const;
void Normalize(double) const;
bool IsNormalized(double) const;
@@ -71,13 +70,13 @@ public:
private:
void FindEnergy(double) const;
vector<double> fEnergy; ///< vector holding all available muon energies
vector<double> fDZ; ///< vector holding the spatial resolution of the TRIM.SP output for all energies
vector< vector<double> > fDataZ; ///< discrete points in real space for which n(z) has been calculated for all energies
mutable vector< vector<double> > fDataNZ; ///< n(z) for all energies
vector< vector<double> > fOrigDataNZ; ///< original (unmodified) implantation profiles for all energies as read in from rge-files
mutable vector<bool> fIsNormalized; ///< tag indicating if the implantation profiles are normalized (for each energy separately)
mutable vector<double>::const_iterator fEnergyIter; ///< iterator traversing the vector of available energies
std::vector<double> fEnergy; ///< vector holding all available muon energies
std::vector<double> fDZ; ///< vector holding the spatial resolution of the TRIM.SP output for all energies
std::vector< std::vector<double> > fDataZ; ///< discrete points in real space for which n(z) has been calculated for all energies
mutable std::vector< std::vector<double> > fDataNZ; ///< n(z) for all energies
std::vector< std::vector<double> > fOrigDataNZ; ///< original (unmodified) implantation profiles for all energies as read in from rge-files
mutable std::vector<bool> fIsNormalized; ///< tag indicating if the implantation profiles are normalized (for each energy separately)
mutable std::vector<double>::const_iterator fEnergyIter; ///< iterator traversing the vector of available energies
};
#endif // _TTrimSPDataHandler_H_